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Abstract Development of resistance in the Plasmodium

falciparum to Artemisinin, the most effective anti-malarial

compound, threatens malaria elimination tactics. To gain

more efficacious Artemisinin derivatives, QSAR modeling

and docking was performed. In the present study, 2D-

QSAR model and molecular docking were used to evaluate

the Artemisinin compounds and to reveal their binding

modes and structural basis of inhibitory activity. Moreover,

ADMET-related descriptors have been calculated to pre-

dict the pharmacokinetic properties of the effective com-

pounds. The correlation expressed as coefficient of

determination (r2) and prediction accuracy expressed in the

form of cross-validated r2 (q2) of QSAR model are found

0.9687 and 0.9586, respectively. Total 239 descriptors have

been included in the study as independent variables. The

four chemical descriptors, namely radius of gyration,

mominertia Z, SssNH count and SK Average have been

found to be well correlated with anti-malarial activities.

The model was statistically robust and has good predictive

power which could be employed for virtual screening of

proposed anti-malarial compounds. QSAR and docking

results revealed that studied compounds exhibit good anti-

malarial activities and binding affinities. The outcomes

could be useful for the design and development of the

potent inhibitors which after optimization can be potential

therapeutics for malaria.

Keywords Anti-malarial activity � Plasmodium
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Introduction

Several millions of the people worldwide are infected by

the Plasmodium falciparum, leading to death of around 1

million annually (World Malaria Report 2013). Most of the

therapeutic approaches are Artemisinin based combination

therapies (ACTs) and chloroquine (Fidock et al. 2004).

Semi-synthetic derivatives of Artemisinin are more fre-

quently used in malaria chemotherapy, due to their better

pharmacokinetic properties and higher efficacies as com-

pared to parent compound. ACT is fast acting, well toler-

ated and is nearly 95% effective in the treatment of

malaria. However resistance in parasite to ACTs has been

reported in some south-east Asian countries (Kar and Kar

2010). As the P. falciparum resistance to Artemisinin has

emerged, development of novel effective anti-malarial

drugs is an urgent priority. It prompted to explore further

efficient drug like compounds with new mechanisms of

action. Currently, quantitative structure activity relation-

ship (QSAR) is useful to check time consumption and cost

throughout the analysis of biological activities (Ibezim

et al. 2012). Since last few years, QSAR modeling became

an important tool for drug design and structural optimiza-

tion (Bhhatarai and Garg 2008; Xiang et al. 2009; Basak

et al. 2010) and is widely used for virtual screening of

compounds.

In the current study, molecules with wide range of

activities (activity range of 1.4–10,630 nano molar) were

used to understand the distinct contributing features for

their high potency. The present work describes the devel-

opment of a QSAR model by using multiple linear
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regression analysis (MLRA) technique which successfully

and accurately predicted activity modulating descriptors.

The developed model was used to screen Artemisinin

derivatives and to predict the activity. The 11 compounds

were identified with very good anti-malarial activities (less

than 0.5 nano molar log IC50). Also, the pharmacokinetic

properties were predicted through calculation of the

absorption, distribution, metabolism, excretion and toxicity

(ADMET) related descriptors. Furthermore, through

docking possible binding sites and conserved pockets were

identified for active compounds against plasmepsin-2 and

falcipain-2 of the P. falciparum. It will be useful for

understanding the molecular mechanism and directing the

molecular design of more potent Artemisinin based

inhibitors.

Materials and methods

QSAR model development

The QSAR study was performed using a series of Arte-

misinin derived compounds reported in the literature

(Qidwai et al. 2012; Yadav et al. 2014; Posner et al. 1999;

O’Neill et al. 2001; Avery et al. 2003; Liu et al. 2011). The

biological activities were represented by the log IC50. The

data set of 47 Artemisinin derivatives which were ran-

domly divided in training set (32 compounds) for model

development and test set (15 compounds) for model vali-

dation. The seventy percent training and thirty percent test

set compounds were maintained during the analysis. The

chemical structures and their biological activities have

been shown (Supp Table 1). The V-life MDS (Molecular

Design Suite) TM 3.5 software, supplied by V-life Sciences

Technologies was used to build QSAR model (V-life MDS

software package, version 3.5 2008).

Ligand preparation and optimization

The molecular structures of all of the molecules were

sketched using the ChemBioDraw-Ultra-v12.0 (2010)

software. The chemical structures of known drugs were

retrieved from the PubChem compound database, which is

available at NCBI (http://www.pubchem.ncbi.nlm.nih.

gov). Three dimensional geometry of the compounds was

generated using Accelrys Discovery Studio (DS) v3.1

(Software Inc., San Diego, CA, USA).

