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Summary

The electroencephalography (EEG) data created in event-related potential (ERP) experiments have 

a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP 

waveform which is an instance of functional data. The experiments are made up of sequences of 

multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at 

multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve 

multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing 

the functional and longitudinal components by identifying key features of the ERPs and averaging 

them across trials. Motivated by an implicit learning paradigm used in autism research in which 

the functional, longitudinal and electrode components all have critical interpretations, we propose 

a multidimensional functional principal components analysis (MD-FPCA) technique which does 

not collapse any of the dimensions of the ERP data. The proposed decomposition is based on 

separation of the total variation into subject and subunit level variation which are further 

decomposed in a two-stage functional principal components analysis. The proposed methodology 

is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel 

insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their 

typically developing peers as well as comparisons between the two groups. Finite sample 

properties of MD-FPCA are further studied via extensive simulations.
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1. Introduction

Electroencephalography (EEG) is a well-established noninvasive method for measuring 

spontaneous electrical activity across brain regions to identify neural function and cognitive 

states. Our motivating data is from a visual implicit learning study on young children with 

autism spectrum disorder (ASD) (Jeste et al., 2015). The experiment involved event-related 

potentials (ERP) in which EEG signals were time locked to the presentation of a continuous 

sequence of colored shapes (visual stimuli) recorded in age-matched 2 to 5 year old typically 

developing and ASD children (Figure 1(a)). The six colored shapes, grouped into three 

shape pairs, were presented in random order. Transitions within a shape pair were labeled 

‘expected’ since they could be learned (shape ordering within a pair was fixed) and 

transitions between shape pairs were labeled ‘unexpected’ since they could not be predicted. 

The goal of the study was to characterize implicit learning, defined as the detection of 

regular patterns in one’s environment without a conscious awareness or intention to learn, by 

contrasting brain response to expected and unexpected transitions.

The data created in typical ERP studies as the one described above are rich and 

multidimensional. Each stimulus, corresponding to the presentation of a single shape, 

referred to as a trial, results in an ERP function with paradigm-specific phasic components. 

The P3 peak and N1 dip phasic components typically studied in this paradigm and thought 

to be related to cognitive processes and early category recognition are given in Figure 1(b) 

(Jeste et al., 2015). Hence the experiment creates functional data (ERP curves) for each 

subject, collected longitudinally over trials (presentation of each shape) at multiple 

electrodes placed on the scalp. Due to the richness and multifaceted nature of the data along 

functional, longitudinal and electrode dimensions (repetitions over electrodes), typical 

practice involves multiple simplifications of the data before analysis. To increase the low 

signal-to-noise ratio (SNR) in raw ERP data, data are first collapsed in the longitudinal 

dimension, in which ERP functions observed over trials are averaged for each subject (Jeste 

et al., 2015; Gasser and Molinari, 1996). In addition, aside from a few works on functional 

mixed effects modeling for the analysis of ERP data (Bugli and Lambert, 2006; Davidson, 

2009), the functional dimension is typically summarized by the amplitude (magnitude of the 

peak or dip) or latency (time when the peak or dip occurs) of the phasic components of the 

averaged ERP functions. Hence, once both functional and longitudinal dimensions have 

been collapsed into one-dimensional data summaries, a repeated measures ANOVA can be 

used for analysis.

In this paper we propose, for the first time in the literature, a longitudinal principal 

components decomposition for the EEG data, which we refer to as multi-dimensional 

functional principal components analysis (MD-FPCA). MD-FPCA embodies all three 

dimensions (functional, longitudinal and electrode) of the ERP data, preserving the full 

complexity without stringent assumptions or data reduction. In order to increase the SNR 

without collapsing the longitudinal dimension over trials, we adopt MAP-ERP, a meta-

preprocessing step based on a moving average of the ERP functions over trials in a sliding 

window (Hasenstab et al., 2015). Capturing the longitudinal dimension is especially 

important in settings such as our motivating example, where patterns of learning correspond 

by definition to changes in ERP functions across trials. Previous studies in neuroscience and 
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biomedical engineering have acknowledged that ERP function morphology may change over 

the course of a task. However, most prior work has focused on controlling for longitudinal 

trends (Gasser et al., 1983; Turetsky et al., 1989) rather than modeling them; the few works 

on modeling longitudinal trends have been limited to parametric forms (Rossi et al., 2007; 

De Silva et al., 2012). We will build our proposed MD-FPCA on data produced by the novel 

meta-preprocessing step, MAP-ERP, capturing the continuum of longitudinal dynamics.

