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Introduction
The One Health Initiative emphasizes the interdependency 

of human, livestock, and wildlife health. Specifically, the initia-
tive asserts that the physical health of humans, livestock and 
wildlife are linked through shared diseases.11 Between 1940 
and 2004, more than 335 emerging infectious disease events 
were reported in the scientific literature. The majority (60%) of 
these events involved zoonoses, most of which (72%) had an 
epidemiologically important wildlife host.48 More than 90% 
of animal-related research at universities and other institu-
tions involves traditional laboratory animals (that is, rats and 
mice).64 Today, understanding the pathogenesis, transmission 
and diagnosis of emerging diseases often requires research 
involving wild animals, either free-ranging or captive, that are 
vastly different from laboratory animals or traditional livestock.

Cervid species, specifically white-tailed deer (WTD; Odo-
coileus virginianus) red deer (Cervus elaphus), and elk (Cervus 
canadensis), are important hosts for several zoonotic pathogens 
(for example, Brucella abortus, Mycobacterium bovis, hepatitis 
E virus).74,76,107 These species also serve as sentinels for other 
zoonotic pathogens (for example, enterohemorrhagic Escherichia 
coli, Yersinia enterocolitica, Listeria monocytogenes).27 Furthermore, 
some diseases such as brucellosis and tuberculosis are trans-
mitted between cervids and livestock, making these important 
diseases at the wildlife–livestock–human interface. Experi-
mental infection of cervids with zoonotic pathogens requires 
specialized facilities and practices to prevent pathogen release 

and to ensure personnel safety. In addition, pathogens such as B. 
abortus are considered biologic select agents and require intense 
biosecurity measures beyond standard practices.4

National biosafety guidelines categorize infectious agents 
into 4 ascending levels of risk (Figure 1). These designations are 
based on the pathogen’s ability to infect and cause disease in 
humans or animals, severity of disease, and availability of pre-
ventive or therapeutic options.118 These risk criteria are used to 
define corresponding biosafety levels of physical containment. 
Each of the 4 biosafety levels of containment describes the level 
of protection in terms of the practices, equipment, and facilities 
necessary for handling an agent of the corresponding risk level. 
These criteria also apply to the housing of animals infected with 
such agents. In situations where highly infective agricultural 
agents and large animals such as cows, pigs, bison, and deer are 
used, requirements beyond typical BSL3 practices are required. 
This advanced BSL3 designation is known as BSL3Ag.118

The following paragraphs describe published research using 
white-tailed deer. Some of the reported studies were conducted 
prior to the formal introduction of risk factors and biosafety lev-
els of containment. As such, the descriptions of research facilities 
are those used at the time and are not necessarily facilities that 
would be appropriate today.

Infectious Disease Research Involving WTD in 
BSL1 Environments

Pre1990 studies with WTD included infection trials with 
Leptospira pomona in 1962, Salmonella meleagridis in 1970, Ana-
plasma marginale in 1971, Venezuelan equine encephalomyelitis 
virus in 1972, Fasciola hepatic in 1974, Fascioloides magna in 1979, 
Jamestown Canyon and Keystone viruses in 1979, malignant 
catarrhal fever in 1981 and 1982, and Mycobacterium avium subsp. 
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paratuberculosis in 198320,40,53,93,98,115-117 (Figure 2). Descriptions 
of containment facilities for each of these studies generally are 
not provided in the literature or are only minimally described; 
therefore, the animals can be assumed to have been housed in 
outdoor pens consistent with BSL1 containment. The study us-
ing Anaplasma marginale was done at a field laboratory operated 
by USDA in Nuevo Laredo, Tamaulipas, Mexico—presumably 
as a precaution given that the tick vector (Boophilus annulatus), 
although endemic in Mexico, was essentially eradicated from 
the United States at that time. Research on chronic wasting 
disease (CWD) at the Colorado Division of Wildlife’s Wildlife 
Research Center from 2010 to 2013 housed CWD-inoculated 
deer in—presumably—outdoor “biosecure paddocks.” During 
these studies, some deer were held for short periods of time in 
metabolic cages for urine and feces collection.45,60,99

