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Effects of Ventral Striatum Lesions on Stimulus-Based versus
Action-Based Reinforcement Learning
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Learning the values of actions versus stimuli may depend on separable neural circuits. In the current study, we evaluated the performance
of rhesus macaques with ventral striatum (VS) lesions on a two-arm bandit task that had randomly interleaved blocks of stimulus-based
and action-based reinforcement learning (RL). Compared with controls, monkeys with VS lesions had deficits in learning to select
rewarding images but not rewarding actions. We used a RL model to quantify learning and choice consistency and found that, in
stimulus-based RL, the VS lesion monkeys were more influenced by negative feedback and had lower choice consistency than controls.
Using a Bayesian model to parse the groups’ learning strategies, we also found that VS lesion monkeys defaulted to an action-based choice
strategy. Therefore, the VS is involved specifically in learning the value of stimuli, not actions.
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Introduction
Learning comes in many forms and separable circuits underlie
different types of learning (McDonald and White, 1993; Knowl-
ton et al., 1996). Reinforcement learning (RL), or more specifi-
cally learning to make choices that yield reward, is frequently
attributed to the striatum (Houk et al., 1995; Frank, 2005). Pre-
vious studies have shown that the ventral striatum (VS) may
function as a critic, assessing whether outcomes after choices are
better or worse than expected and generating a prediction error
(O’Doherty et al., 2004; Frank, 2005). Complementing this, the
dorsal striatum (DS) maintains a choice policy that learns to
select rewarded actions on the basis of prediction errors gener-

ated by the critic. Previous studies on this problem have used
tasks in which instrumental actions are the selection of one of two
visual stimuli and are independent of the motor response re-
quired to choose the stimulus (O’Doherty et al., 2004). Therefore,
it is unclear whether the fMRI correlates seen in these tasks are
specific to learning the values of visual stimuli or if they would
generalize to instrumental scenarios in which the choice was be-
tween two motor actions. Previous work in macaques (Costa et
al., 2016) and marmosets (Clarke et al., 2008) has shown that
lesions to the VS can affect stimulus-based RL. Related work has
shown that injections of dopamine antagonists in the DS can
affect choice consistency in the context of RL when monkeys
learn to perform specific sequences of actions (Lee et al., 2015).
These experiments are consistent with separable systems under-
lying stimulus and action-based RL, but none of them examined
both types of learning simultaneously.

Along with the work on the role of the VS in RL, other studies
have shown that the VS can function as a limbic–motor interface
(Mogenson et al., 1980; Shiflett and Balleine, 2010). For example,
basolateral amygdala inputs to the VS can drive specific Pavlovian-
to-instrumental-transfer (PIT), in which the presence of a Pavlov-
ian cue increases responding on a lever that delivers the reward
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Significance Statement

Reinforcement learning models of the ventral striatum (VS) often assume that it maintains an estimate of state value. This suggests
that it plays a general role in learning whether rewards are assigned based on a chosen action or stimulus. In the present experi-
ment, we examined the effects of VS lesions on monkeys’ ability to learn that choosing a particular action or stimulus was more
likely to lead to reward. We found that VS lesions caused a specific deficit in the monkeys’ ability to discriminate between images
with different values, whereas their ability to discriminate between actions with different values remained intact. Our results
therefore suggest that the VS plays a specific role in learning to select rewarded stimuli.
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previously associated with the cue (Corbit and Balleine, 2005;
Shiflett and Balleine, 2010). In addition, whereas dopaminergic
innervation of the VS mediates conditioned reinforcement (Tay-
lor and Robbins, 1984; Cador et al., 1991), the VS was shown to be
unnecessary for learning about cues that serve as conditioned
reinforcers (Parkinson et al., 1999). Although this work shows
that learned cue– outcome associations can lead to potentiation
of motor behavior, it does not suggest a specific role for the VS
either in learning to associate cues and outcomes or in learning to
select actions that produce reward.

In the present study, we investigated whether the VS makes a
causal contribution to action-based and stimulus-based RL in the
context of a two-armed bandit reversal learning task. If the VS
functions as a critic, then it might facilitate learning to select
actions defined by both a specific motor response and selection of
a specific visual stimulus. Although prior work suggests that ac-
tion selection may depend more on the DS (Seo et al., 2012; Lee et
al., 2015; Parker et al., 2016), it is not known if the VS is similarly
involved in action selection. Therefore, we developed a bandit
task in which monkeys could learn stochastic reward discrimi-
nations by selecting one of two images regardless of the sac-
cade direction (What blocks) or one of two saccade directions
regardless of the image (Where blocks). As expected, based on
our previous work (Costa et al., 2016), stimulus-based RL was
compromised in the VS lesion group. In contrast, action-based
RL in the VS lesion group was unimpaired. These results indicate
that the VS is not necessary for action-based RL, but is necessary
for stimulus-based RL, possibly to drive stimulus selection.