Descriptor calculation

A large number (239) of theoretical two dimensional

descriptors were selected for QSAR analysis. The

descriptors that have been computed from chemical

structures to identify structure/activity relationship of

Artemisinin compounds are vdW surface area (van der

Waals surface area of the molecule), ve potential surface

area (total van der Waals surface area with negative elec-

trostatic potential of the molecule), ?ve potential surface

area (total van der Waals surface area with positive elec-

trostatic potential of the molecule) dipole moment, Y

compDipole (y component of the dipole moment), element

count, slogP, path count, cluster, distance based topological

indices, connectivity index, hydrophobic and hydrophilic

areas like SA most hydrophilic (most hydrophilic value on

the vdW surface by Audry method using Slogp), SA most

hydrophobic–hydrophilic distance (distance between most

hydrophobic and hydrophilic point on the vdW surface by

Audry method using Slogp), SA hydrophilic area (vdW

surface descriptor showing hydrophilic surface area by

Audry method using SlogP) and SK most hydrophilic

(most hydrophilic value on the vdW surface by Kellog

method using Slogp), radius of gyration, Wiener’s index,

moment of inertia, semi-empirical descriptors, HOMO

(Highest occupied molecular orbital), LUMO (lowest

unoccupied molecular orbital), heat of formation and ion-

ization potential, polarizability AHC, Chi1, Chi2, polar

surface area, radius of gyration, Mom InertiaZ, SssNH

count, SK average, MomInertia X, MomInertia Y,

MomInertia Z.

Cross validation

The models generated by two dimensional QSAR studies

were cross validated using a standard leave one out (LOO)

procedure. The cross validated coefficient of determination

(r2) i.e. q2 value was calculated. The q2 obtained is

indicative of the predictive power of the current model.

The q2 was calculated using Eq. (1).

q2 ¼ 1�
P

ðyi � ŷiÞ
P

ðyi � ymeanÞ2
ð1Þ

Pred r2 ¼ 1�
P

ðyi � ŷiÞ
P

ðyi � ymeanÞ2
ð2Þ

The external predictive power of the model is assessed

by predicting the log IC50value of test set molecules, which

were not included in the QSAR model development. The

predictive ability of the selected model was confirmed by

pred r2. The selected descriptors were then used to build

QSAR model.

Molecular docking studies

Molecular docking was carried out with the help of Glide

module of Schrodinger (2016) and PyRx (Autodoc vina)

(Trott and Olson 2010). Three dimensional structures of
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target proteins were retrieved from Protein Data Bank

(PDB) (http://www.pdb.org). The Artemisinin derivatives

were docked to the crystal structures of plasmepsin-2 (PDB

code: 2IGY) and falcipain-2 (PDB code: 3BPF).

Protein preparation

The protein preparation wizard from Schrodinger was used

to prepare protein structure retrieved from the PDB.

Hydrogen atoms were added to the protein structures cor-

responding to pH value of 7.4. All-atom constrained energy

minimizations were carried out using the OPLS-2005 force

field. An energy minimization was terminated when the root

mean square deviation (RMSD) was larger than 0.30 Å.

Ligand preparation for docking

All ligands for docking were prepared using LigPrep

module of Schrodinger (2016) by generating low energy

ionization and tautomeric states within the pH range of

7.4 ± 0. They were further minimized using the OPLS-

2005 force field.

Receptor grid generation and docking

Docking is based on a grid represented by physical prop-

erties in the receptor volume that is searched for ligand-

receptor interaction during docking process. Glide uses a

grid file to describe the profile of a binding pocket, with the

center of the grids defined by the co-crystallized ligand.

Grid files were prepared with the ‘‘Receptor Grid Gener-

ation’’ panel of Glide. Grid points were calculated within a

region or an enclosing box defined with the centroid of the

bound ligand and the size of a docked ligand with

length B20 Å. Docking was performed by Glide of

Schrodinger (2016). The score function of Glide, or Glide

score, was used for binding affinity prediction.

ADMET studies

ADMET profiling of compounds were performed by

applying ADMET descriptors algorithm and toxicity pre-

diction protocol of Qikprop of Schrodinger (2016) and

ADMETSAR database (freely available at http://www.

admetexp.org) (Cheng et al. 2012).

Results

The best QSAR model was selected on the basis of pre-

dicted fitness plots and statistical values of the model. The

developed model is found with coefficient of determination

(r2), cross-validated r2 (q2) and the r2 for external test set

(pred_r2) values of 0.9687, 0.9586 and 0.9247 respectively.