Infectious Disease Research Involving WTD in 
BSL2 Environments

The Southeastern Association of Fish and Wildlife Agencies 
founded the Southeast Cooperative Wildlife Disease Study 
(SCWDS) in Athens, GA, in 1957 to examine the cause of wide-
spread die-offs of WTD. Objectives—then and now—are to 
determine the causes of disease in wildlife, effects of disease 
on wildlife populations, and interrelationships between wild-
life, domestic livestock, and human infectious diseases. At the 
SCWDS, experimental infection trials in BSL2 type containment 
have included such notable pathogens as E. coli 0157:H7;19 
epizootic hemorrhagic disease virus,23-26,88,89,100,103,104,106 blue-
tongue virus,41,42 and multiple agents of anaplamosis,65,108,109 
borreliosis,54,63,73 and ehrlichiosis8-10,112,122,123 (Figure 2). For the 
past 50 years and longer, the SCWDS has been a leader in the 
development of experimental biology approaches for the study 
of infectious diseases in WTD.

Experimental infection studies with endemic strains of 
bluetongue virus were performed under BSL2 containment 
as early as 1967 at the University of Wisconsin (Madison, WI) 
and later at the SCWDS in the mid 1990s41,106,114 (Figure 2). 
Richard E Shope demonstrated the viral etiology of epizootic 
hemorrhagic disease in WTD and detailed the pathologic mani-
festations of the disease.102 Biocontainment for experimental 
infection trials performed by Shope at the Rockefeller Institute 
(Trenton, NJ) consisted of individual pens on a cement floor 
deeply bedded with straw or hay in a sturdy wooden frame 
lined with a 14-gauge welded wire of 2×1-in. mesh covered 
with a plastic “insect-proof” mesh screen. Studies with a Cali-
fornia serovar of bluetongue virus (BTV8) at the University of 
Wisconsin used similar biocontainment measures, described as 
“a Rockefeller-type isolation building.”114 These early studies  

by Shope provided a framework for experimental biology ap-
proaches using WTD. Fletch and Karstad extended Shope’s 
findings by demonstrating that disseminated intravascular 
coagulation was a key pathophysiologic feature of experimental 
epizootic hemorrhagic disease in WTD.20 Later, multiple studies 
performed at SCWDS in BSL2 environments provided insights 
into the pathogenesis, vector biology, clinical signs, and immune 
responses of WTD infected with epizootic hemorrhagic disease 
virus.23-26,89,103,104,106

Ruder and colleagues demonstrated the vector competence 
and susceptibility of WTD to a nonendemic serotype of epizootic 
hemorrhagic disease virus (EHDV7); this work highlighted the 
importance of serotype-specific diagnostic tests during hemor-
rhagic disease outbreaks.100,101 In 1972, Hoff and Trainer infected 
3 WTD with an attenuated Trinidad vaccine strain of Venezue-
lan equine encephalomyelitis virus by using various routes of 
inoculation; studies were conducted in “tight isolation facilities 
at the University of Wisconsin Charmany Research Center.”40

Throughout the past 20 y and longer, numerous studies have 
been performed at the SCWDS under BSL2 containment on 
tickborne pathogens involving WTD including Anaplasma spp., 
Ehrlichia spp., and Borrelia spp.8-10,54,63,65,73,108,109,112,122,123 (Figure 
2). Over the past 10 y, experimental infection studies with My-
cobacterium avium subsp. paratuberculosis,77 the prion agent of 
chronic wasting disease (CWD),29,31,35,36,37 and bovine viral diar-
rhea virus96,97 have been performed under BSL2 containment 
at the National Animal Disease Center (NADC) in Ames, IA.