Materials and Methods
Subjects. We studied eight male rhesus monkeys (Macaca mulatta), with
weights ranging from 6.5–11 kg. Three monkeys received bilateral exci-
totoxic lesions of the VS and five were used as unoperated controls. For
the duration of the study, the monkeys were placed on water control and
earned their fluid through their performance on the task on testing days.
Experimental procedures for all monkeys were performed in accordance
with the Guide for the Care and Use of Laboratory Animals and were
approved by the National Institute of Mental Health Animal Care and
Use Committee.

Surgery. Three monkeys received two separate stereotaxic surgeries,
one for each hemisphere, which targeted the VS using quinolinic acid
(for details, see Costa et al., 2016). After both lesion surgeries, each mon-
key received a cranial implant of a titanium head post to facilitate head
restraint. Unoperated controls received the same cranial implant. Behavioral
testing for all monkeys began after they had recovered from the implant
surgery. Further, the lesion and control animals used in the study reported
here were used previously in a study in which they learned only stimulus-
based reward associations in a different two-arm bandit task (Costa et al.,
2016). After completion of that study, we began training animals on the
What–Where two-arm bandit task reported in the current study.

Lesion assessment. Lesions of the VS were assessed from postoperative
MRI scans. We evaluated the extent of damage with T2-weighted scans
taken after the initial surgeries. For the lesioned monkeys, MR scan slices
were matched to drawings of coronal sections from a standard rhesus
monkey brain at 1 mm intervals. We then plotted the lesions onto stan-
dard sections. The extent and location of the ventral striatum lesions are
shown in Figure 1C.

Experimental setup. The eight monkeys completed an average of 29.13
sessions (SD � 3.83), with an average of 19.51 blocks per session (SD �
4.74). Each block consisted of 80 trials and one reversal of the stimulus-
based or action-based reward contingencies (Fig. 1A). On each trial,
monkeys had to acquire and hold a central fixation point for a random
interval (400 – 600 ms). After the monkeys acquired and held central
fixation, two images appeared, one each to the left and right (6° visual
angle from fixation) of the central fixation point. The presentation of the
two images signaled to the monkeys to make their choice. The monkeys

reported their choices by making a saccade to their selection, which could
be based on the image or the direction of their saccade. After holding
their choice for 500 ms, a reward was stochastically delivered according
to the current reward schedule: 80%/20%, 70%/30%, or 60%/40%. The
reward schedule for each block was randomly assigned at the start of the
block and remained constant throughout the block. If the monkeys failed
to acquire central fixation within 5 s, hold central fixation for the re-
quired time, or make a choice within 1 s, the trial was aborted and then
repeated.

Each block used two novel images that were randomly assigned to the
left or right of the fixation point for every trial. The images were changed
across blocks but remained constant within a block. What and Where
blocks were randomly interleaved throughout the session and block type
was not indicated to the monkey. For What blocks, reward probabilities
were assigned to each image independently of the saccade direction nec-
essary to select an image. Conversely, for Where blocks, reward proba-
bilities were assigned to each saccade direction independently of the
particular images presented on either side of central fixation. The block
type (What or Where) was held constant for each 80-trial block. One of
the images or one of the saccade directions had a lower probability of
being rewarded and the other had a higher probability. The probabilities
were determined by which probabilistic schedule (80%/20%, 70%/30%,
or 60%/40%) was assigned to that specific block. The trial in which the
reward mapping reversed in each block was randomly selected from a
uniform distribution from trial 30 to 50, inclusive. The reversal trial was
independent of the monkey’s performance and was not signaled to the
monkey. At the reversal in a What block, the less frequently rewarded
image became the more frequently rewarded image and vice versa. At the
reversal in Where blocks, the less frequently rewarded saccade direction
became the more frequently rewarded saccade direction and vice versa.

Images provided as choice options were normalized for luminance and
spatial frequency using the SHINE toolbox for MATLAB (Willenbockel
et al., 2010). All images were converted to grayscale and subjected to a 2D
FFT to control spatial frequency. To obtain a goal amplitude spectrum,
the amplitude at each spatial frequency was summed across the two
image dimensions and then averaged across images. Next, all images were
normalized to have this amplitude spectrum. Using luminance histo-
gram matching, we normalized the luminance histogram of each color
channel in each image so it matched the mean luminance histogram of
the corresponding color channel, averaged across all images. Spatial fre-
quency normalization always preceded the luminance histogram match-
ing. Each day before the monkeys began the task, we manually screened
each image to verify its integrity. Any image that was unrecognizable after
processing was replaced with an image that remained recognizable.