Standard error of estimate (SEE) r2 (r2_se) and standard

error of estimate (SEE) q2 (q2_se) are predicted 0.2206 and

0.2535 respectively. The statistical significance of the

model (F-test) is 208.58 and degree of freedom (df) is

found 32. The linear and radar plots of experimental versus

predictive log IC50 values of compounds in training and

test data set are depicted in Figs. 1, 2 respectively. The

descriptors based on the model used in the present study

are indicated (Fig. 3). Figure 4 depicts two dimensional

structures of proposed Artemisinin compounds. QSAR

model based predicted properties of Artemisinin com-

pounds are illustrated in Table 1.

In this study, flexible docking was performed using the

extra precision (XP) mode in Glide with the default set-

tings. The improvement of XP over standard precision (SP)

mode includes the addition of large desolvation penalties to

both ligand and protein, assignment of specific structural

motifs that give significantly to binding affinity, and

expanded sampling algorithms required by scoring function

improvement. The XP scoring function includes four con-

stituents: Ecoul (Coulomb energy), Evdw (Van de Waals’s

energy), Ebind (items favouring binding), and Epenalty (items

hindering binding). To cross check weather docking pro-

tocol is working fine, deviation from crystal pose and
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Fig. 1 Multiple linear regression plot expressing the experimental

and predicted log IC50 values for the training (a) and test (b) set

compounds
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docked pose was measured by RMSD. The measured

deviation should not be more than 2 Å. Tables 2 and 3

illustrate the docking scores resulting from the docked

poses of ligands with the anti-malarial targets, plasmepsin-

2 and falcipain-2. Figure 5 shows the two and three

dimensional ligand-interaction diagram illustrating the

major interactions between the ligand and the active sites

amino acid residues of plasmepsin-2.

The predicted pharmacokinetic properties of the studied

compounds are presented in the Tables 4 and 5.

Discussion

In an attempt to determine the role of structural features,

which appears to influence the anti-malarial activity,

QSAR study is important. The predicted QSAR model

showed good predictivity as it satisfies the required

parameters. For evaluation of the external predictive power

of the model, it was applied for the prediction of log IC50

values of test set which was not part of training set during

model development. The linear graphical representation of

fitness plots illustrates the good overlap of observed and

predicted activities of the data set (Fig. 1). The radar plot

for training set shows a good r2 value as the two lines show

a good overlap whereas a good overlap for the test set

represents high pred_r2 value (Fig. 2). The statistical out-

put of this model is presented as following:

Fig. 2 The radar plots denoting the training (a) and the test (b) sets by the red (actual activity) and blue (predicted activity) lines

2 2 

1 1 

0 0 0 

3.02 3.127

2.11 2.013

0.091

0.982
0.745

10b        10g              N3                 N45                   N8               4d             5a
Compounds 

SssNH count Predicted log IC50

(a)

(b)

Fig. 3 a Four descriptors, radius of gyration (geometrical descriptor),

Mom inertia Z (topological descriptor), SssNH count (sum of ssNH-

electrotopological-states), a topological descriptor and SK average

(semi-empirical descriptors) have been shown correlation with anti-

malarial activity. b Anti-malarial activity (log IC50) modulation by

topological descriptor SssNH count
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Output ¼ �0:0338� Radius of Gyrationð Þ

þ 0:0000�Mom Inertia Zð Þ

þ 1:7504� SssNH countð Þ

þ 0:9462� SK Averageð Þ þ 0:0028:

The robustness and the predictive capacity of the QSAR

model were predicted through the statistical parameters.

QSAR studies are affected by several factors from which

the most important are: (i) the selection of the best

molecular descriptors that should include maximum

information of molecular structures and a minimum over-

lap between them (ii) the optimal number of descriptors to

be included in the model (Ibezim et al. 2012). The

descriptors are commonly used to express different char-

acteristics/attributes of the chemical structure in order to

give information about the activity/property being studied.

The developed model has identified four descriptors, radius

of gyration (geometrical descriptor), Mom inertia Z

(topological descriptor), SssNH count (sum of ssNH-

Electrotopological-states), a topological descriptor and SK

average (semi-empirical descriptors) that have been found

to be well correlated with anti-malarial activity. The

descriptor SssNH count is produced marked change in anti-

malarial activity of the studied compounds. The log IC50 of

the compounds radically increases with descriptor SssNH

count (Fig. 3b). The compounds 4c, d, 5a–24, 5a, b, 6, 9b,

DHA and Artemether are highly active compounds have
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Fig. 4 The above figure depicts two dimensional structures of proposed Artemisinin compounds
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Table 1 Compounds (Artemisinin derivatives) selected for the QSAR study and their predicted properties

Molecules Exp. log IC50 (nm) Predicted log IC50 (nm) Radius of gyration Mom inertia Z SssNH count SK average