The literature on functional data analysis (FDA) (Ramsay and Silverman, 2005) has grown 

rapidly over the past two decades, with a considerable fraction of the work involving 

applications to longitudinal data (James et al., 2000; Müller, 2008; Sentürk and Müller, 

2010). More recently, there has been interest in analyzing multiple trajectories, with 

dependencies among the repeatedly measured functional data (Crainiceanu et al., 2009; Di et 

al., 2009; Kundu et al., 2016; Morris and Carrol, 2009; Morris et al., 2003; Zupinnikov et 

al., 2011). Functional principal components decompositions for multilevel or longitudinal 

functional processes have been a major modeling theme in the FDA literature. Di et al. 

(2009) suggested decomposing sources of functional variation in an additive fashion via 

multilevel ANOVA, which we refer to as the ANOVA functional principal components 

decomposition (ANOVA-FPCA). Greven et al. (2010) proposed a decomposition based on a 

functional random intercept and slope to capture longitudinal variations, which we refer to 

as linear FPCA (LFPCA). Chen and Müller (2012) suggested a double decomposition 

(DFPCA) to capture potential nonlinear and nonparametric longitudinal trends within 

repeatedly observed functional data; parsimonious extensions of DFPCA have recently been 

proposed by Park and Staicu (2015) and Chen et al. (2016). While ANOVA-FPCA models 

longitudinal repetitions as repeated measurements without a particular time ordering, similar 

to an ANOVA, LFPCA models longitudinal trends linearly, and DFPCA does not assume a 

parametric form. For spatially correlated functional data, Delicado et al. (2010) summarize 

limited works in three categories, analysis of geostatistical functional data 

(Baladandayuthapani et al., 2008; Giraldo et al., 2010; Zhou et al., 2010; Staicu et al., 2010; 

Liu et al., 2016) (mostly involving distance-based parametric correlation structures), point 

processes with associated functional data and functional areal data.

Our proposed MD-FPCA combines the flexible DFPCA modeling of longitudinal trends, 

especially important for modeling learning trajectories in the motivating implicit learning 

experiment, with the decomposition of the total variation into subject and electrode level 

components as in ANOVA-FPCA, to embody all the dimensions of the multidimensional 

ERP data. MD-FPCA induces correlation between the electrode repetitions via random 

effects and utilizes multilevel random effects for extensions that involve data from multiple 

scalp regions. Following the initial ANOVA decomposition of the total variation, the 

proposed MD-FPCA involves a two-stage functional principal components decomposition of 

the subject and electrode level variations across functional and longitudinal time, leading to 

highly interpretable components contributing to the principal surfaces in a multiplicative 

fashion. Hence, even though multiple decompositions have been proposed for longitudinally 

observed or spatially correlated functional data in the literature, MD-FPCA is the first 

decomposition proposed for repeatedly measured longitudinal functional data which is 

tailored to model the specific features of the EEG data produced in ERP studies.
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The remainder of the paper is organized as follows. Section 2 introduces the proposed MD-

FPCA approach, compares it with other recently proposed functional principal components 

decompositions for longitudinally observed functional data, and outlines the extension of the 

methodology to analysis of data from multiple scalp regions. Section 3 provides insights 

gained from the implicit learning application, including comparisons of learning patterns in 

ASD and TD groups, summarized via the longitudinal trends in ERP functions across the 

experiment. We study the performance of the proposed decomposition in extensive 

simulation studies summarized in Section 4 and conclude with a brief discussion in Section 

5.