Studies on CWD using WTD began at Colorado State Uni-
versity in the late 1990s. The first long-term study, which was 
almost 2 y in duration, was published in 2006.57 Numerous 
subsequent studies using samples from the original study or 
similar biocontainment protocols produced seminal papers on 
the presence of infectious prions in saliva and blood, transmis-
sion through environmental exposure, the presence of infectious 
prions in B cells and platelets, and aerosol transmission of infec-
tious prions.12,16,17,28,30,32,38,39,55-57 Biosecurity measures included 
“showering in procedures, wearing of Tyvek clothing, face 
masks, head covers, and footwear.”57,59

Other BSL2 studies involving WTD include those on CWD 
at the University of Wisconsin and the USDA’s National 
Wildlife Research Center (Ft Collins, CO); bovine viral diar-
rhea at Auburn University, Purdue University, and the Sybille 
Conservation Education and Wildlife Research Center in 
Wyoming;46,47,70,84,85 adenovirus hemorrhagic disease at the 
University of California in Davis;121 La Crosse virus at the 
University of Wisconsin;75 E. coli 0157:H7 hemorrhagic disease 
at SCWDS;19 Parelaphostrongylus tenuis infection at the Univer-
sity of New Brunswick, Canada;14,15 and Ehrlichia chaffeensis at 
Oklahoma State University (Stillwater, OK).3,44,67,68 (Figure 2).

Figure 1. Recommended risk group classifications and examples of agents experimentally administered to WTD.
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Infectious Disease Research Involving in  
BSL3 Environments

The first published reports in peer-reviewed journals regard-
ing the use of WTD in BSL3-type biocontainment facilities 
were experimental infection studies with rinderpest and peste 
des petits ruminants viruses33,34 that were performed at Plum 

Island Animal Disease Center (PIADC) in Greenport, NY in 1975 
(Figure 3). Studies on rinderpest and peste des petits ruminants 
viruses demonstrated the susceptibility of WTD to both viruses, 
highlighting the significant concern about the potential role 
of wildlife in the propagation of foreign animal diseases. In  
these studies, deer were “handled under observation in strict 

Figure 2. Experimental infection studies involving WTD in BSL1 or BSL2 biocontainment.
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isolation during the course of the experiment.” At this time, 
safety procedures and equipment at the facility included “air-
tight animal rooms; air-sealed (gasket) doors; and automatic 
wash-down airlocks.”52 The center’s biosafety standard was 
presented to the American Biologic Safety Association for 
consideration in defining the 4 levels of biocontainment used 
for animal studies with infectious agents.5 In 1987, studies at 
Plum Island demonstrated that WTD develop a rapid onset of 
neurologic disease and pulmonary edema after intravenous 
inoculation of Cowdria ruminantium (now termed Ehrlichia 
ruminantium)-infected blood.6 The authors concluded that 
WTD “could play a major role in the spread and mainte-
nance of this organism if it were ever introduced into the  
United States.”

More recently, WTD have been used in BSL3 containment for 
extensive studies on the pathogenesis and diagnosis of Mycobac-
terium bovis infection;72,77-83,105 pathogenesis and deer-to-cattle 
transmission of foot-and-mouth disease virus;62 and patho-
genesis and patterns of viremia after experimental infection 
with a Northern European strain of bluetongue virus (BTV8)13  
(Figure 3). These studies were performed in BSL3 or BSL3Ag 
high-containment facilities at NADC, National Centre for For-
eign Animal Disease (Winnipeg, Manitoba, Canada), and the 
BSL3 Animal Disease Laboratory at Colorado State University 
(Fort Collins, CO), respectively.

Using WTD in modern biocontainment facilities, especially 
at the BSL3 or BSL3Ag levels, presents unique challenges 
and requires complex housing specifications as well as care 
and handling practices unavailable at many institutions. As 
described in the following paragraphs, research on M. bovis 
infection in WTD at NADC serves to illustrate many of the 
unique challenges posed by long-term housing of WTD un-
der high-biocontainment conditions. All research at NADC 
was conducted humanely according to protocols approved 
by the NADC Care and Use Committee and in accordance 
with the Guide for Care and Use of Laboratory Animals43 and the 
Guide for the Care and Use of Agricultural Animals in Research  
and Teaching.18

Animal Behavior Considerations
Like other ruminants, deer have a central area of binocular 

vision with peripheral monocular vision thus creating a very 
wide visual field (approximately 300°). Their depth perception, 
ability to detect movement, and vision under low-light condi-
tions are excellent.58,61 Their hearing and directional capabilities 
for sound detection are remarkable also.61 As such, under 
almost all conditions their ability to detect humans initiates a 
sense of alertness and sometimes flight behavior. The raised 
tail of a WTD is a visual signal of danger—if one animal runs, 
others will follow.61 This following behavior can be used to 

an animal caretaker’s advantage when moving deer from one 
room to another.