10ba 3.336 3.02 45.474 260,684.135 2 0.73

10ga 3.352 3.127 41.864 258,525.502 2 0.718

10ka 3.013 2.996 46.571 255,952.04 2 0.752

11a 0.215 0.944 8.812 253,845.862 0 0.936

12ca 2.462 2.737 52.683 264,789.63 2 0.683

12fa 4.027 3.145 44.711 300,574.845 2 0.777

4ca 0.892 0.894 8.332 188,117.998 0 0.962

4da 0.954 0.982 9.121 238,612.036 0 1.009

5a-24a 0.473 0.617 7.958 53,611.206 0 0.855

5aa 0.146 0.745 6.034 158,687.583 0 0.766

5ba 0.716 0.79 6.467 167,619.915 0 0.816

6a 0.708 0.842 6.102 167,478.081 0 0.858

9ba 0.661 0.595 8.141 54,629.07 0 0.836

Artemethera 0.658 0.517 4.874 98,526.224 0 0.572

DHAa 0.342 0.444 3.858 92,237.768 0 0.469

A53 0.594 11.286 242,119.5 0 0.672

A54-N1 0.722 10.52 244,511.2 0 0.776

A54 0.654 10.27 232,279.5 0 0.713

A62 0.44 9.374 205,296.2 0 0.494

N1 0.334 17.551 200,410.966 0 0.682

N2 0.334 17.551 200,410.966 0 0.682

N3 2.11 13.808 178,682.195 1 0.607

N5 0.835 18.853 295,673.337 0 1.118

N8 0.091 24.026 222,484.454 0 0.624

N11 0.705 12.689 186,863.092 0 0.92

N17 0.83 10.374 172,287.408 0 0.991

N22 0.518 10.048 145,306.119 0 0.69

N23 0.716 4.29 103,242.677 0 0.755

N30 0.397 24.47 281,172.89 0 0.877

N31 0.189 19.247 184,155.601 0 0.614

N32 0.515 26.855 299,622.463 0 1.06

N33 0.404 20.668 254,465.477 0 0.787

N34 0.311 18.854 216,043.634 0 0.682

N35 0.347 17.926 211,990.211 0 0.692

N36 0.551 21.425 272,614.106 0 0.943

N37 0.696 27.47 337,035.527 0 1.218

N38 0.54 18.066 228,358.346 0 0.877

N39 0.193 26.45 225,217.086 0 0.815

N43 0.408 23.059 236,491.738 0 0.904

N44 0.394 10.449 159,053.153 0 0.552

N45 2.013 13.004 178,032.21 1 0.477

N47 0.222 15.898 186,829.202 0 0.525

10a-N6 0.355 19.734 204,537.942 0 0.777

12-N1 3.25 41.257 296,730.481 2 0.77

a Test compounds
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SssNH count zero and lower radius of gyration values as

compared to the compounds 10b, g, k, 12c, 12f. The N8

which is the most active compound has been predicted with

zero SssNH count whereas compounds 12f and 12N1 (the

least active) are predicted to have two SssNH count. In this

context, it was of interest to estimate the effect of this

descriptor on the anti-malarial potential of structurally

diverse Artemisinin compounds. The results of virtual

screening show that 11 compounds (N1, N2, N8, N30, N31,

N33, N34, N35, N39, N47 and 10a-N6) are found to have

potential anti-malarial activities. Further, compound N8

has great potential of being lead as it has highest predicted

activity and also has good binding affinity to both targets

(Table 3). Although previous studies were carried out to

explore the activity modulating effect of various descrip-

tors in the Artemisinin however in the present study, the

predicted descriptors are new that allow a better under-

standing of the structure of molecules and their activity.

Also, the designed and virtually screened compounds are

new. The selected Artemisinin compounds have good anti-

malarial activities and have greater potential of being drug

after optimization.

Molecular docking studies

Although several studies have been done to unravel mode of

action of Artemisinin, still exact mechanism is confusing

(Golenser et al. 2006) and it is under investigation. Eck-

stein-Ludwig et al. (2003) assumed that Artemisinin act by

inhibiting P. falciparum ATP6 outside the food vacuole

after activation by iron. Artemisinin has structural similar-

ities to thapsigargin, an immensely precise inhibitor of

Table 2 Docking and energy calculation results of potent Artemisi-

nin derivatives against plasmepsin-2

Compounds Glide score Glide energy

A2T (crystal ligand) -10.895 -93.678

N30 -9.224 -80.836

N32 -9.051 -64.257

N39 -8.342 -45.534

12f -7.889 -57.929

N8 -7.458 -56.81

N47 -7.04 -46.242

N1 -6.159 -42.097

A53 -6.09 -33.931

N2 -6.008 -42.762

N31 -5.732 -52.009

A54 -5.097 -28.057

N45 -4.714 -30.696

N3 -4.432 -35.244

DHA -4.011 -30.894

Deoxy-Artemisinin -3.904 -21.788

Artemisinin -2.795 -32.612

A62 -2.326 -5.349

Table 3 Comparison of binding affinities of active Artemisinin based compounds with anti-malarial targets, plasmepsin-2 (2IGY) and falcipain-

