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Abstract

The “Molecular Imaging in Nanotechnology and Theranostics” (MINT) Interest Group of the 

World Molecular Imaging Society (WMIS) was founded in 2015 and was officially inaugurated 

during the 2016 World Molecular Imaging Conference (WMIC). The MINT interest group was 

created in response to the exponential growth of the fields of Nanotechnology and Theranostics in 

recent years, and the resulting need to provide a more organized and focused forum on these topics 

at the WMIS and the WMIC. The overarching goal of MINT is to bring together the many 

scientists who work on molecular imaging approaches using nanotechnology, and those that work 

on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very 

diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials 

and approaches that drive these fields. In this short review, we attempt to provide a condensed 

overview over some of the key areas covered by MINT. Given the breadth of the fields and the 

given space constraints, we have limited the coverage to the realm of nano-constructs, although 

theranostics is certainly not limited to this domain. We will also focus only on the most recent 

developments of the last 3-5 years, in order to provide the reader with an intuition of what is “in 

the pipeline” and has potential for clinical translation in the near future.

Introduction

With unique properties endowed by their size, modular structure, and functionalization 

abilities, biomedical nanoparticles are being unremittingly developed and used in 

biomedicine. In medical imaging, they serve as contrast agents—detectable with multiple 

modalities simultaneously—and give rise to new techniques for the ever-richer acquisition of 

molecular information. Some are already employed clinically as therapeutics, or delivery 

vehicles for pharmaceuticals, since they serve to reduce systemic side effects [1]. Targeted 
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drug- and gene-delivery strategies and stimuli-responsive nanoparticle therapies are in 

clinical trials [2]. Modular and versatile, unifying imaging with therapy, nanoparticles are 

becoming true theranostic agents.

Compared to small molecules, nanoparticles feature notable advantages as theranostic 

agents, summarized in Figure 1: (1) their modular structure and surface modifications enable 

multiple functionalities (decreased immunogenicity, targeting, multimodal imaging, therapy, 

and controlled pharmacokinetics); (2) specific tissues can be targeted passively (e.g. 

reticuloendothelial system or kidneys), as can many tumors through the ‘enhanced 

permeability and retention’ (EPR) effect; (3) Nanoparticles can respond to their 

microenvironment or to external stimuli to provide therapy and contrast only where 

needed [3]; and (4) different types of therapy can be elicited by the Nanoparticles. These 

features render Nanoparticles as peerless imaging agents using traditional medical imaging, 

and enable the development of new modalities and theranostic applications. Many strategies 

have been reported for creating biomedical imaging nanoparticles using a variety of 

materials, and this has generated a virtual cornucopia of easily obtainable nanoparticle 

agents, schematically depicted in Figure 2. A non-exhaustive selection of references, 

tabulated by material, imaging modality, and therapy is presented in Table 1.

Imaging

Among the first nanoparticle structures to allow molecular imaging were superparamagnetic 

iron oxide nanoparticles (SPIONs), used for contrast generation with magnetic resonance 

imaging (MRI) [4-5]. The current emphasis lies on their clinical translation, especially given 

the renaissance spurred by Ferumoxytol, which is now FDA-approved for systemic injection 

as an iron replacement therapy (trade name Feraheme). As a member of the family of 

ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs), ferumoxytol causes 

regional T1 and T2* shortening in vivo, leading to signal enhancement or loss on 

conventional MR pulse sequences [6]. Ferumoxytol has shown promise in diverse areas such 

as noninvasive identification of Type 1 Diabetes [7], determining the severity of neurological 

diseases [8], imaging of tumor-associated macrophages (TAMs) [9], cell tracking [10], or 

whole-body cancer staging [11]. A recent and very exciting discovery was the finding that 

ferumoxytol may have an intrinsic, anti-cancer therapeutic effect [12]: intravenous 

ferumoxytol administration was shown to prevent metastases to the liver. This phenomenon 

is thought to be due to pro-inflammatory macrophage (M1) polarization in tumor tissues 

[12]. Such discoveries bear the hope that other nanoparticle agents may also harbor such 

unexpected theranostic effects.

Positron emission tomography (PET) and single-photon emission computed tomography 

(SPECT) are noninvasive imaging modalities frequently used in clinical settings for 

oncology, neuroimaging, cardiology, etc. [13-14] using radioactive nuclides conjugated to 

small molecules (e.g. 18F-fluorodeoxyglucose (18F-FDG)) or antibodies. Recently, 

nanoparticles labeled with radiotracers were found to be very promising – particularly in 

cancer imaging – in preclinical studies because of three major advantages: (1) the EPR 

effect; (2) high surface-to-volume ratio of the nanoparticles allowing high density 

radiolabeling either using chelators (such as DOTA), chelator-free strategies, or intrinsic 
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labeling during synthesis [15]; and (3) complementary multimodal imaging. Many different 

radionuclide-nanoparticle combinations have been reported; but smaller, rapidly clearable 

nanoparticles with fast decaying radiolabels are ideal for potential clinical translation. 