Rooms for housing WTD are both heated and air-conditioned. 
Temperature is maintained between 17 and 19 °C, with relative 
humidity at 21% to 40%. Rooms are under negative pressure, 
with an airflow rate of 10 to 11 air changes hourly, and on a 
12:12-h light:dark photocycle.

WTD are particularly nervous and flighty, often making sud-
den movements when startled. Due to this flight response, it 
is not uncommon for deer to run, jump, and attempt to escape 
when personnel enter the animal room. Consequently, gat-
ing and penning must be of sufficient height to prevent deer 
from escaping. One study showed WTD would jump a fence 
2.1 m high but not one 2.4 m tall.113 Still, some suggest that a 
height of at least 3 m should be considered.49 When deer are 
startled, there is a high risk of slips or falls that can result in 
contusions, lacerations, or fractures. Therefore, the surface 
character of the flooring should reduce slipping and falling but 
be easily sanitized. Depending on flooring type, hooves may 
require frequent trimming, which generally involves manual 
or chemical restraint. Flooring at a biocontainment facility at 
Colorado State University where deer are housed is described as 
a mixture of sand and epoxy, which results in relatively normal  
hoof wear.59

Due to the inherent impulse of deer to flee when approached, 
it is useful to have a perceived ‘safe’ location to which deer can 
relocate when personnel enter the animal room. One design that 
has proven effective in the BSL3Ag facility at NADC is a room 
that contains a U-shaped animal space (Figure 4). As personnel 
enter one side of the room for cleaning and feeding, deer move to 
the other side, out of sight of the caretaker. After one half of the 
room is cleaned, deer are allowed to move back to the recently 
cleaned area, allowing cleaning of the opposite side of the room. 
An additional advantage to the U-shape design is that handling 
equipment can be placed parallel to the alleyway connecting 
the 2 sides of the room. When handling is required, deer can 
be moved to one side of the room, handled through the chute, 
and exited into the opposite side of the room.

As with many animal species kept in research settings, bar-
bering—both self-directed and partner-directed—is common 
in WTD,94 particularly after movement from outside facilities 
into containment housing. In WTD, it is unclear whether bar-
bering is a result of boredom, anxiety, distress, crowding, social 
hierarchy, or a combination of factors. As is common in other 
species, WTD ingest the pulled hair; as such, trichobezoars in 
the rumen or reticulum are often found at necropsy. At NADC, 
enrichment devices have empirically decreased barbering such 
as hanging puzzle feeders containing cracked corn; the height 
of which is altered periodically for variety. In addition, treats 
in the form of peanut butter or jelly applied to hanging bucket 
lids are also used as enrichment.

Figure 3. Experimental infection studies involving WTD in BSL3 biocontainment.
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Penning, Gating, and Animal Handling
For use with WTD, gates, latches, feeders, and watering 

devices must be designed without sharp corners or angles. 
Restraint devices specific for handling deer are most effective. 
For WTD, ‘drop-floor’ chutes (for example, the Deerhandler 
[Delclayna, Alberta, Canada]) are preferable to traditional live-
stock squeeze chutes. Devices designed specifically for use with 
WTD minimize jumping yet allow considerable access to the 
animal for examination and treatment. Manual restraint in such 
a chute is suitable for blood collection, foot trimming, artificial 
insemination, and the administration of drugs or vaccines by 
oral, intramuscular, and subcutaneous routes.