2. Multi-Dimensional Functional Principal Components Analysis (MD-FPCA)

2.1 The Proposed MD-FPCA Decomposition

Denote by Xij(t|s) a multilevel square integrable random function observed across 

continuous functional time t, t ∈ , at longitudinal time s, s ∈ , for subunit j, j = 1, …, J, 

and subject i, i = 1, …, n. In applications to the EEG data, data collected over electrodes 

represent the subunits within subjects, functional time is the time scale of the ERP function 

and longitudinal time corresponds to trials. The notation, Xij(t|s), for the multilevel 

longitudinal functional process is used to stress the two-stage nature of the Karhunen-Loève 

decompositions in MD-FPCA, where the first-stage expansions are conditional on a 

particular longitudinal time s, and second-stage decompositions describe the variations along 

longitudinal time s. The function Xij(t|s) is decomposed using a multilevel random effects 

model at each longitudinal time s,

(1)

where μ(t, s) and ηj(t, s) are fixed functional effects that represent the overall mean function 

and subunit-specific shifts, respectively; Zi(t|s) and Wij(t|s) are the random subject- and 

subunit-specific deviations, respectively; and εij(t|s) is measurement error with mean zero 

and variance . Denote the total variation of Xij(t|s) at a fixed longitudinal time s by ΣT (t, 

t′|s) = cov{Xij(t|s), Xij(t′|s)} and let  be 

the total variation without the measurement error with 1{A} denoting the indicator function 

for event A. Assuming the subject and subunit-specific deviations, Zi(t|s) and Wij(t|s), are 

uncorrelated mean zero stochastic processes, (1) implies separation of the total variation 

 at each longitudinal time s into subject level 

 and electrode level 

 variation. Note 

that Σ(1)(t, t′|s) captures variation between electrodes within a subject and Σ(2)(t, t′|s) 

represents the remaining second level variance; we refer to these quantities as subject and 

electrode level variations, respectively, to build intuition that this separation is analogous to 

an ANOVA decomposition. In this formulation,  and  are the first and 
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second level eigenfunctions, describing modes of variation across functional time t at each 

longitudinal time s, and  and  are the first and second level eigenvalues.

Note that while the terminology ‘level’ is used to refer to the separation of the variation into 

the subject and electrode components, ‘stage’ is going to be used to refer to the two 

subsequent functional principal components decompositions applied to the deviation/

variance defined at each level, first conditional on a particular longitudinal time s, and 

second describing variations along s. The first-stage Karhunen-Loève decompositions for 

 and  are carried out at each s, 

yielding

where ξik(s) and ζijp(s) are the first and second level eigenscores, respectively, such that var 

 and var . In practice, the decompositions are truncated at 

only a small number of eigencomponents K and P (Web Appendix A). Note that the subunit 

repetitions within a subject, Wij(t|s) and hence ζijp(s), are assumed to be independent across 

j, since the subunit dependency is modeled by the subject-specific random component Zi(t|s). 

Next, the second-stage Karhunen-Loève decompositions for the first and second level 

eigenscores, , yield

(2)

In (2),  and  are the eigenscores,  and  are the 

eigenvalues and  and  are the eigenfunctions describing the modes of variation 

across longitudinal time of the first-stage eigenscores.

We propose two decomposition summaries for MD-FPCA that are important in identifying 

the contributions of different sources to the total variation in the analysis of the multilevel 

stochastic process Xij(t|s). While the first quantity, 

, summarizes the proportion of variability 

explained by the subject level (first level) variation in the first-stage of MD-FPCA 

conditional on longitudinal time s, the second summary measure, 

, captures the overall proportion of 

variability explained by the subject level variation in both stages of the MD-FPCA across 
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longitudinal time s. The two summaries can be viewed as extensions of the intra-cluster 

correlation of the linear mixed effects framework to the decomposition of multilevel 

longitudinally observed functional processes. The intraclass correlations can also be 

interpreted as the average correlation between two subunits from the same subject, 

conditional on and across longitudinal time s, respectively. In applications to ERP data, 

repetitions over electrodes are considered subunits; within-subject correlations between 

these repetitions provide insight into the similarity of the trends across electrodes.

