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Abstract

Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) 

contraction and growth. They are the dominant ion conductance of the VSM cell membrane and 

importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the 

open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, 

intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from 

internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels 

participate in all aspects of regulation of VSM contraction. Potassium channels also regulate 

proliferation of VSM cells through membrane potential-dependent and membrane potential-

independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five 

classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). 

This review will examine the structure, expression and function of large-conductance, Ca2+-

activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, 

multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and 

inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
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Introduction

Potassium channels importantly contribute to the regulation of vascular smooth muscle 

(VSM) contraction and growth. They are the dominant ion conductance of the VSM cell 

membrane and importantly determine and regulate VSM cell membrane potential (Jackson, 

2000, 2005). Membrane potential, in turn, regulates the open-state probability of voltage-

gated Ca2+ channels (VGCC), Ca2+ influx through these channels, intracellular Ca2+ and 

VSM contraction (Jackson, 2000, 2005). Membrane potential also affects release of Ca2+ 

from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ 

channels participate in all aspects of regulation of VSM contraction (del Valle-Rodriguez, 
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Lopez-Barneo, & Urena, 2003; Fernández-Tenorio et al., 2010; Fernandez-Tenorio et al., 

2011; V. Y. Ganitkevich & Isenberg, 1993; Kukuljan, Rojas, Catt, & Stojilkovic, 1994; Q. H. 

Liu et al., 2009; Mahaut-Smith, Martinez-Pinna, & Gurung, 2008; Okada, Yanagisawa, & 

Taira, 1993; Urena, del Valle-Rodriguez, & Lopez-Barneo, 2007; Yamagishi, Yanagisawa, & 

Taira, 1992; Yamamura, Ohya, Muraki, & Imaizumi, 2012; Yanagisawa, Yamagishi, & 

Okada, 1993). Potassium channels also contribute to the regulation of proliferation of VSM 

cells through membrane potential-dependent (Bi et al., 2013; Miguel-Velado et al., 2005; 

Miguel-Velado et al., 2010) and membrane potential-independent mechanisms (Cidad et al., 

2012; Cidad et al., 2015; Jimenez-Perez et al., 2016).

Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ 

channels that participate in the regulation of contraction and cell proliferation (growth). 

These include large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-

conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ 

(KV) channels, ATP-sensitive K+ (KATP) channels, inward-rectifier K+ (KIR) channels, and 

members of the two-pore K+ (K2P) channel family of K+ channels. Subsequent sections of 

this review will examine the function of K+ channels in the regulation of VSM cell 

contraction and proliferation. The expression and function of K2P channels in VSM cells 

will not be addressed and the reader is referred to the literature for information on these 

channels (Feliciangeli, Chatelain, Bichet, & Lesage, 2015; Gurney & Manoury, 2009; 

O’Connell, Morton, & Hunter, 2002; Renigunta, Schlichthorl, & Daut, 2015; Sepulveda, 

Pablo Cid, Teulon, & Niemeyer, 2015).

Potassium channels and regulation of VSM contraction

Setting the stage

VSM cells, in small arteries and arterioles that develop myogenic tone when pressurized, are 

relatively depolarized, with membrane potentials on the order of −45 to −30 mV (Burns, 

Cohen, & Jackson, 2004; Emerson & Segal, 2000; Knot & Nelson, 1998; Siegl, Koeppen, 

Wolfle, Pohl, & de Wit, 2005; Welsh, Jackson, & Segal, 1998). At physiological ion 

concentrations (3–5 mM K+ extracellular, 140 mM K+ intracellular), the electrochemical 

gradient for K+ (the driving force for movement of K+ through a K+ channel) is outward. 

This means that opening of K+ channels will lead to K+ diffusion out of the cell, loss of 

positive charge and membrane hyperpolarization (M. T. Nelson, Patlak, Worley, & Standen, 

1990). Conversely, closure of open K+ channels will result in a decrease in this 

hyperpolarizing current, and membrane depolarization. The resistance of the plasma 

membrane of VSM cells to current flow is very high, on the order of 1–10 GΩ (M. T. 

Nelson, Patlak, et al., 1990). This means that very small currents produced by only a few 

active K+ channels can have very large effects on membrane potential (M. T. Nelson, Patlak, 

et al., 1990). Voltage-gated Ca2+ channels contribute substantially to the regulation of 

intracellular Ca2+ and contraction of VSM cells in differentiated, contractile VSM cells, 

particularly in resistance arteries and arterioles (M. T. Nelson, Patlak, et al., 1990). Voltage-

dependent activation (depolarization) and deactivation (hyperpolarization) of these channels 

importantly regulates VSM contraction (M. T. Nelson, Patlak, et al., 1990).
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The structure of the ion-conducting pore of K+ channels is thought to be similar across all of 

the channels based on studies of KcsA, a two transmembrane (TM) domain K+ channel from 

Streptomyces lividans (Kuang, Purhonen, & Hebert, 2015) (Figure 2). As shown in Figures 

2B and 2C, the pore is formed by TM2 and the P-loop, which connects TM1 and TM2. 

Conserved residues in the P-loop (Thr-Val-Gly-Tyr-Gly) comprise the K+ selectivity filter 

(red highlighted segment of the P-loop in Figure 2B) (Kuang et al., 2015). In BKCa channels 

and KV channels, segment 6 (S6) and the P-loop between S5 and S6 form the channels’ 

pores (Figures 3 and 4) (Kuang et al., 2015).

BKCa channels and VSM contraction

Vascular smooth muscle cells typically express a high density of BKCa channels in their 

plasma membranes that importantly contribute to the negative-feedback regulation of 

vascular tone (Figure 3). A homo-tetramer of α-subunits encoded by the KCNMA1 gene 

composes the channels (Butler, Tsunoda, McCobb, Wei, & Salkoff, 1993; Pallanck & 

Ganetzky, 1994) (Figure 3A). Segment 6 and the P-loop connecting S5 and S6 form the ion-

conducting pore (Meera, Wallner, Song, & Toro, 1997) (Figure 3A). Two regulator of K+ 

conductance (RCK) domains (RCK1 and RCK2) in the C-terminus of the α-subunits contain 

the channel’s Ca2+ sensors (Hoshi, Pantazis, & Olcese, 2013) (Figure 3A). Positively 

charged residues in transmembrane domains S2, S3 and S4 serve as the channel’s voltage 

sensors (Hoshi, Pantazis, et al., 2013) (Figure 3A).

Accessory β1-subunits (locus: KCNMB1) slow gating kinetics, increase the Ca2+ sensitivity, 

and affect the pharmacology of the channels (McManus et al., 1995; Meera, Wallner, Jiang, 

& Toro, 1996; Tseng-Crank et al., 1996) (Figure 2). Activation of VSM BKCa channels by 

17β-estradiol, lithocholate, dehydroepiandrosterone. dehydrosoyasaponin-I and 

docosahexaenoic acid (DHA) requires the presence of β1-subunits (Hoshi, Tian, Xu, 

Heinemann, & Hou, 2013; Hou, Heinemann, & Hoshi, 2009). These subunits also contribute 

to dynamic trafficking of α-subunits to plasma membrane (Leo et al., 2014). The degree of 

coupling between the α-subunits and the β1-subunits may account for the high Ca2+-setpoint 

observed in arteriolar BKCa channels (Yang et al., 2009; Yang, Sohma, et al., 2013).