Nanoparticles with 64Cu (t1/2 = 12.7 hours) were shown to allow in vivo imaging up to 48 

hours [16-21]. Ultra-small chelator-free renally clearable 64Cu-labeled Cu nanoclusters were 

reported for imaging in orthotopic lung cancer mouse models [22]. In another study, 64Cu 

based liposomes were used to assess the EPR effect in canine cancer models, suggesting 

high intertumoral heterogeneity of EPR-based uptake [23]. Other radioisotope-nanoparticle 

combinations have been employed for different imaging purposes, including 68Ga (t1/2 = 

68 minutes), 89Zr (t1/2 = 3.3 days), 111In (t1/2 = 2.8 days), 198Au (t1/2 = 2.69 days) [24-30]. 

Recently, 89Zr was used to label soft, polymeric and lipoprotein nanoparticles for imaging of 

TAMs [31-33]. Important steps towards clinical translation of PET nanoparticles are being 

carried out using “Cornell dots” (C-dots) labeled with 124I (t1/2 = 4.18 days), showing 

excellent localization and no toxicity in metastatic melanoma patients [34-35].

Fluorescent nanoparticles (FNPs), with intrinsic fluorescence or loaded with fluorescent 

dyes, are being investigated as imaging agents due to their advantages over small molecule 

dyes, namely: improved specificity (by active or passive targeting [36-37]), increased 

circulation time (by evading immune detection and renal clearance), and smart activation (by 

pH dependency or enzymatic activity) as well as increased signal intensity [36, 38]. FNPs 

have been reportedly used for sentinel lymph node (SLN) and solid tumor detection, image-

guided tumor surgery with real-time feedback, and monitoring of drug delivery [36, 39]. 

Also fluorescent, quantum dots (q-dots) and gold nanoparticles (passivated with 

polyethylene glycol (PEG) or silica) [36, 39] can be combined with complementary imaging 

agents like gadolinium [39-40], organic dyes [39], polymeric p-dots [39, 41], or fluorescent 

proteins [39, 42-43]. Q-dots are of particular interest due to their broad absorption and size-

tunable emission spectra, making them suitable for multiplexing [37, 44] and less 

susceptible to photobleaching compared to broadly used organic dyes [37].

A new generation of fluorogens has been introduced to bioimaging with FNPs, exhibiting 

aggregation-induced emission (AIE) [45]. AIE overcomes aggregation-induced quenching 

and allows for higher concentration of fluorogens on the NP surface while also reducing 

photobleaching [45]. However, due to the fluorogens' broad emission spectra, it is less 

suitable for multiplexing, instigating some groups to work on narrowing the emission spectra 

via Förster resonance energy transfer [46]. Although fluorescence imaging is complicated by 

high false-positive rates [47], improvements in specificity have been reported, leading to 

higher levels of complete tumor resection [48].

Raman imaging – a spectroscopic optical imaging technique – with surface enhanced 

(resonance) Raman scattering nanoparticles (SE(R)RS NPs) shows much potential for in 

vivo imaging of cancer [49]. Unlike fluorescent agents, SERS NPs do not suffer from 

significant background from endogenous molecules or photobleaching [50]. In fact, the 

endogenous Raman signals can be used by the detection hardware to generate surface 

topology on which the specific signals can be mapped without interference [51]. With their 

low detection threshold and high signal specificity SERRS NPs were shown to delineate 

tumors – and even premalignant lesions – passively through the EPR effect [52]. 
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Nanoparticle sequestration by the RES allows for imaging of SLNs [53] and tumors in the 

liver and spleen [54]. When combined with active targeting via antibodies, peptides, or 

aptamers SERRS NPs were reported to delineate tumors preoperatively and intraoperatively 

[55], as well as detecting microscopic tumors and metastatic foci in glioblastoma, ovarian 

cancer, and lung metastases [56-59, 60 ]. Given their potential significance in tumor imaging 

and non-toxic composition, the timely translation of SERS NPs into the clinic could 

represent a fundamental improvement in patient morbidity and mortality.

Nanoparticles can be engineered to allow “hybrid” imaging methods, where excitation and 

detection occur through distinct physical processes. For example, in photoacoustic imaging 

(PAI), pulses of light excite the contrast agent, which in turn produces a mechanical 

response, detected as ultrasound [61]. Images are obtained noninvasively, deeper within 

tissues and with higher spatial resolution compared to purely optical imaging techniques. 