2.2 Comparison to other Karhunen-Loève Decompositions

We briefly review three recently proposed principal components decompositions for 

functional processes, which are special cases of the proposed MD-FPCA, and highlight 

differences of MD-FPCA from a multilevel two-dimensional Karhunen-Loève 

decomposition. The three special cases are given without additive measurement error for 

simplicity. The ANOVA-FPCA of Di et al. (2009),

(3)

is a special case of MD-FPCA, where the decomposition does not have a longitudinal 

component. The repeatedly observed functional process Xij(t) is decomposed into an overall 

mean μ(t), a visit-specific mean ηj(t), a subject-specific deviation from the visit-specific 

mean Zi(t) and a subject-visit-specific deviation Wij(t). Similar to MD-FPCA, Zi(t) and 

Wij(t), which are called the first and second level deviations, respectively, are expanded 

using Karhunen-Loève decompositions with first and second level eigenscores ξik and ζijp 

and eigenfunctions  and , respectively. Note that repetitions of the functional 

process are modeled without a particular time ordering, similar to an ANOVA.

In contrast, the linear FPCA (LFPCA) of Greven et al. (2010) models longitudinal trends in 

a repeatedly observed functional process linearly. The double FPCA (DFPCA) 

decomposition of Chen and Müller (2012),

(4)

does not assume a parametric form for the longitudinal time trend and thus can capture very 

flexible dynamics, similar to MD-FPCA. Note that the decomposition is for a longitudinally 

observed functional process that is not repeatedly observed, hence is a special case of MD-

FPCA which considers the repeatedly observed longitudinal functional process Xij(t|s) with 

subject-and subunit-specific deviations. In (4), Xi(t|s) is decomposed at a grid of longitudinal 

times s, yielding the mean function μ(t, s), eigenfunctions ϕk(t|s) and subject-specific 

random eigenscores ξik(s) at the first-stage. The eigenscores at each longitudinal time s are 

then decomposed further at the second-stage to yield eigenscores ζikp and eigenfunctions 

ψkp(s). Only decompositions LFPCA and DFPCA are suitable for situations in which 
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interest centers on detecting changes in the ERP functions across longitudinal time. 

Moreover, in applications to the implicit learning paradigm, even LFPCA may be quite 

restrictive, since it requires these trends to be linear. Hence the proposed MD-FPCA 

combines the more flexible DFPCA to model longitudinal trends with ANOVA-FPCA to 

model repetitions over electrodes (the electrode dimension), enabling us to compare the 

nature of the implicit learning processes of children with ASD and their typically developing 

peers.

In comparing MD-FPCA to a multilevel two-dimensional Karhunen-Loève decomposition, 

note that the proposed MD-FPCA in (2) implies principal surfaces across both the functional 

and longitudinal domains,

(5)

such that  is a product of the first- and second-stage 

eigenfunctions, describing the variation conditional on longitudinal time s and along 

longitudinal time s, respectively; similarly . However, the 

principal surfaces  and  in (5) are not the eigenfunctions of the 

unconditional subject and subunit level covariance operators. In other words, the proposed 

MD-FPCA is distinct from a multilevel two-dimensional Karhunen-Loève decomposition 

with eigenscores θik and νijp and two-dimensional orthogonal eigenfunctions  and 

,

For the multilevel two-dimensional Karhunen-Loève decomposition, the unconditional total 

covariance of Xij(t, s) minus measurement error, 

, would be decomposed into 

subject  and subunit level 

 covariances. Then the covariation at 

both the subject and subunit levels would be expanded with two-dimensional functional 

principal component expansions, 

with eigenvalues  and  and eigenfunctions  and .

A major advantage of the proposed MD-FPCA is that while the multilevel two-dimensional 

Karhunen-Loève decomposition would require decomposition and hence smoothing of 
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multiple four-dimensional covariance surfaces at the subject and subunit levels, the proposed 

MD-FPCA involves decompositions of only two-dimensional covariance surfaces due to the 

two-stage structure, leading to ease in implementation and savings in computational costs. 

Conditioning on longitudinal time s at the first-stage lowers the dimension of the covariance 

surface considered at both stages of the proposed algorithm. A second major advantage, as 

will be demonstrated in our application to the implicit learning study, is in interpretations of 

the decomposition components. The two-stage structure leads to additional decomposition 

components, such as the first- and second-stage eigenfunctions, which help with the 

interpretation of complex variation patterns in higher dimensions.