In addition to the β1-subunits, leucine-rich-repeat-containing proteins (LRRCs), such as 

LRRC26, have been proposed as γ-subunits of VSM BKCa channels (Evanson, Bannister, 

Leo, & Jaggar, 2014). These subunits interact with BKCa channels, increasing both their 

voltage-sensitivity and channel activation by agents such as NS1619 (Evanson et al., 2014).

Membrane depolarization and increases in intracellular Ca2+ activate BKCa channels (Figure 

3B). In many resistance arteries and arterioles that develop pressure-induced myogenic tone, 

ex vivo, BKCa channels are active and contribute to resting VSM membrane potential. 

However, the source of Ca2+ responsible for BKCa channel activation may differ dependent 

on the anatomical origin of the vessel. Calcium released from groups of ryanodine receptors 

(RyR) in the sub-plasma membrane endoplasmic reticulum, in the form of Ca2+ sparks, 

control the activity of overlying BKCa channels in many resistance arteries (Brenner et al., 

2000; Bychkov, Gollasch, Ried, Luft, & Haller, 1997; Furstenau et al., 2000; Gollasch et al., 

2000; Jaggar, Porter, Lederer, & Nelson, 2000; Jaggar, Stevenson, & Nelson, 1998; Jaggar, 

Wellman, et al., 1998; Knot, Standen, & Nelson, 1998; M.T. Nelson et al., 1995; M. T. 
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Nelson & Quayle, 1995; Perez, Bonev, & Nelson, 2001; Perez, Bonev, Patlak, & Nelson, 

1999; Porter et al., 1998; Wellman et al., 2002; Wellman & Nelson, 2003). In contrast, Ca2+ 

influx through VGCC may activate BKCa channels in other vessels including hamster and 

mouse cremaster arterioles (Westcott, Goodwin, Segal, & Jackson, 2012; Westcott & 

Jackson, 2011), rabbit coronary arteries (Guia, Wan, Courtemanche, & Leblanc, 1999) and 

mouse mesenteric arteries (Y. Suzuki, Yamamura, Ohya, & Imaizumi, 2013). In striated 

muscle resistance arteries, both RyR-based Ca2+ sparks and VGCC Ca2+-influx contribute to 

activation of BKCa channels (Westcott et al., 2012; Westcott & Jackson, 2011) suggesting 

that both mechanisms may be active in some cells. In cerebral VSM cells, Ca2+ influx 

through T-type, CaV3.2 VGCC stimulates RyR-based Ca2+ sparks contributing to the 

negative feedback regulation of myogenic tone (Harraz et al., 2014; Harraz et al., 2015).

Vasoconstrictors have been reported to both activate (Berczi, Stekiel, Contney, & Rusch, 

1992; Brayden & Nelson, 1992; V. Ganitkevich & Isenberg, 1990; Hashemzadeh-Gargari & 

Rembold, 1992; Jackson & Blair, 1998; M.T. Nelson et al., 1995; M. T. Nelson & Quayle, 

1995; Rusch & Liu, 1997; Wakatsuki, Nakaya, & Inoue, 1992) and inhibit (Lange, 

Gebremedhin, Narayanan, & Harder, 1997; Scornik & Toro, 1992; Toro, Amador, & Stefani, 

1990; Wesselman, Schubert, VanBavel, Nilsson, & Mulvany, 1997) BKCa channels. 

Activation of BKCa channels would tend to hyperpolarize VSM cells, deactivate VGCC and 

limit VSM contraction, essentially preventing vasospasm (Figure 3B). This activation results 

from both vasoconstrictor-induced depolarization and increases in intracellular Ca2+ (Figure 

3B). In contrast, inhibition of BKCa channels would promote depolarization and would 

enhance VSM contraction, in a positive feedback fashion. Protein kinase C (PKC), which is 

commonly activated by vasoconstrictors that activate Gq/11-coupled, heptihelical receptors, 

may be involved in this process in some blood vessels (Lange et al., 1997; Minami, 

Fukuzawa, & Nakaya, 1993), and may involve internalization and degradation of BKCa 

channels (Leo et al., 2015). Despite the evidence for inhibition of BKCa channel activity, the 

dominant effect of vasoconstrictors in most blood vessels is to activate BKCa channels.

Vasodilators that act through receptors coupled to the guanine nucleotide binding protein, 

Gαs, and formation of cAMP activate BKCa channels, as part of their mechanism of action 

(Kume, Graziano, & Kotlikoff, 1992; Kume, Takai, Tokuno, & Tomita, 1989; Sadoshima, 

Akaike, Kanaide, & Nakamura, 1988). Activation of BKCa channels may result from a 

number of mechanisms. Interaction of Gαs with BKCa channels, independent from cAMP 

and protein kinase A (PKA), may increase channel activity (Kume et al., 1992; Kume, Hall, 

Washabau, Takagi, & Kotlikoff, 1994; Scornik, Codina, Birnbaumer, & Toro, 1993). Protein 

kinase A-dependent phosphorylation of the α-subunits also can activate BKCa channels 

(Nara, Dhulipala, Wang, & Kotlikoff, 1998; Tian et al., 2004; Tian et al., 2001). Increased 

trafficking of the β1-subunits to the plasma membrane may also contribute to the mechanism 

of action of cAMP-related agonists (Matsumoto, Szasz, Tostes, & Webb, 2012). Vasodilators 

that act via cAMP and PKA increase BKCa channel activity by increasing Ca2+ spark 

activity (Porter et al., 1998; Wellman, Santana, Bonev, & Nelson, 2001; Yamaguchi, Kajita, 

& Madison, 1995). In addition, exchange proteins activated by cAMP (EPACs) participate in 

cAMP-related activation of BKCa channels in VSM (Roberts, Kamishima, Barrett-Jolley, 

Quayle, & Dart, 2013). Thus, cAMP-related vasodilators may activate BKCa channels by a 

number of mechanisms.
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Endothelium-derived NO, nitrovasodilators that release NO and other vasodilators that act 

through the cGMP-protein kinase G (PKG) signaling cascade also have been proposed to 

activate BKCa channels (Fujino et al., 1991; P. L. Li, Zou, & Campbell, 1997; Robertson, 

Schubert, Hescheler, & Nelson, 1993; Taniguchi, Furukawa, & Shigekawa, 1993; Williams, 

Katz, Roy-Contancin, & Reuben, 1988; Winquist et al., 1985; Winquist, Faison, & Nutt, 

1984). This may occur through modulation of Ca2+ sparks (Jewell, Saundry, Bonev, 

Tranmer, & Wellman, 2004; Mandala, Heppner, Bonev, & Nelson, 2007; Yuill, McNeish, 

Kansui, Garland, & Dora, 2010), by phosphorylation of the channels by PKG (Alioua, 

Huggins, & Rousseau, 1995; Swayze & Braun, 2001) or altered channel trafficking (Leo et 

al., 2014). Activation of BKCa channels by NO, independent from cGMP has also been 

proposed (Ahern, Hsu, & Jackson, 1999; Bolotina, Najibi, Palacino, Pagano, & Cohen, 

1994; Buxton, Kaiser, Malmquist, & Tichenor, 2001; Lang, Harvey, McPhee, & Klemm, 

2000; Lang, Harvey, & Mulholland, 2003; P. L. Li, Jin, & Campbell, 1998; Lovren & 

Triggle, 2000; Mistry & Garland, 1998; Plane, Hurrell, Jeremy, & Garland, 1996; Plane, 