Moving deer from outside facilities into containment rooms 
can be challenging. In addition to the potential for physical 
trauma, diet transition can present a considerable hurdle. At 
NADC, we have observed periods of anorexia that last 24 to 
48 h after movement and often accompanied by temporary 
hematochezia, which is self-limiting. Beginning 2 wk prior to 
animal movement, feed is transitioned to alfalfa cubes (rather 
than long-stem hay) and deer pellets with 18% protein content 
(for example, Trophy Image Pellets [Kent Nutrition Group, 
Muscatine, IA]). After WTD have been moved, Hydration 
Hay (Purina Animal Nutrition LLC, Shoreview, MN) is added 
to the alfalfa cubes and deer-pellet diet to encourage eating 
and maintain hydration. Long-stem hay is avoided inside  

biocontainment housing, because of possible obstruction of 
drains and plumbing.

Occupational Hazards
The safety of personnel is important when working with WTD 

inside biocontainment facilities. Knowledge of deer behavior, 
common maladies of deer, animal restraint, and appropriate 
training are critical for both animal and personnel safety.95 
Hand-raising fawns provides considerable time for animal 
caretakers to observe normal behavior and recognize signs as-
sociated with illness or aggression. The animal’s tendency to flee 
may place personnel at risk of collisions with deer attempting 
escape from confinement. Veterinarians should be familiar with 
diseases of deer, particularly those associated with nutrition, 
stress, and trauma. While hand-raising fawns, veterinarians 
face many of the common illnesses of neonatal ruminants, such 
as enteritis, pneumonia, and dehydration.

In terms of decreased stress and risk of injury to both animals 
and personnel, the benefits of using hand-raised fawns, which 
have been acclimated to humans and indoor housing, cannot 
be overstated. Bottle-feeding and hand-raising deer fawns have 
a profound effect on their suitability as research subjects in 
general and inside biocontainment housing in particular. Hand-
raising is most effective when done inside a building or space 
reflective of containment housing. A reliable source of fawns is 

Figure 4. Schematic of BSL3 animal room used for housing WTD at the National Animal Disease Center (Ames, IA). As personnel enter one side 
of the animal space for cleaning and feeding, deer move to the opposite side, out of sight of the caretaker. After one half of the room is cleaned, 
deer are allowed to move back to the recently cleaned area, allowing cleaning of the opposite side. Handling equipment is placed in an alleyway, 
parallel to the animal space alleyway connecting the 2 sides of the room. When handling is required, deer can be moved to one side of the animal 
space, handled through the chute, and exited into the opposite side of the animal space.
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crucial, because hand-raising should begin within 24 h of birth. 
At NADC, we maintain a breeding herd of WTD as a source of 
healthy and acclimated deer with a known medical history. The 
exception to the advantage of hand-raised deer is the breeding 
buck. Hand-raised deer have a greatly reduced flight distance 
and will tolerate close physical associations with humans. 
During the mating season, an intact buck becomes highly ag-
gressive and territorial, and an aggressive buck acclimated to 
humans may charge animal caretakers, creating a dangerous  
situation.

Extralabel Drug Usage and Judicious Use of 
Antimicrobials

Farmed deer are considered a ‘minor species’ by the US Food 
and Drug Administration. According to the Minor Use Animal 
Drug Program, the only drugs approved for use in WTD as of 
January 28, 2017, are xylazine (anesthetic agent) and yohimbine 
(anesthesia reversal).66 As such, the use of all other drugs is 
extralabel, which is defined as use in a species not listed in the 
labeling. Any drug should be used only under the direction of 
a licensed veterinarian and in the context of a valid veterinar-
ian–client–patient relationship.

Even with good management, appropriate nutrition, ap-
propriate parasite control, and effective vaccination strategies, 
there will be a need for antimicrobials to treat disease and 
reduce pain and suffering. Prudent use of antimicrobials will 
help minimize antimicrobial resistance in bacteria. The use of 
antimicrobials prophylactically is controversial and must be 
carefully examined—as should the stress and risk of injury 
associated with catching, restraining, and treating sick deer. 
The use of prophylactic antibiotics at NADC is the result of 
years of empirical evidence coupled with recommendations 
from veterinarians experienced in the health management of 
farmed deer herds. The vaccine regimens, parasite control, 
and antibiotic usage we describe here have proved successful 
under our conditions, but we in no way imply that alternative 
practices are inferior. For all products, the dosages we use are 
those listed on product labels for cattle.