2.3 Extension to Data From Multiple Scalp Regions

In applications to the ERP data from the implicit learning paradigm, we consider four 

electrodes in the right frontal region of the scalp where maximal condition differentiation is 

detected. Motivated by the exchangeable correlation structure among electrodes within the 

same scalp region observed in the longitudinal functional ERP data, MD-FPCA models 

electrode repetitions by a random effect similar to an ANOVA approach. However MD-

FPCA can be extended within the same ANOVA framework for analysis of data from 

multiple regions of interest on the scalp by an additional level of random effects at the scalp 

region level to account for differences between electrodes from different regions.

Denote by Xirj(t|s) a multilevel square integrable random function observed across 

continuous functional time , at longitudinal time , for electrode j, j = 1, …, 
J, within scalp region r, r = 1, …, R, and subject i, i = 1, …, n. Separating the total variation 

into variability at the subject, region and electrode levels at each longitudinal time s leads to

(6)

where μ(t, s), ηr(t, s) and αrj(t, s) are the overall mean function, region- and electrode-

specific shifts, respectively; Zi(t|s), Wir(t|s) and Uirj(t|s) are the random subject-, region- and 

electrode-specific deviations, respectively; and εirj(t|s) is measurement error with mean zero 

and variance . Denote the total variation of Xij(t|s) at a fixed longitudinal time s by 

 and let 

. Decomposition (6) implies separation 

of the total variation  at each longitudinal time s into subject level 

 region level 

 and electrode level 

variation. The second-stage Karhunen-Loève decompositions applied to the eigenscores 

 and 
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 from the first-stage Karhunen-Loève decompositions, 

 and 

, yield the extended MD-FPCA decomposition

Similar to MD-FPCA, ,  and  denote the second-stage eigenscores, 

 and  are the first-stage 

eigenvalues,  are the second-stage 

eigenvalues and  and  are the second-stage eigenfunctions.

Note that the above outlined extension models correlations between electrodes within a scalp 

region and correlations between electrodes across different scalp regions as exchangeable. 

While in our experience, the first assumption is easier to verify for EEG data, the second 

assumption may be relaxed by modeling spatial correlations between electrodes across 

different scalp regions based on anatomical distances between the scalp regions. Distance-

based correlations can be modeled by the addition of a spatial process to the expansion in (6) 

similar to the approach taken by (Staicu et al., 2010). Authors model multilevel functional 

data where spatial correlations are modeled at the lowest level of the hierarchy via a random 

spatial process. For EEG applications, the random spatial process would be added at the 

region level rather than the lowest level of the hierarchy which is the electrode level. This 

extension requires further developments and is identified as a topic for future research. 

Finally note that both the mean and the random effects structures can include additional 

terms such as diagnostic group (e.g. ASD, TD) or condition (e.g. expected, unexpected) for 

incorporation of different experiment specific factors into MD-FPCA. For illustration of the 

methodology, we model condition difference trajectories directly in applications to the 

implicit learning paradigm in the next section, where the diagnostic groups are modeled 

separately since we expect the ASD and TD groups to be different in mean trends as well as 

covariation.

3. Application to the Implicit Learning Study

3.1 Description of the Data Structure

In our motivating implicit learning study, EEG data are recorded on 37 ASD and 34 TD 

children for 120 trials per condition (expected and unexpected) for each subject at 128 

electrodes. The EEG signals are sampled at 250Hz, producing 250 within-trial time points 

per waveform spanning 1000ms. The standard preprocessing steps of the data include 

artifact detection, bad channel replacement, referencing and baseline corrections. Next, the 
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meta-preprocessing of Hasenstab et al. (2015) is applied to the data, following the 

preprocessing steps, to increase the SNR to a level at which P3 peak locations can be 

identified without collapsing the entire longitudinal dimension (via averaging the ERP 

curves over all trials). The meta-preprocessing step averages ERP functions separately for 

each subject, electrode and condition, in a moving window of 30 trials to identify the P3 

peak location in the averaged ERPs (see Web Appendix B for more details). We capture the 

shape of the entire P3 peak from these averaged ERPs by examining a 140ms window 

around the P3 peak identified in the meta-preprocessing step (i.e. functional time domain 

around the P3 peak location is t ∈[-70ms, 70ms] in 4ms increments). The length of the 

functional time domain of 140ms is determined by scientific practice and our own 

observation of the length of the entire P3 peak across trials. Note that the ERP curves in the 

described functional domain are already aligned across subjects, trials and electrodes, since 

we consider a symmetric window around each P3 peak. Since the interest lies in condition 

differentiation characterizing implicit learning, we focus on ERP difference functions 

obtained by subtracting the meta-preprocessed ERP corresponding to the unexpected 

condition from the expected condition. For illustration of the proposed methods, MD-FPCA 

is applied to meta-preprocessed difference ERPs from four electrodes in the right frontal 

region of the scalp, observed in trials s ∈ [5, 60], where maximal condition differentiation is 

detected. Note that the longitudinal time domain starts at trial 5 to avoid boundary effects.