Sampson, Smith, & Garland, 2001; Yu, Sun, Maier, Harder, & Roman, 2002; Zhang, Tazzeo, 

Chu, & Janssen, 2006). In contrast, there are also a number of studies that have failed to 

demonstrate participation of BKCa channels in the mechanism of action of NO (Armstead, 

1997; Bialecki & Stinson-Fisher, 1995; Brayden, 1990; Cooke, Rossitch, Andon, Loscalzo, 

& Dzau, 1991; H. Dong, Waldron, Galipeau, Cole, & Triggle, 1997; Fukami et al., 1998; 

Garland & McPherson, 1992; Ghisdal, Gomez, & Morel, 2000; Hansen & Olesen, 1997; 

Hernanz et al., 1999; Kilpatrick & Cocks, 1994; Plane & Garland, 1993; Plane, Wiley, 

Jeremy, Cohen, & Garland, 1998; Taguchi, Heistad, Kitazono, & Faraci, 1995; Wellman & 

Bevan, 1995; Zhu, Beny, Flammer, Luscher, & Haefliger, 1997). Thus, there may be 

regional or species differences that account for the presence or lack of effect of NO on BKCa 

channel activity.

Carbon monoxide (Abraham & Kappas, 2008; Jaggar et al., 2002; Jaggar et al., 2005; A. Li 

et al., 2008; R. Wang, Wang, & Wu, 1997; R. Wang & Wu, 1997; R. Wang, Wu, & Wang, 

1997; Xi et al., 2004; Xi et al., 2010), epoxyeicosatrienoic acids (EETs) (Campbell, 

Gebremedhin, Pratt, & Harder, 1996; Earley, Heppner, Nelson, & Brayden, 2005; Eckman, 

Hopkins, McBride, & Keef, 1998), H2O2 (Barlow & White, 1998) (Cheranov & Jaggar, 

2006; Thengchaisri & Kuo, 2003), and H2S (Jackson-Weaver et al., 2013; Liang, Xi, Leffler, 

& Jaggar, 2012) all may activate BKCa channels. Effects of CO on BKCa channels may be 

direct via associated heme proteins that interact with the C-terminal domain of the α-

subunits, between RCK1 and RCK2 (Jaggar et al., 2005) or by interaction with histidine 

residues in RCK1 (Hou et al., 2009) (Figure 3A). In addition, CO augments Ca2+ spark 

frequency and their coupling to BKCa channels (Jaggar et al., 2002; A. Li et al., 2008; Xi et 

al., 2010). Epoxyeicosatrienoic acids also may stimulate Ca2+ sparks to activate BKCa 

channels through actions of EETs on transient receptor potential (TRP) V4 channels (Earley 

et al., 2005). Stimulation of Ca2+ sparks also may underlie the activation of BKCa channels 

by H2S (Jackson-Weaver et al., 2013; Liang et al., 2012).

Diseases and VSM BKCa channels

The effects of disease states on BKCa channel expression and function is complex. The 

activity of BKCa channels appears to be depressed in obesity (Borbouse et al., 2009; 
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Borbouse et al., 2010; Frisbee, Maier, & Stepp, 2002; Nystoriak et al., 2014; Ozkor et al., 

2011; Rusch, 2009), diabetes (L. Dong et al., 2009; Fernandez-Velasco, Ruiz-Hurtado, 

Gomez, & Rueda, 2014; Y. Liu & Gutterman, 2002; McGahon et al., 2007; Mokelke, Dietz, 

Eckman, Nelson, & Sturek, 2005; Nystoriak et al., 2014; Y. Wang et al., 2010; Yi et al., 

2014; W. Zhou, Wang, Lamping, & Lee, 2006) and some models of aging (Albarwani, Al-

Siyabi, Baomar, & Hassan, 2010; Marijic et al., 2001). In diabetes, the impaired function of 

BKCa channels involves reduced expression and function of the β1-subunits (McGahon et 

al., 2007; Nystoriak et al., 2014; Yi et al., 2014). Diabetes and hyperglycemia results in 

increased proteolytic degradation of β1-subunits via Nuclear Factor (NF)-κB-dependent 

expression and function of the muscle RING finger protein 1 (MuRF1) ubiquitin ligase (Yi 

et al., 2014). The down-regulation of the β1-subunit in diabetes also may involve activation 

of calcineurin/nuclear factor of activated T-cells, cytoplasmic 3 (NFATC3) signaling that is 

facilitated by A-kinase anchoring protein 150 (AKAP150) (Nystoriak et al., 2014).

However, the effects of hypertension on BKCa channel function are not clear, because both 

increased (Asano, Masuzawa-Ito, & Matsuda, 1993; Asano, Matsuda, Hayakawa, Ito, & Ito, 

1993; Y. Liu, Pleyte, Knaus, & Rusch, 1997; Paterno, Heistad, & Faraci, 1997; Rusch, 

Delucena, Wooldridge, England, & Cowley, 1992; Rusch & Liu, 1997; Zhang, Gao, Zuo, 

Lee, & Janssen, 2005) and reduced (Amberg, Bonev, Rossow, Nelson, & Santana, 2003; 

Amberg & Santana, 2003; Ambroisine et al., 2007; Bratz, Dick, Partridge, & Kanagy, 2005; 

Bratz, Swafford, Kanagy, & Dick, 2005; Callera, Yogi, Tostes, Rossoni, & Bendhack, 2004; 

Z. Li, Lu, & Shi, 2014; Moreno-Dominguez, Cidad, Miguel-Velado, Lopez-Lopez, & Perez-

Garcia, 2009; Nieves-Cintron, Amberg, Nichols, Molkentin, & Santana, 2007; Yang, Li, et 

al., 2013) function has been reported. Differences in hypertension models, duration of 

hypertension, type of blood vessel and the species studied may account for the lack of 

consensus on the effects of hypertension on BKCa channel function.

KV channels and VSM contraction

Vascular smooth muscle cells express a diverse array of KV channels that include members 

of the KV1 (loci: KCNA2-6)(Cox, 2005), KV2 (loci: KCNB2-3) (Cox, 2005), KV3 (loci: 

KCNC2-4)(Cox, 2005), KV4 (loci: KCND1-3) (Cox, 2005), KV6.3 (locus: KCNG3) 

(Moreno-Dominguez et al., 2009), KV7 (loci:KCNQ1, KCNQ4-5) (Greenwood & Ohya, 

2009; Jepps, Olesen, & Greenwood, 2013; Mackie & Byron, 2008) and KV9.3 (locus: 

KCNS3) (Cox, 2005) families of KV channels. They consist of homo- or heterotetramers of 

α-subunits (Figure 4) (Kuang et al., 2015). Segment 6 (S6) and the P-loop between S5 and 

S6 forms the channel’s pore, as noted above (Kuang et al., 2015). Positively charged 

residues in S4 confer voltage sensitivity to the channels (Figure 4) (Kuang et al., 2015). 

Modulatory accessory subunits accompany many KV channels, affecting channel membrane 

expression, gating kinetics, and voltage sensitivity (Gutman et al., 2005).