Breeding Herd Management
In the WTD breeding herd at NADC, we maintain a buck:doe 

ratio of 1:10 to 1:15. As such, our herd consists of 30 to 40 does 
and 2 or 3 bucks. Except during the breeding season, bucks are 
housed apart from does on approximately 1.5 acres of pasture, 
whereas the does are housed on approximately 4 acres of mixed-
grass pasture. Both types of pasture contain windbreaks and 
feeders. Bucks are introduced into the herd for breeding in mid-
November and are removed in late January. With a gestation of 
195 to 205 d, fawning typically begins in early June, peaks in 
mid- to late June, and ends by early August.

In April and again in October, all WTD are processed through 
a drop-floor chute (Figure 5) for fecal and blood collection, de-
worming with ivermectin, and treatment with a single dose of 
oxytetracycline as a prophylactic measure for handling-related 
injuries. In addition, in April, WTD receive a cattle foot-rot 
vaccine (Fusogard, Elanco Animal Health, Greenfield, IN) to 
prevent digital dermatitis, and Bovi Sera (Colorado Serum, 
Denver, CO) as an aid in the prevention and treatment of enteric 
and respiratory conditions caused by Trueperella pyogenes, E. coli, 
Mannheimia haemolytica, Pasteurella multocida, and Salmonella 
typhimurium. In October, deer receive a multivalent Clostridium 
spp. toxoid (Ultrabac 8, Zoetis, Parsippany, NJ) and a combi-
nation bovine respiratory and leptospirosis vaccine (Triangle 

10, Boehringer Ingelheim Vetmedica, St Joseph, MO). Also in  
October, for personnel safety and to decrease severe injuries 
resulting from interanimal aggression, antlers (in the hard-
antler stage) are removed by using an obstetric wire saw. It is 
important to remove the antler above the pedicle to prevent 
pedicle damage (Figure 6). Damage to the antler pedicle can 
result in misshapen antlers in all subsequent seasons. Although 
antler velvet is highly vascular and innervated, thus requiring 
anesthesia and analgesia for removal, hard antler is avascular, 
lacks nerve supply, and is considered dead bone;1,119,120 as such, 
anesthesia and analgesia are not necessary for the removal of 
hard antler.

Deer are browsers or selective grazers, preferring high-quality 
forages. Breeding animals require 2.5% of their body weight in 
dry matter and 10% to 12% crude protein for maintenance. Ra-
tions for breeding deer should be 14% to 19% protein, whereas 
growing rations should contain 16% to 20% crude protein. 
Because our breeding herd often contains younger, growing 
animals as well as mature deer, we feed a single commercial 
pelleted feed containing 18% crude protein (Trophy Image 
Pellets, Kent Nutrition Group) year-round. The feeding rate is 
dependent on the quality of the hay or pasture and the body 
condition score and metabolic status of the animals. Trace min-
eral salt blocks and good-quality hay are provided unrestricted 
year-round; however, hay consumption varies with season and 
pasture condition.

Fawn Rearing
Animal care personnel at NADC care for multiple species of 

livestock. Accordingly, to prevent the introduction of disease 
(for example, malignant catarrhal fever, paratuberculosis, 
cryptosporidiosis) from other animals, personnel wear clothing 
and footwear dedicated for use in the deer pastures. Prior to 
fawning, the pasture is mowed, leaving 2 strips (approximately 
2 to 3 feet wide) of tall pasture grass that run the length of the 
pasture. These strips of pasture grass provide a place for new-
born fawns to hide. Beginning in late May, personnel search the 
pasture twice daily for newborn fawns, which are often located 
in the tall strips of grass. To further decrease the potential for 
spreading disease when handling fawns, personnel wear exam 
gloves, changing them between fawns. Within 24 h of birth, 
all fawns are removed from the pasture and transported to a 
fawn-rearing facility. Medium-sized portable dog crates are 

Figure 5. A WTD restrained in a drop-floor chute; its feet are off the 
ground, preventing jumping. A caretaker applies firm downward 
pressure over the deer’s thoracic or lumbar spinal region to ensure 
that the animal remains restrained in the V-shaped region of the chute.
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used to transport fawns and are sanitized with an appropriate  
disinfectant (Virkon S, duPont Animal Health Solutions, Wilm-
ington, DE) after each use.