The proposed MD-FPCA algorithm is applied to the ASD and TD groups separately. Five 

subjects are removed as outliers prior to analysis. One of the removed subjects in the ASD 

group did not have available data until trial 20 and the remaining four subjects (two in each 

diagnostic group) had ERP difference functions more than 2 standard deviations away from 

their respective group means for most of the observations across both functional and 

longitudinal time domains. In addition, a single electrode is omitted from two subjects in the 

TD group due to highly nonhomogeneous trends compared to the other electrodes. The 

bandwidths of the mean functions and covariance smooths are selected using GCV and 

visual inspection of the one- and two-dimensional smooths. The selected bandwidths for the 

two-dimensional smoothing of the overall and subunit mean functions and total and within 

covariances in the first-stage decompositions are (30ms, 30 trials), (30ms, 30 trials), (15ms, 

15ms), (15ms, 15ms) in the ASD group and (30ms, 30 trials), (30ms, 30 trials), (5ms, 5ms), 

(5ms, 5ms) in the TD group. The selected bandwidths for the mean functions and 

covariances in the second-stage decompositions are (15 trials, 15 trials), (5 trials, 5 trials) in 

the ASD group and (10 trials, 10 trials), (15 trials, 15 trials) in the TD group.

3.2 Data Analysis Results

Overall mean surface estimates μ(t, s) of ERP difference trajectories for both diagnostic 

groups are given in Figure 2 (a–b). The ASD mean surface displays a trend of positive 

concave condition differentiation across trials that is uniform across ERP time. The mean 

surface peaks around trial 35 where there is a slight differential increase around the P3 peak 

location (indexed by functional time t = 0). In contrast to the ASD mean surface, the TD 

group exhibits a trend of negative differentiation across trials with much smaller magnitude, 

including a prominent dip of negative differentiation around trial 25. Since the mean 

surfaces represent condition differentiation, the opposing mean trends between diagnostic 
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groups imply that children with ASD have higher EEG values in the expected condition 

while those in the TD group have higher values in the unexpected condition. This is 

consistent with our previous findings in Hasenstab et al. (2015) and Hasenstab et al. (2016). 

Another difference between diagnostic groups is in the timing of maximal condition 

differentiation (trial 35 for ASD and trial 25 in TD). This implies that while both diagnostic 

groups differentiate between the conditions, implying implicit learning, the children in the 

TD group are learning at higher speeds. Finally, while the entire P3 peak trajectory is 

increasing until trial 35 in the ASD group, there is a narrower window around the P3 peak 

that is minimized at the time of maximal condition differentiation in TD youth. The 

electrode specific means have similar patterns to the overall mean surfaces and are deferred 

to Web Figures 2 and 3.

Estimated leading subject level first-stage eigenfunctions  and second-stage 

eigenfunctions  are given in Figures 3 and 4 for the ASD and TD groups, 

respectively. Recall that while the eigenfunctions  display modes of variation in the 

functional dimension at a fixed longitudinal time s, the eigenfunctions  display modes 

of variation of the first-stage eigenscores in the longitudinal dimension. The products of 

these two quantities create subject level principal surfaces  in (5) capturing the 

variation along both dimensions. Note that the model components  and 

within themselves are quantities of interest and viewing them together provides an easily 

interpretable summary of the total variation conditional on and along longitudinal time.