Nanoparticles based on plasmonic [62-67], polymeric [68-73], and other materials [74-88] 

have all shown great potential in preclinical studies, combining photoacoustic detection with 

photothermal and photodynamic therapies (PTT and PDT). However, nanoparticles based on 

iron oxide [89-91] or silica [92] have a higher likelihood for clinical translation as similar 

materials are already approved for use in humans. Magnetically actuated photoacoustically-

active nanoparticles are of particular interest, as they allow more specific detection through 

magnetic actuation [93].

Some charged particles produced by radionuclide decay emit visible light, referred to as 

Cerenkov luminescence (CL) [94], already demonstrated for cancer imaging in humans 

using 18F-FDG [95]. Nanoparticle-based agents bring great new potential to this emerging 

modality, allowing for more specific imaging [96-98] and therapy [99-101], while active or 

passive targeting [102] can map receptors [103] or enzymes [104] of interest. As 

nanoparticles for PET imaging are translated to the clinic, CL will undoubtedly follow suit, 

providing additional, complementary information to the benefit of the patient.

Therapy

Nanoparticles have great potential as therapeutic agents, delivering drugs, genes, or other 

forms of therapy, with many examples of clinical success [1]. In the paradigm set by Doxil, 

nanoparticles can be engineered to encapsulate pharmaceuticals (such as doxorubicin 

(DOX)) and release them at targeted sites, reducing systemic toxicity and improving 

pharmacokinetic profiles. In a newer scheme, DOX-conjugated poly(lactic-co-glycolic acid) 

(PLGA) was loaded into an injectable nanoparticle generator spontaneously releasing 

nanoparticles upon pH stimulation, which are later cleaved into DOX within the cell to avoid 

drug efflux pumps, showing enhanced efficacy in metastatic breast cancer models over free 

DOX [105]. Ultrasmall 64Cu-PEG-melanin nanoparticles loaded with FDA-approved 

multikinase inhibitor sorafenib provide PET-PAI image-guided chemotherapy in liver 

xenograft models [106]. Recently, siRNA-loaded nanoparticles were employed in various 

settings, such as gene delivery into lung cancer cells – but not normal cells – without 

targeting ligands [107]; transdermal application for suppressing EGFR expression and 

downstream ERK signaling in mice and humans with no clinical or histological 
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toxicity [108]; and increasing progression-free survival in murine acute kidney injury 

models and nonhuman primates [109].

Photothermal therapy (PTT) employs heat to destroy cancer cells and nanomedicine can 

substantially facilitate this process. AuroShell is the first-demonstrated exogenous vis-NIR 

light absorbing nanoparticle for photothermal tumor ablation and optical coherence 

tomography (OCT) [110] and was extensively investigated in murine and canine models of 

various cancer types [111-113]. Pilot clinical studies are being conducted in head and neck 

cancer (NCT00848042), lung cancer (NCT01679470) and prostate cancer (NCT02680535). 

Gold nanoparticles with radiofrequency waves can also induce PTT [114-115]. For 

photodynamic (PDT) therapy, Cerenkov luminescence can activate transferrin-coated TiO2 

photosensitizer nanoparticles and mediate tumor remission by generating free radicals and 

immune cell infiltration [116]. NIR PDT is achievable using photosensitizing silica-coated 

upconversion nanoparticles for deeper tissue penetration than visible light [117]. 

Aminosilane-coated iron oxide (NanoTherm), significantly polarized under external 

magnetic fields to selectively ablate tumors by heat generation, is undergoing clinical trials 

in the USA [118-120]. FDA-approved SPIONs were also found to inhibit tumor growth by 

hyperthermia under magnetic fields at preclinical levels [121-123]. The integration of 

multiple energies and modalities is a unique characteristic of nanoparticles that will make 

them invaluable for detection and therapy in a wide variety of diseases.

Ultrasound (US) can promote nanoparticle accumulation and drug release in tumors through 

cavitation and is reported to mediate nanoparticles crossing even intact blood-brain 

barriers [124] — see minireview on US molecular imaging by Caskey in this issue. 

Nanoparticles as a sonoporation enhancer are advantageous over microbubbles (MBs) for 

their extravasation in capillaries and sustained activity. PEG-PDLA nanoparticles were used 

to overcome aqueous solubility barriers of paclitaxel under US guidance [125]. Polymer 

nanoparticle-stabilized MBs with embedded SPIONs provide MRI/US imaging and pulse-

activated nanoparticle release [126]. Gas-generating docetaxel (DTX) and Cy5.5 dye-loaded 

poly(CBL-PO) nanoparticles in MBs offer fluorescence/US signal and are released at tumor 

sites upon ultrasound irradiation through bubble burst, with much higher contrast than 

clinically-used Sonovue® and Definity® and higher therapeutic effects than free DTX or 

without US activation [127].