The weight, sex, and body temperature of each fawn is re-
corded in an individual animal record; when known, the identity 
of the dam is recorded also. On admission to the fawn-rearing 
facility, each fawn receives a combination product contain-
ing Clostridium perfringens type C antitoxin and a therapeutic 
antibody specific to E. coli (Ecolizer +C20, Novartis Animal 
Health, Larchwood, IA), a bovine probiotic (Probios, Vets 
Plus, Menomonie, WI), and a single dose of florfenicol (Nuflor, 
Merck Animal Health, Madison, NJ). The navel is treated with 
7% iodine solution. Infections at the site of ear-tag placement, 
sometimes resulting in severe inflammation, have been noted 
historically; therefore, at admission, the left ear of each fawn is 
punched for tag placement, which occurs 4 d later. In the inter-
vening 4 d, the punch site is treated with antibiotic ointment 
(Animax Fougera Pharmaceuticals, Melville, NY). For easier 
identification, ear tag numbers begin with the year that the 
fawn is born; female tags are yellow, and male tags are white. 
For further identification, microchips (EZid, EZidAvid, Greeley, 
CO) are placed subcutaneously, either to the right of the anus 
or on the ventral surface of the tail.

Fawns are housed individually in pens bedded with clean 
straw for as long as 2 wk. Milk consumption, defecation, and uri-
nation are recorded daily. After 2 wk of age, fawns are grouped 
by age and sex and housed together (4 or 5 fawns per group) 
in pens bedded with clean oat straw. At approximately 30 d of 
age, fawns are allowed access to larger, outdoor pens. Soiled 
bedding is removed and replaced with clean fresh straw daily. 
Animal care personnel don barn-dedicated clothing and boots 
upon entering the fawn-rearing facility. Boot baths containing 
an appropriate disinfectant (Wexcide, Wexford Labs, Kirkwood, 
MO) are placed strategically at building entry and exit points 
and entry points to pen and crate areas.

Feeding begins with the youngest fawns. Ill fawns are fed 
last; signage is posted on crates or pens to alert personnel re-
garding the presence of an ill fawn. Fawns are fed twice daily 
(approximately 0700 and 1400) with warmed goat colostrum for 
the first 4 feedings (Figure 7), followed by a 50:50 mixture of 
colostrum and doe milk replacer (Zoologic Doe Milk Replacer, 
PetAg, Hampshire, IL), and eventually milk replacer only, with 
a daily intake goal of 10% to 20% of the fawn’s body weight. 
During this dietary transition period, nutritional scours may 

occur and are treated, as described elsewhere,59 with a com-
bination of oral probiotic (Probios, Vets Plus), kaolin pectin 
(Kaolin–Pectin, Durvet, Blue Sprints, MO), and subcutaneous 
fluids. Caution should be taken to avoid overfeeding, which 
can increase fawn morbidity and mortality through conditions 
such as abomasal bloat. Milk replacer is prepared fresh for each 
feeding, and exam gloves are changed between fawns or groups 
of fawns. Unused and unconsumed milk is discarded. Bottles 
are washed in hot soapy water and rinsed thoroughly after each 
use. Beginning at 4 d of age, the fawns are offered fresh black 
dirt, which is changed every 3 d; fresh dirt is believed to aid 
establishment of a healthy intestinal microbiota and serve as a 
source of micronutrients.51 To further aid the establishment of 
a healthy intestinal microbiota, bovine probiotic (Probios, Vets 
Plus) pastes or powders are added to the milk replacer daily. 
Fawns are offered fresh water without restriction, along with 
small amounts of alfalfa and a mix comprising 75% deer pellets 
of 18% protein content (Trophy Image Pellets, Kent Nutrition 
Group) and 25% cracked corn.