2 (3BPF)

Protein–ligand Binding energy (kcal/mol) Protein–ligand Binding energy (kcal/mol)

2IGY_A53 -6.8 3BPF_A53 -7.9

2IGY_A54 -6.9 3BPF_A54 -7.8

2IGY_A62 -6.7 3BPF_A62 -7.2

2IGY_A54-N1 -6.8 3BPF_A54-N1 -7.7

2IGY_Artemether -6.5 3BPF_Artemether -6.6

2IGY_Artemisinin -6.6 3BPF_Artemisinin -6.8

2IGY_DHA -6.6 3BPF_DHA -6.6

2IGY_N11 -7.7 3BPF_N11 -9.6

2IGY_N2 -7.7 3BPF_N2 -8.6

2IGY_N8 -8.2 3BPF_N8 -9.1

2IGY_N30 -9.2 3BPF_N30 -10.8

2IGY_N33 -8.2 3BPF_N33 -8.5

2IGY_N39 -8.6 3BPF_N39 -9.5

2IGY_N43 -8.1 3BPF_N43 -9.6

2IGY_N44 -7.3 3BPF_N44 -8.2

2IGY_N45 -7.9 3BPF_N45 -8.7

2IGY_N47 -7.6 3BPF_N47 -8.1

2IGY_Deoxyartemisinin -6.6 3BPF_Deoxyartemisinin -7

2IGY_12F -10.3 3BPF_12F -11.4
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Fig. 5 The ligand-interaction diagram illustrates the major interactions between the ligand and the active sites amino acid residues of

plasmepsin-2 (PDB: 2IGY). The residues forming the potential interactions are shown as colour
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Fig. 5 continued
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sarco/endoplasmic reticulum Ca2-ATPase (SERCA). Stud-

ies suggested that Artemisinin likely targets to the P. fal-

ciparum cysteine protease and aspartic protease (Qidwai

et al. 2012; Eckstein-Ludwig et al. 2003; Ettari et al. 2010).

In human erythrocytes, the malaria parasite hydrolyses host

hemoglobin for its amino acid requirement. The hemoglo-

bin degradation is carried out by three classes of enzymes

named as plasmepsin, falcipain and amino-peptidases and

their inhibition may block parasite protein biosynthesis and

leading to harmful effect to the parasite (Rosenthal et al.

2002). Therefore, targeting of theses enzymes would be

important for malaria treatment and can be utilized as

potential anti-malarial drug targets. In order to understand

the interaction of Artemisinin derivatives with parasite

hemoglobinase (plasmepsin-2 and falcipain-2), docking

was performed (Table 2). Docking protocol was checked by

RMSD calculations. Deviation from crystal and docked

pose was measured. RMS = 1.0111; maximum

diff = 3.2469 between atoms 65 and 65 have been pre-

dicted. The result of study suggested that studied com-

pounds have good binding affinities to plasmepsin-2 and

falcipain-2 (Tables 2, 3). The docked compound N30 has

been found with highest binding affinity as predicted by

both Glide and PyRx. Similarly, the docked ligand N39 has

good binding affinity. Both ligands also have good pre-

dicted anti-malarial activities. Comparison of binding

affinities of Artemisinin compounds with two anti-malarial

targets suggested that the binding affinities are higher for

falcipain-2 as compared to plasmepsin-2. The results

showed that, studied compounds having minimum binding

energy and have good affinity toward the active pocket,

thus, they may be considered as good inhibitor of P. falci-

parum proteases digesting host hemoglobin. Results

showed that all the derivatives showed interaction in the

active binding pocket of targets and have higher binding

affinity as compared to the standard drugs DHA and Arte-

misinin. QSAR and docking work suggested that the com-

pounds N30 and N39 have great potential of being drug like

compounds after optimization against P. falciparum.