Membrane depolarization activates KV channels, and, in general, they participate in the 

negative feedback regulation of VSM contraction along with BKCa channels. Consistent 

with this negative-feedback role, block of KV channels potentiates VSM contraction induced 

by vasoconstrictors (Chadha et al., 2014; Cheong, Dedman, & Beech, 2001; Cheong, 

Dedman, Xu, & Beech, 2001; Cook, 1989; Hald et al., 2012; Martinez et al., 2009; Pagan et 
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al., 2009; Shimizu, Yokoshiki, Sperelakis, & Paul, 2000). Voltage-gated K+ channels are 

active at the resting membrane potential of VSM cells in blood vessels displaying myogenic 

tone; closure of these channels leads to membrane depolarization and vasoconstriction (Cox, 

2005; Jackson, 2000, 2005; M. T. Nelson & Quayle, 1995).

Vasoconstrictors, including phenylephrine (Mistry & Garland, 1999), 5-HT (Bae et al., 

2006; Ko, Park, Firth, Hong, et al., 2010; Sung et al., 2013) and angiotensin II (Clement-

Chomienne, Walsh, & Cole, 1996) all inhibit KV channels, probably acting through PKC 

(Clement-Chomienne et al., 1996; Hayabuchi, Standen, & Davies, 2001; Ko, Park, Firth, 

Hong, et al., 2010), Src tyrosine kinase (Sung et al., 2013), Rho kinase (Luykenaar, Brett, 

Wu, Wiehler, & Welsh, 2004; Luykenaar, El-Rahman, Walsh, & Welsh, 2009) and/or 

increased intracellular Ca+ (Cox & Petrou, 1999; Gelband, Ishikawa, Post, Keef, & Hume, 

1993; Ishikawa, Hume, & Keef, 1993). This closure of KV channels may contribute to 

vasoconstrictor-induced VSM cell membrane depolarization and the mechanism of action of 

vasoconstrictors.

Vasodilators acting through the cAMP-PKA pathway activate KV channels and contribute to 

their mechanism of action (E. A. Aiello, Malcolm, Walsh, & Cole, 1998; E.A. Aiello, Walsh, 

& Cole, 1994; E. A. Aiello, Walsh, & Cole, 1995; Berwick et al., 2010; Chadha et al., 2014; 

Chadha et al., 2012; Dick et al., 2008; H. Dong, Waldron, Cole, & Triggle, 1998; Heaps & 

Bowles, 2002; Heaps, Tharp, & Bowles, 2005; Khanamiri et al., 2013; H. Li, Chai, 

Gutterman, & Liu, 2003; Moore, Nelson, Parelkar, Rusch, & Rhee, 2014; Satake, Shibata, & 

Shibata, 1996). Nitric oxide (Dick et al., 2008; Sobey & Faraci, 1999; Stott, Barrese, Jepps, 

Leighton, & Greenwood, 2015; Tanaka et al., 2006), H2S (Cheang et al., 2010; Martelli et 

al., 2013; Rogers, Chilian, Bratz, Bryan, & Dick, 2007; Schleifenbaum et al., 2010), hypoxia 

(Hedegaard et al., 2014), acidosis (Berger, Vandier, Bonnet, Jackson, & Rusch, 1998) and 

anticontractile substances release by perivascular adipose tissue (Tano, Schleifenbaum, & 

Gollasch, 2014; Zavaritskaya et al., 2013) also may activate VSM KV channels in some 

blood vessels.

Disease and VSM KV channels

The expression and function of KV channels is reduced in diabetes (Bubolz, Li, Wu, & Liu, 

2005; Chai, Liu, & Chen, 2005; Chai et al., 2007; Ko, Park, Firth, Kim, et al., 2010; H. Li et 

al., 2003) that may be mediated by elevated glucose (H. Li, Gutterman, Rusch, Bubolz, & 

Liu, 2004; Y. Liu, Terata, Rusch, & Gutterman, 2001) and channel nitration (H. Li et al., 

2004). The reduced KV channel function may contribute to the increased VSM contractile 

function that is observed in diabetes.

However, in hypertension and obesity, the impact on KV channels is not as clear. Increased 

(Cox, Folander, & Swanson, 2001; Cox, Fromme, Folander, & Swanson, 2008), decreased 

(Bratz, Dick, et al., 2005; Bratz, Swafford, et al., 2005; Cox, 1996; Cox, Lozinskaya, & 

Dietz, 2001; Y. Liu, Hudetz, Knaus, & Rusch, 1998; Martens & Gelband, 1996; Tobin et al., 

2009) or no change (Y. Liu, Jones, & Sturek, 1994; Y. Liu et al., 1997) in KV channel 

function in hypertension has been reported. There also is no clear effect of obesity on KV 

channel function, with decreased (Berwick et al., 2012; Dick & Tune, 2010; Nieves-Cintron 

et al., 2015; Yang, Jones, Thomas, & Rubin, 2007) and increased (J. Jiang, Thoren, 
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Caligiuri, Hansson, & Pernow, 1999; Ko, Park, Firth, Hong, et al., 2010) function reported. 

Specific effects may depend on the vascular bed studied, the duration and severity of the 

pathology and the species studied.

KATP Channels and VSM Contraction

Vascular smooth muscle cells express KATP channels that consist of tetramers of pore-

forming KIR6.1 subunits (locus: KCNJ8) (Aziz et al., 2014; A. Li et al., 2013; Miki et al., 

2002; Miura et al., 2003; M. Suzuki et al., 2001; Yamada et al., 1997), associated with an 

equal number of accessory sulphonylurea receptors (SUR) 2B (locus: ABCC9) (Adebiyi, 

McNally, & Jaggar, 2011; Miura et al., 2003; Quayle, Nelson, & Standen, 1997) (Figure 5). 

These channels were named because millimolar intracellular ATP closes the channels 

(Foster & Coetzee, 2016). However, their modulation by vasodilator substances is probably 

more important for their physiological function. Sensitivity to ATP is conferred by the 

KIR6.1 subunit, whereas sensitivity to channel blockade by sulphonylureas, such as 

glibenclamide, and activation by agonists such pinacidil and cromakalim resides in the 

SUR2B subunit (Foster & Coetzee, 2016).

Vascular KATP channels appear to be active under resting conditions in coronary (Berwick et 

al., 2010; Dankelman, Van der Ploeg, & Spaan, 1994; Duncker, van Zon, Pavek, Herrlinger, 

& Bache, 1995; Farouque & Meredith, 2007; Farouque, Worthley, & Meredith, 2004; 

Farouque, Worthley, Meredith, Skyrme-Jones, & Zhang, 2002; Imamura et al., 1992; 

Jackson, Konig, Dambacher, & Busse, 1993; Merkus et al., 2003; Merkus, Sorop, 

Houweling, Hoogteijling, & Duncker, 2006; Mori et al., 1995; Randall, 1995; Richmond, 

Tune, Gorman, & Feigl, 1999, 2000; Samaha, Heineman, Ince, Fleming, & Balaban, 1992; 

Sharifi-Sanjani et al., 2013; Stepp, Kroll, & Feigl, 1997; X. Zhou, Teng, Tilley, Ledent, & 

Mustafa, 2014), skin (Abbink et al., 2002; Cankar & Strucl, 2008; Hojs, Strucl, & Cankar, 

2009) and renal (Duncker, Oei, Hu, Stubenitsky, & Verdouw, 2001; Holdsworth et al., 2015) 

circulations, at rest. The resting activity of KATP channels is not as clear in skeletal muscle, 

because there is evidence both for (Jackson, 1993; Kosmas, Levy, & Hussain, 1995; Saito, 

McKay, Eraslan, & Hester, 1996; Vanelli, Chang, Gatensby, & Hussain, 1994; Vanelli & 

Hussain, 1994) and against (Banitt, Smits, Williams, Ganz, & Creager, 1996; Bank, Sih, 

Mullen, Osayamwen, & Lee, 2000; Bijlstra et al., 1996; Duncker et al., 2001; Farouque & 

Meredith, 2003a, 2003b, 2003c; Hammer, Ligon, & Hester, 2001; Holdsworth et al., 2015; 

Murrant & Sarelius, 2002) resting activity of these channels. In the cerebral circulation, 

KATP channels appear to be closed at rest (Faraci & Heistad, 1998; Horinaka et al., 1997; 

Leffler et al., 2011; Lindauer, Vogt, Schuh-Hofer, Dreier, & Dirnagl, 2003; Nnorom et al., 

2014; Toyoda et al., 1997; Wei & Kontos, 1999).