Besides the aforementioned hyperthermia effects, SPIONs were recently found to 

intrinsically inhibit tumor growth as a potential macrophage-modulating immunotherapy 

[12]. Adjuvant drug labeled liposome- and lipid-based nanoparticles covalently attached to 

cell surface for adoptive T-cell therapy can markedly decrease tumor burden at preclinical 

setups [128]. PEG-PLGA nanoparticles encapsulated with indocyanine green (ICG) and 

TLR7 agonist R837 can generate tumor-associated antigens during PTT and its combination 

therapy with anti-CTLA4 antibodies can significantly inhibit metastasis in a 4T1 orthotopic 

model [129]. Carbon nanotube-PLGA nanocomplexes with high surface area were 

functionalized with T-cell stimulating antigens for delivery of IL-2 at a dose much lower 

than clinically used to overcome adverse reactions. These nanocomplexes generate a large 

number of cytotoxic T-cells and delay tumor growth in murine melanoma models [130].
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PET-based nanoparticles are being perused as an alternative to traditional internal 

radiotherapy or brachytherapy as they allow even distribution within the tumor volume. 

Alpha emitters with long half-life like 225Ac (t1/2 = 10 days) are the preferred radionuclides 

for the formulation of nanoparticles [131-132]. However, there is concern about the 

radioactivity of downstream decay processes. Recently, 131I (t1/2 = 8 days), often used for 

the treatment of thyroid cancer, has been integrated with iron oxide nanoparticles and 

polymeric nanoparticles for targeted therapy of hepatocellular carcinoma in mouse 

models [133-134]. 177Lu (t1/2 = 6.6 days) has been utilized in lipid-calcium phosphate 

nanoparticles showing significant growth inhibition in subcutaneous xenograft tumor 

models [135]. There is also great deal of interest in using a nonradioactive module as a 

therapeutic partner in the formulation of PET nanoparticles. In a recent study, a 99mTc-

labeled (t1/2 = 6 hours), folic acid targeted, multiwalled CNT nanoprobe has been developed 

using Methotrexate as a therapeutic module showing an augmentation of the therapeutic 

efficacy of the drug in the presence of 99mTc [136].

Metal nanoparticles can act as radiosensitizers, enhancing the efficacy of radiotherapy, 

e.g. renally clearable ultrasmall gold nanoclusters with high tumor uptake [137], or 

polymeric nanoparticles loaded with gold nanoparticles [138]. Gold nanoparticles in glioma 

models boosted overall survival in mice [139], as well as in head and neck cancer 

models [140], while silver nanoparticles produced similar results in glioma-bearing 

rats [141]. Therapeutic 103Pd-Au nanoseeds offer SPECT signal along with a 

radiotherapeutic effect of >80% tumor shrinkage [142]. 131I-doped CuS nanoparticles 

provide combined PTT and radiotherapy together with CT and gamma image-guidance to 

treat 4T1 subcutaneous and metastatic tumors [143].

Future Directions

Nanoparticles are quickly becoming universal imaging agents, taking multimodal imaging to 

new heights [144-145]. Multiple treatments can be packaged within the same nanoparticle 

agent, for example, a prophylactic hydrogel patch containing fluorescently-labeled targeted 

gold nanoparticles locally implanted into a tumor makes a triple combination therapy of 

siRNA against Kras, VEGF inhibitor delivery, and PTT available at the same time for colon 

cancer treatments [146]. Monitoring the nanoparticle distribution in the body, but also the 

therapeutic load delivery via imaging is possible, for example via MRI [147-148]. The next 

crucial step will be predicting their distribution even before administration, especially given 

the high variability of the EPR effect. Such prediction may take the form of “companion-

nanoparticles”[149] or computational models [150]. Bioderived nanoparticles, synthesized 

using “green chemistry” or cells [151-153] can expand the limits of biocompatibility and 

immune evasion through biomimicry [154]. Such biocompatible synthesis approaches could 

soon enable chemical manipulation of nanoparticles in vivo [155]. As nanoparticles 

transition to the clinic, they are investigated more deeply and new effects are discovered. For 

example, besides their role in intraoperative image-guided oncosurgeries, C-dots were 

recently observed to induce ferroptosis of cancer cells both in vitro and in vivo [156], and 

iron oxide nanoparticles were shown to reprogram TAMs to attack tumors [12].
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Conclusion

With many examples of successful nanoparticle theranostic agents already employed 

clinically, several undergoing clinical trials, and countless others emerging from preclinical 

studies, we are ushering in the era of nanomedicine. Smart, specific, and customizable, 

theranostic nanoparticles will soon—pending FDA approval—detect, treat, and prevent 

disease. MINT has been established to create a forum to discuss these advances and better 

integrate disciplines that develop and use nanoparticles for imaging and therapy.
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Fig. 1. 
Through their modular structure, nanoparticles can incur specific biological interactions and 

deliver targeted therapy using intrinsic markers or external stimuli.
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Fig. 2. 
Nanoparticles of different materials, with many applications, are available at our fingertips.
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