Artemisinin may not target to parasite

hemoglobinase

The idea that Artemisinin may not acts via targeting to

parasite proteases came through the docking of Deoxy-

artemisinin. Deoxy-Artemisinin has no effect on P. falci-

parum and does not inhibit its growth. However, docking

energies resulting from the interaction of Deoxy-artemisi-

nin-plasmepsin-2 and Deoxy-artemisinin-falcipain-2 have

been predicted nearly equal to that of interaction of Arte-

misinin-plasmepsin-2 and Artemisinin-falcipain-2. The

IC50 values of compound 12f (the least active compound in

the model) and Artemisinin are 10,630 and 3.6 nM

respectively. The binding affinities of plasmepsin-2 and

falcipain-2 with compound 12f are higher than their bind-

ing affinities with Artemisinin (Table 3). It seems that

Artemisinin and its derivatives may exert their effect

through either binding with another target or with multiple

targets. Deoxy-artemisinin and 12f docking results may not

support that Artemisinin specifically binds to protein and

inhibits it. Artemisinin and other members of this class that

encompass the peroxide bond, may interact with the elec-

tron transport chain of malaria parasites, make free radi-

cals, which could damage mitochondrial functions and

ultimately lead to cell death (Wang et al. 2010). Probably

Artemisinin does not perform its functions through binding

precisely to protein target site and then inhibiting its

function. The anti-malarial effect of Artemisinin is due to

its selective interaction with malarial mitochondria, which

makes reactive oxygen species. The peroxide bond of the

molecule is vital to the production of free radicals.

Absorption, distribution, metabolism, excretion,

and toxicity studies

During the drug discovery effort many drugs are miscarried

due to blood brain permeation failure, toxicity and poor

efficacy. Since Artemisinin possess anti-malarial activity

and it has poor pharmacokinetic properties, therefore vir-

tual derivatives were designed and properties were inves-

tigated. Absorption, distribution, metabolism, excretion,

and toxicity (ADMET) properties are key players in drug

development. Lack of efficacy and unacceptable toxicity

are mainly associated with failures of drug discov-

ery. Suitable lipophilic property is important for the drugs

to cross membrane and cytosol to reach the target. The

ADMET-related properties for instance water solubility,

human intestinal absorption, oral bioavailability, blood

brain barrier (BBB) penetration, transporter, plasma pro-

tein binding, volume of distribution, CYP450, toxicity are

used to refine the drug likeness properties (Vlife and

software package, version 3.5 2008). In the present study,

ADMET properties of the Artemisinin and its derivatives

were predicted through ADMETSAR database which is

freely available. Several ADMET associated properties,

such as water solubility, human intestinal absorption, oral

bioavailability, blood brain barrier penetration, P-glyco-

protein substrate and inhibitor, renal organic cation trans-

porter, plasma protein binding, volume of distribution,

CYP450 substrates and inhibition (CYP1A2, 2C9, 2C19,

2D6 and 3A4), drug-induced liver injury, human Ether-a-

go-go-Related gene (hERG) inhibition, rat acute toxicity,

skin sensitivity, AMES mutagenicity, carcinogens, fish

toxicity, the Tetrahymena pyriformis toxicity have been

predicted. For Artemisinin probabilities of being human

intestinal absorption, blood–brain barrier penetration,
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Table 4 Compliance of active Artemisinin compounds to electronic parameters of drug likeness and toxicity

Compounds ADME descriptors and their probabilities

BBB? HIA? Caco2? CYP CYPIP HERGI Non

AMES

toxicity

Non

carcinogens

Fish

toxicity

Aqueous

solubility

(LogS)

Caco-2

permeability

Rat

acute

toxicity

Artemisinin 0.9490 0.9747 0.8867 0.8493 0.9850 0.9711 0.7785 0.9161 0.8911 -4.3515 1.3569 1.7351

Artemether 0.9393 0.9012 0.7876 0.8665 0.9672 0.9502 0.7285 0.9179 0.6930 -4.7024 1.1659 2.2114