Vasoconstrictors that activate PKC, close VSM KATP channels (Bonev & Nelson, 1996; 

Chrissobolis & Sobey, 2002; Cole, Malcolm, Walsh, & Light, 2000; Hayabuchi, Davies, & 

Standen, 2001; Quinn, Cui, Giblin, Clapp, & Tinker, 2003; Sampson, Davies, Barrett-Jolley, 

Standen, & Dart, 2007) and cause channel internalization (Jiao, Garg, Yang, Elton, & Hu, 

2008). Vasoconstrictor-induced increases in intracellular Ca2+ also lead to KATP channel 

closure through activation of protein phosphatase 2b (calcineurin) (Wilson, Jabr, & Clapp, 

2000). Vasoconstrictor-induced activation of Gi/o signaling also inhibits KATP channels 
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through inhibition of adenylate cyclase, reduced cAMP and decreased channel 

phosphorylation (Hayabuchi, Davies, et al., 2001).

As with BKCa channels and KV channels, vasodilators that signal through the cAMP 

signaling pathway activate KATP channels (Akatsuka et al., 1994; Bouchard, Dumont, & 

Lamontagne, 1994; Dart & Standen, 1993; Eguchi et al., 2007; Jackson, 1993; Kitazono, 

Heistad, & Faraci, 1993b; Kleppisch & Nelson, 1995; Ming, Parent, & Lavallee, 1997; 

Nakashima & Vanhoutte, 1995; C. P. Nelson et al., 2011; M. T. Nelson, Huang, Brayden, 

Hescheler, & Standen, 1990; Quayle, Bonev, Brayden, & Nelson, 1994; Randall, 1995; 

Sawmiller, Ashtari, Urueta, Leschinsky, & Henning, 2006; Wellman, Quayle, & Standen, 

1998; Yang et al., 2008). This may involve phosphorylation of both KIR6.1 (Quinn, Giblin, 

& Tinker, 2004) and SUR2B (Shi et al., 2008; Shi et al., 2007) subunits. Hydrogen sulfide 

(Cheng, Ndisang, Tang, Cao, & Wang, 2004; Leffler et al., 2011; Liang et al., 2011; Mustafa 

et al., 2011; Zhao, Zhang, Lu, & Wang, 2001), acidosis (Faraci, Breese, & Heistad, 1994; 

Heintz, Damm, Brand, Koch, & Deussen, 2008; Lindauer et al., 2003) and hypoxia (Daut et 

al., 1990; Loutzenhiser & Parker, 1994; Marshall, Thomas, & Turner, 1993; Nakhostine & 

Lamontagne, 1993, 1994; Taguchi, Heistad, Kitazono, & Faraci, 1994; Tomiyama, Brian, & 

Todd, 1999; von Beckerath, Cyrys, Dischner, & Daut, 1991) may act, in part, in some 

vascular beds, by activation of VSM KATP channels.

Disease and VSM KATP channels

The function of VSM KATP channels appears to be decreased in obesity (Erdos, Miller, & 

Busija, 2002; Erdos, Simandle, Snipes, Miller, & Busija, 2004; Hodnett, Xiang, Dearman, 

Carter, & Hester, 2008; Irat, Aslamaci, Karasu, & Ari, 2006; Lu et al., 2013; Miller, Tulbert, 

Puskar, & Busija, 2002; Spallarossa et al., 2001) and diabetes (Bouchard, Dumont, & 

Lamontagne, 1999; Kamata, Miyata, & Kasuya, 1989; Kinoshita et al., 2006; S. S. Li et al., 

2015; Mayhan, 1994; Mayhan & Faraci, 1993; Miura et al., 2003). However, in hypertension 

KATP channel function has been reported to be decreased (Ghosh, Hanna, Wang, & McNeill, 

2004; Kalliovalkama et al., 1999; Kam, Pfaffendorf, & van Zwieten, 1994; Kawata et al., 

1998; Kitazono, Heistad, & Faraci, 1993a; Ohya et al., 1996; Tajada, Cidad, Moreno-

Dominguez, Perez-Garcia, & Lopez-Lopez, 2012; Takaba et al., 1996; Van de Voorde, 

Vanheel, & Leusen, 1992), increased (Furspan & Webb, 1993; Miyata, Tsuchida, & Otomo, 

1990) or not changed (Blanco-Rivero et al., 2008; Hutri-Kahonen et al., 1999; Kolias, Chai, 

& Webb, 1993).

KIR channels and VSM contraction

Vascular smooth muscle cells, particularly those in small resistance arteries and arterioles, 

also express one or more members of the strong inward rectifier K+ channels, with KIR2.1 

(locus: KCNJ2) being the dominant isoform expressed (Longden & Nelson, 2015). These 

channels are formed from a tetramer of two-membrane spanning domain KIR channel 

subunits (Kuang et al., 2015) (Figure 6A). Block of the channel pore by intracellular 

polyamines and Mg2+ is responsible for the strong, voltage-dependent inward current 

rectification that is characteristic of these channels (Kuang et al., 2015) (Figure 6B).
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While these channels derive their name from the inward currents that they conduct at 

membrane potentials more negative than the K+ equilibrium potential (EK), it is the small, 

outward “hump” in the current-voltage relationship at potentials positive to EK that 

contributes to their physiology (Longden & Nelson, 2015; Quayle et al., 1997) (Figure 6B).

Current through KIR channels contributes to the resting membrane potential in a number of 

vascular beds (Burns et al., 2004; Chilton et al., 2008; Chilton & Loutzenhiser, 2001; 

Chilton, Smirnov, Loutzenhiser, Wang, & Loutzenhiser, 2011; Edwards & Hirst, 1988; 

Edwards, Hirst, & Silverberg, 1988; Jantzi et al., 2006; Z. G. Jiang, Si, Lasarev, & Nuttall, 

2001; Johnson, Marrelli, Steenberg, Childres, & Bryan, 1998; McCarron & Halpern, 1990; 

Smith et al., 2008; Troncoso Brindeiro, Fallet, Lane, & Carmines, 2008; Wu et al., 2007). 

Importantly, because of the shape of the current-voltage relationship, anything that 

hyperpolarizes the membrane will recruit outward current through KIR channels (See Figure 

6B). Thus, these channels act to amplify hyperpolarization induced by opening of other K+ 

channels or other cellular processes, such as the Na+/K+ ATPase, and thus, may contribute to 

the mechanism of action of a number of vasodilators (Jackson, 2005; Jantzi et al., 2006; 

Longden & Nelson, 2015; Smith et al., 2008; Sonkusare, Dalsgaard, Bonev, & Nelson, 

2016).