In the ASD group, the uniform variation across ERP time in the leading component 

(Figure 3 (a)), coupled with  (Figure 3 (b)) displaying variation along 

trials, indicate that majority of the variation is in the longitudinal/trial dimension at 

intermediate and later trials, k′ = 1 (solid, corresponding to 27% of total variation 

explained), and at the boundary trials, k′ = 2 (dashed, corresponding to 18.4% of variation 

explained). The resulting product principal surfaces and surface intervals 

 for k′ = 1 and 2, leading to the same interpretations, are given in 

Web Figures 6–7, Figure 2 (c) and Web Figure 5 (a), respectively. The second component 

 (Figure 3 (c)) of the subject level variation conditional on longitudinal time, 

captures a uniformly concave mode of variation in ERP time maximized at the P3 peak 

location t = 0. Estimated  (Figure 3 (d)) (solid, 1.8%), capturing modes of variation in 

the trial direction, indicates that the variation around the P3 peak is maximized at trial 35, 

the trial of maximum positive condition differentiation in the overall mean surface in the 

ASD group. There is additional variation in the boundary and intermediate trials in 

component  (Figure 3 (d)) (dashed, 1%).

As in the flat contour of the ASD leading eigenfunction, the leading component 

(Figure 4 (a)) for the TD group is also fairly flat with majority of the variation still in the 
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longitudinal/trial dimension at the early and intermediate trials as captured by 

(Figure 4 (b)) (solid, 36.9%) and later trials as captured by  (Figure 4 (b)) (dashed, 

18.6%). (See Figure 2 (d) and Web Figure 5 (b) for surface intervals 

 k′ = 1 and 2, respectively.) The estimated  (Figure 4 (c)) 

captures leftover variation around the peak location and in the boundaries of the 

functional/ERP time domain, with variation in the trial direction maximized at boundary 

trials as reflected in  (Figure 4 (d)) (solid, 1.3%) and intermediate trials as reflected in 

 (Figure 4 (d)) (dashed, 0.9%). In summary, while the majority of the variation is in 

the longitudinal/trial dimension for both ASD and TD groups, most of the variation is 

observed at intermediate and later trials in the ASD group and at early and intermediate 

trials in the TD group. For interpretations on the electrode level variation and subject-

specific eigenscores, see Web Appendix C.

The number of principal components at both stages of the MD-FPCA fit are selected to 

explain at least 90% of the variation. The breakdown of the total variation explained by each 

component of the subject and electrode level decompositions are given in Table 1 for the 

ASD and TD groups. While two components are selected in the first-stage decompositions 

uniformly across levels and diagnostic groups, three to four components are needed in the 

second-stage decompositions. The variability explained by the subject level variation in both 

stages of the MD-FPCA across longitudinal time (ρ) is estimated to be 62% and 72%, 

respectively, in the ASD and TD groups. This indicates that the longitudinal functional 

trajectories observed at the four electrodes in the right frontal region within a subject behave 

similarly, as expected, and the majority of the total variation is explained at the subject level 

for both diagnostic groups. Nevertheless, the similarity among electrodes seems to be larger 

in the TD group, although the difference between diagnostic groups is not found to be 

significant (90% percentile CI’s for ρ for ASD and TD groups are (0.53, 0.71) and (0.67, 

0.82), respectively, based on a bootstrap procedure on the meta-preprocessing and MD-

FPCA using 200 data sets sampled with replacement from subjects). Figure 5 (a–b) display 

the estimated proportion of variability ρ(s) explained at the subject level in the first-stage of 

MD-FPCA for the ASD and TD groups, respectively. The average estimated ρ(s) values 

again are higher in the TD group, where locations (along s) of maximum condition 

differentiation (trials 20 to 30) correspond to higher estimated ρ(s) values in both groups. 

The similarity among electrodes within a subject seems to get stronger as the children start 

differentiating between the conditions, especially in the TD group.

To conclude, we briefly highlight the additional insights gained by utilizing all the 

dimensions of the data in the analysis without collapsing across longitudinal, functional or 

electrode repetitions. Note that the analysis of the longitudinal functional condition 

differentiation trajectories averaged over the electrodes, collapsing the electrode dimension, 

can be carried out by DFPCA of Chen and Müller (2012) which is a special case of MD-

FPCA. Modeling the electrode dimension allowed us to study the electrode level variability, 

including comparisons to the variability at the subject level and the direction of the variation 

at the electrode level. More specifically, we learned that the majority of the variability was 

explained at the subject level in both groups (62% and 72% in ASD and TD, respectively). 