DHA 0.9530 0.7795 0.7545 0.8046 0.9857 0.9608 0.8011 0.7825 0.9220 -4.5379 1.1277 2.2266

A62 0.9645 0.9824 0.7804 0.8637 0.9563 0.9597 0.7310 0.9006 0.9384 -4.5002 1.2038 2.0254

N2 0.9521 0.9857 0.6306 0.8667 0.7729 0.9444 0.8125 0.8782 0.9865 -5.0688 1.0673 2.3350

N8 0.9364 0.8929 0.5784 0.8100 0.9686 0.9405 0.7448 0.9037 0.9915 -5.1502 0.8055 2.5428

N11 0.9389 0.9573 0.5912 0.8828 0.8746 0.8673 0.7606 0.9184 0.9927 -4.6707 0.8752 2.4281

N30 0.9382 0.9506 0.5979 0.8567 0.7699 0.8846 0.8020 0.9377 0.9942 -4.9804 0.6902 2.5728

N33 0.9251 0.8499 0.5439 0.8746 0.8030 0.9598 0.6797 0.9041 0.9851 -4.4100 0.5692 2.5515

N35 0.9653 0.9928 0.6238 0.8176 0.8500 0.9259 0.8015 0.8670 0.9921 -4.8652 0.9049 2.5546

N39 0.9839 0.9917 0.5936 0.8628 0.8498 0.8524 0.7201 0.8579 0.9951 -5.4983 0.8585 2.6161

N40 0.9768 0.9952 0.6577 0.8670 0.9123 0.9061 0.7384 0.8585 0.9923 -5.4400 1.0206 2.4757

N41 0.9401 0.9710 0.7546 0.8668 0.9118 0.9073 0.7379 0.9328 0.9567 -4.8319 1.1453 2.2262

N42 0.9856 0.9909 0.6371 0.8617 0.8666 0.8730 0.6689 0.7916 0.9681 -4.8343 1.0292 2.5175

N44 0.9354 1.0000 0.7251 0.8311 0.9069 0.9769 0.8510 0.9250 0.9966 -4.4386 1.0854 2.7435

N45 0.9785 0.9886 0.5413 0.8911 0.9611 0.9635 0.7025 0.9429 0.7752 -3.3146 0.8619 2.6761

N46 0.9507 0.8525 0.5825 0.7821 0.9491 0.9098 0.6025 0.6678 0.7923 -3.8902 0.6514 2.4344

N47 0.9773 0.9682 0.5798 0.8706 0.8898 0.9726 0.8441 0.9345 0.9316 -4.2629 0.8923 2.4667

10a-N5 0.5501 0.6140 0.5746 0.6832 0.6036 0.8597 0.5448 0.7064 0.9972 -4.2729 0.4760 2.6962

12N1 0.5446 0.6527 0.5727 0.7150 0.5359 0.9336 0.5703 0.7135 0.9997 -4.3700 0.5885 2.7064

BBB? blood brain barrier, HIA? human intestinal absorption, Caco2? Caco-2 permeability, CYP CYP450 2C9 substrate, CYPIP CYP

inhibitory promiscuity, HERGI human ether-a-go-go-related gene inhibition, LogPapp, cm/s Caco-2 permeability, LD50, mol/kg rat acute

toxicity

Table 5 Calculation of electronic parameters of drug likeness or oral bioavailability of the Artemisinin compounds by using Qikprop

Molecule Mol.

MW

HB

donor

HB

acceptor

QPPCaco QPlogBB QPPMDCK Percent human oral

absorption

PSA N &

O

Rule of

five

Ring

atoms

Artemisinin 282.336 0 5.25 2010.388 0.009 1052.349 96.213 64.326 5 0 16

DHA 284.352 1 5.65 2155.001 -0.057 1134.403 100 57.405 5 0 16

Deoxy arte 266.336 0 4.5 3397.191 0.197 1855.359 100 52.716 4 0 15

N1 402.486 0 5.95 2676.943 -0.124 1434.093 100 64.666 6 0 22

N2 402.486 0 5.95 2676.95 -0.124 1434.097 100 64.666 6 0 22

N8 418.486 1 6.7 153.32 -0.944 82.893 90.445 92.136 7 0 22

N31 416.47 0 7.95 494.467 -0.918 231.073 90.917 101.904 7 0 22

N34 430.497 0 7.95 510.069 -0.987 238.964 93.358 101.731 7 0 22

N35 422.905 0 6.7 1092.874 -0.442 1106.213 100 76.926 6 0 22

N38 470.485 0 6.7 1034.505 -0.479 2176.841 100 78.647 6 0 22

N39 442.474 0 4.7 5916.921 0.425 10,000 100 40.733 5 1 22

N45 365.469 1 6.75 397.627 0.091 201.981 87.477 76.157 6 0 22

N47 366.453 0 6.95 2021.644 -0.254 1058.719 100 71.315 6 0 21

10a-N5 556.057 2 6.7 536.357 -0.93 1085.364 84.149 99.09 9 2 28

12-N1 600.128 2 9.95 1084.579 -0.713 2525.4 89.829 106.742 9 2 28

12f 598.094 2 7.95 325.389 -1.3 531.102 80.017 127.055 10 2 28

HB hydrogen bond, QPlogBB brain/blood partition coefficient, QPPMDCK apparent MDCK cell permeability, PSA polar surface area
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CYP450 substrates and inhibition, human Ether-a-go-go-