Increases in extracellular K+ also activate KIR channels, allowing these channels to 

contribute to functional hyperemia in electrically active tissues such as the brain (Filosa et 

al., 2006; Girouard et al., 2010; Paisansathan, Xu, Vetri, Hernandez, & Pelligrino, 2010; 

Vetri, Xu, Paisansathan, & Pelligrino, 2012) and skeletal muscle (Armstrong, Dua, & 

Murrant, 2007; Crecelius, Kirby, Luckasen, Larson, & Dinenno, 2013; Crecelius, Luckasen, 

Larson, & Dinenno, 2014) (Figure 6C). These channels may also be activated by K+ released 

through other VSM or endothelial cell K+ channels, another means by which KIR channels 

can amplify the effects of vasodilators (Busse et al., 2002; Haddy, Vanhoutte, & Feletou, 

2006; Longden & Nelson, 2015).

Vasoconstrictors may close KIR channels through mechanisms involving PKC (Henry, 

Pearson, & Nichols, 1996; Park, Han, Kim, Youm, et al., 2005; Park et al., 2006; Zitron et 

al., 2004) or tyrosine kinases (Wischmeyer, Doring, & Karschin, 1998; Zitron et al., 2008), 

although this has not been well studied in blood vessels. Vasodilators that act through cAMP 

signaling may activate KIR channels in some blood vessels (Paisansathan et al., 2010; Park, 

Han, Kim, Ko, et al., 2005; Son et al., 2005). However, it is unclear whether this is due to 

PKA-dependent phosphorylation of KIR channels, or due to activation of other K+ channels 

and amplification of hyperpolarization initiated by the opening of the other channel, as noted 

above.

Diseases and VSM KIR channels

The effects of hypertension on KIR channel function are not clear; increases (Nakahata et al., 

2006), decreases (Seo et al., 2014), or no change in function (Tajada et al., 2012) have been 

reported. Similarly, diabetes has been reported to increase (Troncoso Brindeiro et al., 2008; 

Troncoso Brindeiro, Lane, & Carmines, 2012) or decrease (Matsushita & Puro, 2006; 

Mayhan, Mayhan, Sun, & Patel, 2004; Vetri et al., 2012) KIR channel function in different 
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models. Regional, species or model dependent differences could be responsible for this 

heterogeneity.

Obesity (de Kreutzenberg et al., 2003; Haddock et al., 2011; Vigili de Kreutzenberg, 

Kiwanuka, Tiengo, & Avogaro, 2003), stress (Longden, Dabertrand, Hill-Eubanks, 

Hammack, & Nelson, 2014), and ischemia (Bastide et al., 1999; Bastide et al., 2003; 

Marrelli, Johnson, Khorovets, Childres, & Bryan, 1998; Povlsen, Longden, Bonev, Hill-

Eubanks, & Nelson, 2016) all are associated with decreased KIR channel function. 

Membrane cholesterol and hypercholesterolemia strongly suppresses KIR channel function 

in other systems (Fang et al., 2006). However, the effects of hypercholesterolemia on VSM 

KIR channel expression and function have not been directly studied.

K+ channels and VSM proliferation

Remodeling of blood vessels after injury or due to diseases, such as atherosclerosis, results 

in phenotypic modulation of VSM cells from a quiescent, non-dividing, contractile 

phenotype into proliferating cells. Potassium channels importantly contribute to the 

proliferative phenotype in VSM cells. An increase in K+ channel expression and function is 

required for cells to proliferate (Neylon, 2002; Pardo, 2004; Urrego, Tomczak, Zahed, 

Stuhmer, & Pardo, 2014; Wonderlin & Strobl, 1996). Inhibition of K+ channel function 

attenuates proliferation of VSM (Kohler et al., 2003; Miguel-Velado et al., 2005; Neylon, 

2002; Tharp & Bowles, 2009; Tharp, Wamhoff, Turk, & Bowles, 2006) and other cells 

(Pardo, 2004; Urrego et al., 2014; Wonderlin & Strobl, 1996). Potassium channels are 

required for cells to progress through the cell cycle, as during proliferation (Urrego et al., 

2014). They participate in this process by several mechanisms including membrane potential 

regulation, cell volume regulation, and ion-permeation-independent mechanisms (Urrego et 

al., 2014). Potassium channels also participate in apoptosis, a required component of 

vascular remodeling after injury (Kondratskyi, Kondratska, Skryma, & Prevarskaya, 2015).

In quiescent, contractile VSM cells, Ca2+ influx through high-voltage-activated, L-type 

VGCC importantly contributes to cell Ca2+ regulation and contractile function (Jackson, 

2000, 2005) (Figures 1 and 3B). In this setting, activation of K+ channels leads to membrane 

hyperpolarization, closure of VGCC and decreases in intracellular Ca2+ (Jackson, 2000, 

2005) (Figures 1 and 3B). These cells also express a number of members of the transient 

receptor potential (TRP) family of ion channels including TRPC1, TRPC3, TRPC4, TRPC5, 

TRPC6, TRPM4, and TRPV4 (Earley & Brayden, 2015). These channels serve as store-

operated channels (SOC; TRPC1, TRPC4, TRPC5), receptor operated channels (ROC; 

TRPC3, TRPC6, TRPM4, TRPV4), and stretch-activated channels (SAC; TRPC6, TRPM4) 

that contribute to agonist and pressure-induced contraction of native VSM cells (Earley & 

Brayden, 2015). However, in proliferating VSM cells, there is significant ion channel 

remodeling: expression of L-type VGCC is reduced, whereas expression of T-type VGCC, 

TRPC1, TRPC6 and SOC composed of ORAI and the endoplasmic reticulum Ca2+-sensing 

protein, STIM is increased (Beech, 2007; House, Potier, Bisaillon, Singer, & Trebak, 2008; 

Munoz et al., 2013; Trebak, 2012; Tzeng et al., 2012) (Figure 7). Importantly, there are also 

changes in K+ channel expression that are essential for VSM cells to progress through the 

cell cycle and proliferate (Figure 7, and sections below). During proliferation, increased 
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expression and activation of a K+ channel will either hyperpolarize the membrane to 

increase or maintain the electrochemical gradient for Ca2+ entry through TRP channels and 

ORAI/STIM-based SOC (e.g., Figure 8), which will increase or sustain Ca2+ influx through 

these channels (Bi et al., 2013; Munoz et al., 2013; Urrego et al., 2014). Increased 

intracellular Ca2+ concentration is an important signal for cell proliferation (Bi et al., 2013; 

Munoz et al., 2013; Urrego et al., 2014). As noted above, other roles for K+ channels are 

also possible (Cidad et al., 2012; Cidad et al., 2015; Urrego et al., 2014).

KCa3.1 and VSM proliferation

The intermediate-conductance Ca2+-activated K+ channel, KCa3.1 (sK4, IK1, locus: 

KCNN4) has consistently been shown to play an important role in proliferation of VSM 

(Gole, Tharp, & Bowles, 2014; Kohler et al., 2003; Neylon, 2002; Tharp et al., 2006; 

Toyama et al., 2008) and other cells (Urrego et al., 2014) (Figure 8). These K+ channels are 

voltage insensitive and use calmodulin as the Ca2+ sensor (Fanger et al., 1999). Calmodulin 

interacts with the intracellular C-terminus of the channel to gate channel opening (Fanger et 

al., 1999) (Figure 8A). The concentration of free Ca2+ required for 50% of maximal 

activation of KCa3.1 is on the order of 300 nM, with the threshold for activity at 

approximately 100 nM and maximal activity at 1 μM (Ishii et al., 1997).