While feeding, fawns are stimulated to urinate and defecate 
by gentle rubbing of the perineal area by using an unscented 
baby wipe, which is then discarded. Stimulation is continued 
until fawns demonstrate the ability to urinate and defecate 
unaided (typically 3 wk of age). Urination and defecation are 
recorded, and the physical consistency of feces is characterized 
(that is, normal, paste-like, pudding-like, or watery). Coccidiosis 
can occur, resulting in diarrhea (which may or may not contain 
blood) but can be treated as in bovine calves by using amprolium 
(CoRid, Merial, Duluth, GA).

Treats (for example, apples) can be offered to fawns begin-
ning at 4 wk of age. Offering treats encourages socialization 
with animal care personnel. Animal care staff are encouraged 
to spend time with the fawns to acclimate them to handling 
and physical examination. Weaning begins when the youngest 
fawn in a group reaches 60 d of age, but only when all fawns in 
the group are consistently eating alfalfa and pelleted feed. The 
duration of the weaning process is typically 2 wk but may be 
shorter for large, vigorous fawns.

Male fawns are surgically castrated at approximately 75 d 
of age. An intramuscular combination of xylazine (1 mg/kg; 
Rompun, Bayer, Leverskusen, Germany) and ketamine (5 mg/kg;  
Ketalar, Par Pharmaceutical, Spring Valley, NY) typically is 
used for anesthesia and is followed by subcutaneous tolazoline 
(4 mg/kg; Tolazine, Lloyd Laboratories, Shenandoah, IA) for 
reversal, but other anesthetic regimens are available.50,71 At the 
time of castration, each fawn receives a dose of oxytetracycline 
to prevent castration-related infections. The timing of castration 
is important. Antler development is under hormonal control, 
primarily testosterone. If a fawn is castrated before the antler 
pedicle (the specialized generative tissue on the dorsum of the 
frontal bone) is formed, no generative tissue forms, and no 
antler develops.22 If the pedicle has formed, castration results 
in a small, velvet-covered antler, which is never cast.

Conclusions
Using WTD in any type of research setting is challenging, 

but it is especially difficult inside the confines of a BSL3 facility. 
Nevertheless, in our experience, the use of healthy, hand-raised 
fawns, which have a known medical background, coupled with 
acclimation to indoor housing, human presence, and physical 
handling make for superior research subjects compared with 
animals unaccustomed to such environments. The use of hand-
raised, acclimated WTD increases confidence in research results 
and facilitates animal care and handling. In addition, and more 

Figure 6. To prevent serious injury to other animals or personnel, ant-
ler is removed by using an obstetric wire saw placed above the antler 
pedicle to avoid damage to the pedicle. Antler is removed only in the 
hard-antler stage once all the velvet has been rubbed off.

jaalas17000007.indd   356 7/6/2017   9:45:25 AM



357

White-tailed deer as research animals

importantly, hand-raising improves animal wellbeing, decreases 
animal stress, and avoids painful injuries.

As human populations and their livestock encroach on tra-
ditional wildlife habitat, new diseases will emerge and known 
diseases will arise in previously unaffected species.7 As such, 
the demand to conduct infectious disease research on wildlife 
will increase, as will the need for facilities in which to safely 
conduct such research. Principles and practices that have proved 
effective for safe, humane research in laboratory animals and 
livestock will need to be applied to wildlife species. Many issues 
associated with the use of wildlife are common to research in all 
animal species, including overall animal wellbeing, enrichment 
to reduce stress and boredom, prevention of disease introduc-
tion, diagnosis and treatment of common maladies, appropriate 
nutrition, and safe and humane animal handling. In the case 
of WTD, there is a long history of infectious disease research 
conducted at ever-increasing levels of sophisticated biosecurity, 
demonstrating that although challenging, this type of research 
can be conducted, and valuable insights can be gained.
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