Related gene (hERG) inhibition and AMES mutagenicity,

carcinogenicity, fish toxicity, aqueous solubility (LogS),

Caco-2 Permeability and rat acute toxicity have been found

0.9747, 0.9490, 0.8493, 0.9850, 0.9711, 0.7785, 0.9161,

0.8911, -4.3515, 1.3569 and 1.7351 respectively. The

detailed predicted properties of other studied compounds

with respect to Artemisinin artemether and DHA have been

shown (Table 4). Blood–brain barrier penetration proba-

bilities of compounds N2, N22, N35, N39, N40, N42, N45,

N46 and N47 are higher than Artemisinin and artemether

while such probabilities have been found lower for com-

pounds 10a-N5 and 12N1. Probabilities of human intestinal

absorption for N35, N39, N40, N42 and N45 are higher

than Artemisinin, DHA and artemether while lower for

compounds 10a-N5 and 12N1. Compounds N30, N35, N44

and N47 have been predicted with higher probabilities of

Non AMES Toxicity as compared to A62, Artemisinin and

artemether. Compounds N2, N8, N33, N35, N39, N40 and

N42 have been found to be carcinogens with lower prob-

abilities. Compound N8 has 90% probability of not pos-

sessing mutagenic properties and 74% chance of being non

AMES toxic. Proposed compounds have been found with

better ADME properties, therefore have greater potential of

being lead compounds.

Further, pharmaceutically significant properties of Arte-

misinin analogs were analyzed through QikProp software

(Table 5) and compared them with standard drugs, Artemi-

sinin, artemether and DHA. The results predicted through

QikProp suggested that compounds N2, N8, N33, N35, N39,

N40 and N42 have been found with good ADME properties.

The major descriptors reported in QikProp (Schrodinger)

software are molecular weight (mol_MW) (150–650),

aqueous solubility (QPlogS) (-6.5 to 0.5), apparent MDCK

cell permeability (QPPMDCK) (500 great), brain/blood

partition coefficient (QPlogBB) (-3.0 to 1.2) and percent

human oral absorption (C80% is high,B25% is poor).All the

studied compounds have percent human oral absorption

80–100% (Table 5). The first three properties are based on

Lipinski rule of five, molecular weight (mol_MW) less than

650, partition coefficient between octanol and water (logPo/

w) between-2 and 6.5 and solubility (QPlogS) greater than

-7. Brain/blood partition coefficient (QPlogBB) parameter

specified about the capacity of the drug to pass through the

blood–brain barrier which is important for ADME for

investigating druggability. Lipinski’s rule of five pharma-

cokinetics filter is used as a drug likeness test. This rule is

based on the observation that most orally administered drugs

have amolecularweight (MW) of five hundred or less, a logP

no higher than five, five or fewer hydrogen bond donor sites,

and ten or fewer hydrogen bond acceptor sites (N and O

atoms). In this study, all the compounds have been found

with H donor sites lesser than five and H acceptor sites lesser

than ten. Compounds 10a-N5, 12-N1 and 12f have been

predicted with molecular weight more than 500. In addition,

the bioavailability of all derivatives was assessed through

topological polar surface area analysis. The polar surface

area (PSA) was calculated by using topological PSA. This

descriptor was shown to correlate well with passive molec-

ular transport through membranes and therefore allows

prediction of transport properties of drugs and has been

linked to drug bioavailability. Generally, any molecule with

PSA value of less 100 Å2 is expected to possess good

absorption properties. Passively absorbed molecules with a

PSA140 Å2 are thought to have low oral bioavailability. The

PSA value for compounds 12-N1, 12F, N31, N34 are more

than 100 Å2 while other studied compounds have lower PSA

values (Table 5). Artemisinin has PSA value of 64.326 Å2.

Because of low oil and water solubility of Artemisinin its use

in malaria treatment is limited. Derivatives of Artemisinin

showed more potency than their parent compound. The

parent compound showed CNS toxicity and limited plasma

half-life also.

Conclusion

The present study was carried out to explore predictive

QSAR model capable of revealing the structural require-

ments for potential anti-malarial inhibitors targeting P.

falciparum. The developed model is significant, robust and

has good reliability and predictive ability. The molecular

descriptors found in QSAR equation have encoded infor-

mation about radius of gyration, mominertia Z, SssNH

count and SK Average. The compounds N1, N2, N8, N30,

N33, and N39 have been predicted with good anti-malarial

activities. The docked poses revealed that, all of the

derivatives have high binding affinities against parasite

plasmepsin-2 and falcipain-2 (hemoglobin digesting

enzymes). QSAR model, oral bioavailability, ADME and

toxicity risk assessments suggested that compounds N1,

N2, N8, N30, N33, and N39 possesses good drug like

properties than Artemisinin and DHA. Therefore, the cur-

rent study advocates the use of combined methodology of

QSAR molecular docking and ADME to search potential

leads against the P. falciparum. The information can be

useful for the identification, design and development of

diverse, potent anti-malarial with great potential of being

drug like compounds.
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