Growth factors upregulate expression of KCa3.1 in cultured VSM cells (Gole et al., 2014; 

Kohler et al., 2003; Neylon, 2002; Tharp et al., 2006; Toyama et al., 2008). In porcine 

coronary artery VSM cells, NADPH oxidase 5 (NOX5)-related increases in reactive oxygen 

species appear to mediate the upregulation of KCa3.1 expression that results from simulation 

by basic fibroblast growth factor (Gole et al., 2014). Growth factors regulate expression of 

KCa3.1 both by decreasing the activity of repressor element 1-silencing transcription factor 

(REST) (Cheong et al., 2005) and by increasing activity of the AP-1 transcription factor (Bi 

et al., 2013; Ghanshani et al., 2000). Nucleoside diphosphate kinase B-dependent 

phosphorylation of KCa3.1 may contribute to activation of these channels in a mouse model 

of vascular injury (X. B. Zhou et al., 2015).

Selective inhibition of KCa3.1 reduces VSM cell growth and proliferation (Kohler et al., 

2003; Neylon, 2002; Tharp et al., 2006; Toyama et al., 2008). Importantly, inhibition of 

these channels lessens restenosis after balloon injury in rat (Kohler et al., 2003) and pig 

(Tharp et al., 2008), and limits VSM proliferation in a mouse model of atherosclerosis 

(Toyama et al., 2008). These ion channels also have been implicated in the VSM 

proliferation that occurs after organ transplantation (Chen, Lam, Gregory, Schrepfer, & 

Wulff, 2013) and in chronic kidney disease (Huang, Pollock, & Chen, 2015). The pro-

proliferative effect of KCa3.1 is mediated by increases in intracellular Ca2+ (Bi et al., 2013), 

likely due to increased influx of extracellular Ca2+ driven by KCa3.1-induced 

hyperpolarization and the increased electrochemical gradient for Ca2+ influx through TRP 

channels and ORAI/STIM-based SOC (Figure 8B). The pro-proliferative effect of increases 

in intracellular Ca2+ involves phosphorylated cAMP-response element-binding protein 

(CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1) in human coronary VSM 

cells (Bi et al., 2013). Unexpectedly, activators of Kca3.1 such as EBIO, SKA-31 and NS309 

attenuated platelet-derived-growth-factor (PDGF)-induced proliferation of these cells (Bi et 
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al., 2013). The inhibition of PDGF-induced proliferation appeared to arise from strong 

suppression of KCa3.1 expression by the activators, and the resultant reduction in 

intracellular Ca2+ signaling (Bi et al., 2013).

KV channels and VSM proliferation

In addition to KCa3.1, there are also KV channels that contribute to VSM cell proliferation. 

The KV channel, KV3.4 (locus: KCNC4) is upregulated during proliferation of human 

uterine artery VSM cells, and selective inhibition of KV3.4 blocks proliferation (Miguel-

Velado et al., 2005; Miguel-Velado et al., 2010) and prevents progression of the cells 

through the G1 phase of the cell cycle (Miguel-Velado et al., 2010). The inhibitory effects of 

Kv3.4 blockade on proliferation could be mimicked by incubation of cells with elevated 

extracellular K+ to produce depolarization equivalent to that produced by KV3.4 blockade 

(Miguel-Velado et al., 2010). These data suggest that the proliferative effects of KV3.4 may 

be related to the channel’s impact on membrane potential (hyperpolarization), similar to the 

proposed mechanism for KCa3.1 channel stimulation of Ca2+ influx (Figure 8B).

In contrast, balloon-injury of mouse arteries results in upregulation of KV1.3 (locus: 

KCNE3) (Cidad et al., 2010) and downregulation of KV1.5 (Cidad et al., 2012; Cidad et al., 

2015; Cidad et al., 2014). Proliferation and migration of VSM cells in this model can be 

attenuated by selective blockade of KV1.3 channels (Cheong et al., 2011; Cidad et al., 2010). 

Studies in human VSM cells also confirm a role for KV1.3 in proliferation (Cheong et al., 

2011; Cidad et al., 2015). Interestingly, KV1.3 may contribute to VSM proliferation by ion-

permeation-independent mechanisms (Cidad et al., 2012; Cidad et al., 2015; Jimenez-Perez 

et al., 2016). The pro-proliferative effects of KV1.3 are mediated by voltage-dependent 

exposure of key residues in the channel’s C-terminus (Tyr-447 and Ser-459) (Jimenez-Perez 

et al., 2016). These KV channels may act as scaffolding proteins that recruit signaling 

proteins into signalplexes to promote the proliferative phenotype, independent from K+ 

diffusion through the pore of the channel and changes in membrane potential (Cahalan & 

Chandy, 2009; Jimenez-Perez et al., 2016; Schwab, Hanley, Fabian, & Stock, 2008). In 

human coronary VSM cells, this may involve mitogen-activated protein kinase kinase 

(MEK)/extracellular signal–regulated kinase (ERK) and phospholipase Cγ signaling 

pathways (Cidad et al., 2015). This may provide additional targets to combat vascular 

proliferative diseases, in addition to the Phosphatidylinositol-4,5-bisphosphate 3-kinase/

mammalian target of rapamycin (mTOR) pathway targeted by current therapies (Cidad et al., 

2015).

Summary and questions for the future

While we have learned much about the expression and function of K+ channels in the 

regulation of VSM contraction and proliferation in the past 30 years, there remain several 

outstanding questions. First, why do VSM cells express so many different KV channels? Is 

this simply a matter of redundancy, or does the pattern of expression of these channels tune 

the electrophysiology of VSM cells in different vascular beds in ways that are not yet clear 

(Zhong et al., 2010)? Second, while it is clear that K+ channels, like all ion channels, exist in 

multi-protein signaling domains (Abriel, Rougier, & Jalife, 2015; Kim & Oh, 2016; Levitan, 
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2006), our understanding of the regional heterogeneity in the nature and composition of 

these signaling domains in different vascular beds is incomplete. Finally, our understanding 

of the regulation of expression and function of K+ channels in major cardiovascular disease 

states also remains incomplete, particularly as they relate to different vascular beds around 

the body. These are research areas where single cell transcriptome studies, high resolution 

proteomics and informatics along with detailed electrophysiology and mechanical studies 

would aid in providing a clearer picture of the expression and function of the diverse array of 

K+ channels that contribute to the regulation of VSM contraction and proliferation in health 

and disease.
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Abbreviations

EBIO 1-Ethyl-2-benzimidazolinone

NS1619 1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-

(trifluoromethyl)-2H-benzimidazol-2-one

NS309 6,7-Dichloro-1H-indole-2,3-dione 3-oxime

AKAP A-kinase anchoring protein

NH2 amino

KATP ATP-sensitive K+

CREB cAMP-response element-binding protein

CO Carbon monoxide

COOH carboxy

EC electrochemical

EETs epoxyeicosatrienoic acids

ERK extracellular signal–regulated kinase

grad gradient

H2S Hydrogen sulfide

KCa3.1, sK4, IK1 intermediate-conductance Ca2+-activated K+ channel

IP3 inositol-1,4,5-trisphosphate

KIR inward-rectifier K+

IP3R IP3 receptors
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EK K+ equilibrium potential