Hasenstab et al. Page 12

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, the proposed index ρ(s) provided a more detailed depiction of the proportion of 

total variability at the subject level as a function of longitudinal time.

Similarly, the analysis of the data collapsed over either the functional or longitudinal 

dimensions can be carried out by ANOVA-FPCA of Di et al. (2009), another special case of 

MD-FPCA. Not collapsing the longitudinal dimension (enabled by the meta-preprocessing 

and MD-FPCA) revealed critical information in the application to the implicit learning 

study. We were able to characterize the entire learning process as well as its speed in 

addition to comparisons between groups. There is exploratory evidence that the TD group 

starts differentiating between the two conditions of the experiment earlier (trial 25) than the 

ASD group (trial 35). Modeling the P3 waveform instead of just the P3 peak amplitude (see 

our previous work (Hasenstab et al., 2015, 2016)) allowed us to compare the variation in the 

longitudinal and functional dimensions. Variations/changes over longitudinal time (trials) 

explain more of the total variation in the data than variation in the functional dimension. We 

also observed that longitudinal changes in the P3 waveform morphology were different 

between the two groups. While the entire P3 peak trajectory increased until trial 35 in the 

ASD group, the TD group showed condition differentiation in a much narrower functional 

time window around the P3 peak at the time of maximal condition differentiation.

4. Simulation

We study the finite sample properties of MD-FPCA through extensive simulations outlined 

in Web Appendix D. MD-FPCA recovers the true first- and second-stage model components 

for both small (N = 30) and moderate (N = 100) sample sizes, under varying SNRs (between 

1 and 100) and sparsity levels in the longitudinal time domain, with up to 40% of data 

missing at random longitudinal time points per subject. The median relative squared errors 

(RSEs) for all model components decrease with a denser design, increasing sample size and 

a higher SNR with the exception of the RSEs of the second-stage eigenfunctions which do 

not change with increasing SNR. This may be due to the fact that these quantities do not 

directly depend on data observed with measurement error.

5. Discussion

The proposed MD-FPCA has been presented under general settings without stringent 

assumptions on the separability of the longitudinal, functional and electrode covariances. 

Note that under the additional assumptions that modes of variability in the functional 

dimension stay the same across longitudinal times and electrode locations, or that modes of 

variability in the longitudinal dimension stay the same across functional times and electrode 

locations, more parsimonious versions of MD-FPCA can be derived using the marginal and 

product FPCA ideas of Park and Staicu (2015) and Chen et al. (2016). These extensions 

would lead to a common set of eigenfunctions in functional time across longitudinal times 

and electrode locations and/or a common set of eigenfunctions in longitudinal time across 

functional time and electrode locations. Finally, while we focused on modeling the P3 peak 

curves in the current application, MD-FPCA can be extended to model the entire ERP 

waveform in the functional dimension. This extension would require warping of the ERP 

waveforms after meta-preprocessing according to data features (e.g. N1, P3) while 
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simultaneously carrying out the multi-dimensional functional principal components 

decompositions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) The sequence of shape pairs in the implicit learning study. Transitions within a shape pair 

are labelled ‘expected’ (square and cross are a shape pair, so that the cross always follows 

the square); transitions between shape pairs are labelled ‘unexpected’. (b) The ERP 

waveform containing the P3 and N1 phasic components from the implicit learning study.
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Figure 2. 
(a)–(b) Estimated mean surfaces, μ(t, s), for the ASD and TD groups, respectively. (c)–(d) 

Estimated surface intervals, , for the ASD and TD groups, 

respectively.
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Figure 3. 

(a), (c) Estimated leading subject level first-stage eigenfunctions, , 

respectively, for the ASD group. (b), (d) Estimated leading subject level second-stage 

eigenfunctions, .
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Figure 4. 

(a), (c) Estimated leading subject level first-stage eigenfunctions, , 

respectively, for the TD group. (b), (d) Estimated leading subject level second-secondstage 

eigenfunctions .
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Figure 5. 
(a)–(b) Estimated proportion of variability explained at the subject level in the first-stage of 

MD-FPCA for the ASD and TD groups, respectively. The thin black line corresponds to the 

raw proportion of variability explained while the thick line corresponds to its smooth.
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