CaV1.2 L-type voltage-gated Ca2+ channels

BKCa large-conductance Ca2+-activated K+

LRRCs leucine-rich-repeat-containing proteins

mTOR mammalian target of rapamycin

MEK mitogen-activated protein kinase kinase

MuRF1 muscle RING finger protein 1

NOX5 NADPH oxidase 5

SKA-31 Naphtho[1,2-d]thiazol-2-ylamine

NOR-1 neuron-derived orphan receptor-1

NO Nitric oxide

NF Nuclear Factor

NFATC3 nuclear factor of activated T-cells, cytoplasmic 3

PDGF platelet-derived-growth-factor

PKA protein kinase A

PKC Protein kinase C

PKG protein kinase G

ROC receptor operated channels

RCK regulator of K+ conductance

REST repressor element 1-silencing transcription factor

RyR ryanodine receptors

SOC store-operated channels

SAC stretch-activated channels

SUR sulphonylurea receptors

TRP transient receptor potential

TM transmembrane

VSM vascular smooth muscle

VGCC voltage-gated Ca2+ channels

KV voltage-gated K+
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Figure 1. 
Potassium channels regulate vascular smooth muscle contraction. Schematic diagram 

outlining the effects of K+ channel opening and closing on the membrane potential of VSM 

cells, which, in turn, affects processes that lead to relaxation or contraction of VSM leading 

to vasodilation or vasoconstriction. Voltage-gated Ca2+ channels (VGCC). See text for more 

information. Modified from (Jackson, 2005).
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Figure 2. 
Structure of the ion conducting pore of K+ channels. Top panel (A) shows a schematic 

representation of a two membrane spanning domain (M1 and M2) K+ channel. Functional 

channels are formed from a tetramer of these units, with the ion-conducting pore being 

formed by M2 and the P-loop domain that connects M1 and M2 (P in figure refers to the 

pore helical domain). Middle panel (B) shows approximate orientation of two sets of the 

M1, M2 and P-loops forming the channel. The blue spheres represent K+ ions, and the red 

highlighted regions of the P-loops represent the selectivity filter of the channel’s pore. The 
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bottom panel (C) shows a top view of the channel subunits and the P-loop forming the K+ 

ion-conducting pore. See text for references.
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Figure 3. 
Vascular BKCa channels. Panel A shows a β1- subunit with two membrane-spanning 

domains, one pore-forming α-subunit with seven membrane-spanning domains and a γ-

subunit (LRRC26, for example) with one membrane-spanning domain. Panel B shows a 

schematic of the primary negative feedback role for BKCa channels in contractile VSM. 

Membrane depolarization (due to activation of other membrane channels, not shown), or 

increases in intracellular Ca2+ in the vicinity of BKCa channels due to release of Ca2+ from 

ryanodine receptors (RyR, Ca2+ sparks), or influx of Ca2+ through L-type voltage gated 

Ca2+ channels (CaV1.2), results in activation and opening of BKCa channels. The efflux of 

K+ through these channels leads to membrane hyperpolarization and closure of CaV1.2 

channels, negative feedback regulation of VSM excitability.
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Figure 4. 
The pore-forming α-subunit of KV channels. Shown is a schematic of the 6 membrane 

spanning domains of a typical KV channel. The length and composition of the carboxy 

(COOH) and amino (NH2) varies among the large number of KV channel isoforms 

expressed in VSM cells. See text for more information.
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Figure 5. 
Subunits of KATP channels. Shown are the KIR6.1 and SUR2B subunits that are thought to 

comprise VSM KATP channels. The KIR6.1 subunits have two membrane spanning domains, 

whereas the SUR2B subunits have seventeen membrane spanning domains clustered into 

three groups (TMD0, TMD1, TMD2), as shown. Functional channels are formed from a 

hetero-octamer of these two subunits. See text for more information and references.
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Figure 6. 
Vascular KIR channels and their currents. Panel A shows the topology of KIR channels with 

two membrane spanning domains. Functional channels are composed of a tetramer these 

subunits (see Figure 2). Panel B shows a schematic of the current-voltage-relationship for 

VSM KIR channels for a cell with 5 mM K+ in the extracellular solution (140 mM K+ 

intracellular) and is based on data from (Filosa et al., 2006). At membrane potentials more 

negative than the K+ equilibrium potential (EK, ~−90 mV in 5 mM K+), the channel 

conducts K+ into the cells, as shown by the negative current density values. At potentials 
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more positive than EK up to ~−30 mV, KIR channels conduct K+ ions out of the cell, and 

contribute to the resting membrane potential as denoted by the small positive currents at the 

assumed resting membrane potential of −35 mV. Note that anything that hyperpolarizes the 

membrane will recruit outward, positive current through KIR channels, effectively 

amplifying the initial hyperpolarization. Panel C demonstrates the effects of increasing 

extracellular K+ from 5 mM (red dashed curve) to 15 mM K+ (green solid curve): increased 

extracellular K+ shifts the EK from −90 mV to ~−60 mV. Note that there is now an elevated 

outward K+ current at the original resting membrane potential. This enhanced outward K+ 

current will hyperpolarize the VSM cell membrane from its resting value toward EK, leading 

to vasodilation.
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Figure 7. 
Ion channel remodeling in proliferating VSM cells. Schematic summary of the ion channels 

expressed in contractile VSM cells and those expressed in proliferating VSM cells. 

Contractile VSM cells express predominantly L-type voltage-gated Ca2+ channels (CaV1.2), 

BKCa channels, and KV1.5, in addition to KATP, KIR and several additional types of KV 

channels. A number of transient receptor potential channels (TRPs) also are expressed that 

contribute to store-operated, receptor operated and stretch-activated cation channels. 

Intracellular ryanodine receptors (RyR) and IP3 receptors (IP3R) also are expressed and 

functional in these cells. In response to growth factors, injury or disease, the pattern of 

expression of ion channels is remodeled. Proliferating VSM cells lose expression of CaV1.2, 

BKCa and KV1.5 channels. In their place, T-type Ca2+ (CaV3.1), KCa3.1, KV1.3 and KV3.4 

channels are expressed. Proliferating cells also upregulate expression and function of store-

operated channels (Orai/STIM), TRP channels and IP3R. See text for more information.
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Figure 8. 
Vascular KCa3.1 channels and their function in proliferating VSM cells. Panel A shows a 

schematic of an α-subunit demonstrating the typical six-membrane spanning domain 

structure of KCa3.1 channels. Calcium sensitivity is conferred by the Ca2+-binding protein, 

calmodulin, that binds to the channel’s C-terminus. Panel B shows a schematic of the role 

played by KCa3.1 channels in proliferating VSM cells. In proliferating cells, store-operated 

Ca2+ channels, composed of Orai proteins and the Ca2+ -sensing protein, STIM, are up-

regulated, as are IP3R receptors. Increases in intracellular Ca2+ produced by increased 

activity of Orai/STIM and IP3R, activates KCa3.1 channels, leading membrane 

hyperpolarization. This hyperpolarization increases the electrochemical (EC) gradient (grad) 

for Ca2+ diffusion into the cells, augmenting Ca2+ influx through Orai/STIM and other non-

voltage-gated Ca2+ channels in proliferating cells, leading to an increase in intracellular 
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Ca2+. This is a positive-feedback system, in contrast to the negative-feedback system that is 

found in contractile VSM cells (see Figure 3B).
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