Eye movements were monitored and the image presentation was con-
trolled by PC computers running the Monkeylogic (version 1.1) toolbox
for MATLAB (Asaad and Eskandar, 2008) and Arrington Viewpoint eye-
tracking system (Arrington Research).

Task training. All experiments reported here were performed after data
collection for a previous study had been completed (Costa et al., 2016).
Therefore, before we began training on the What–Where task, the ani-
mals had extensive experience on learning stimulus-based reward asso-
ciations in a different two-arm bandit task in which stimulus location was
irrelevant to learning reward associations (i.e., it lacked a Where condi-
tion). In the current study, to facilitate learning of What and Where
reward mappings, all monkeys were trained with a deterministic sched-
ule (100%/0%) in both conditions. They were first introduced to one
block type, either What or Where, with block type randomly assigned.
Once the monkeys could successfully perform 15–24 blocks per session,
we introduced the other block type by itself; then, upon stabilized per-
formance in that block type, we mixed the two block types into one
session. Once the monkeys reached stable performance in the determin-
istic setting, we gradually introduced probabilistic outcomes. Then,
probabilities were lowered until the final probabilistic schedules of 80%/
20%, 70%/30%, and 60%/40% were reached. Data from the training
sessions were not included in any of the analyses.

Saccadic reaction times (RTs). Choice RTs were computed on a trial-
by-trial basis and were defined as the time between the onset of the two
visual stimuli and the initiation of a saccade that targeted one of the two
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Figure 1. Two-arm bandit task, different block types, and lesion maps. A, The task was presented to the monkeys in blocks of 80 trials. At the start of each block, two novel visual stimuli were used.
Dependent upon the block type, either one of the two visual stimuli would be probabilistically more rewarded than the other (What blocks) or one of the two saccade directions would be
probabilistically more rewarded than the other (Where blocks). On a randomly selected trial between 30 and 50, the reward mappings were reversed. After the 80 trials of a block were completed,
a new block began and two novel stimuli were introduced. For each trial, the monkey had to make an initial fixation, after which two visual stimuli would be presented, one to the left and one to the
right of central fixation. The monkeys indicated their choice by making a saccade to one of the two stimuli based on its identity or location. They were then either rewarded or not rewarded depending
upon the current reward schedule and which option they chose. B, Three example trials in a What and Where block. In the What block type, the monkey repeatedly chooses a specific visual stimulus
that is assigned a higher reward probability. Conversely, in the Where block type, the monkey repeatedly chooses to saccade to one side that is assigned a higher reward probability regardless of what
visual stimulus is on that side. C, Lesion extent mapped for the monkeys with bilateral excitotoxic VS lesions (reproduced with permission from Costa et al., 2016).
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options. We constructed RT probability functions by binning RTs in
20 ms bins.

Speed–accuracy tradeoff. To investigate the speed–accuracy tradeoff,
we examined the groups’ choice accuracy on a trial-by-trial basis as a
function of their choice RTs. Next, we used a Gaussian kernel (20 ms) to
smooth each groups’ fraction correct versus choice RT curves. This was
sampled in evenly spaced 20 ms bins from 0 to 400 ms. We then averaged
the fraction correct as a function of choice RT across schedules for each
block type in each group.

RL model. Using the expected reversal trial calculated with the Bayes-
ian model (see “Bayesian model” section), we split each block into an
acquisition and reversal phase. We then fit separate RL models to each
phase (i.e., acquisition and reversal) of each of the six schedule and block
type combinations (i.e., What 80%/20%, 70%/30%, and 60%/40%;
Where 80%/20%, 70%/30%, and 60%/40%). Using a standard RL
model, we estimated learning rates from positive and negative feedback,
as well as the inverse temperature. Value updates were given by the
following:

vi�k � 1� � vi�k� � � f �R � vi�k�� (1)

Where vi is the value estimate for option i, R is the reward feedback for the
current choice for trial k, and �f is the feedback dependent learning rate
parameter, where f indexes whether the current choice was rewarded
(R � 1) or not (R � 0). For each trial, �f is one of two fitted values used
to scale prediction errors based on the type of reward feedback for the
current choice. We then passed these value estimates through a logistic
function to generate choice probability estimates as follows:

d1�k� � �1 � e��v2�k��v1�k����1, d2�k� � 1 � d1�k� (2)

The likelihood is then given by the following:

f� x, y��, �pos, �neg� � � k�d1�k�c1�k� � d2�k�c2�k�� (3)

Where c1(k) had a value of 1 if option 1 was chosen on trial k and c2(k) had
a value of 1 if option 2 was chosen. Conversely, c1(k) had a value of 0 if
option 2 was chosen and c2(k) had a value of 0 if option 1 was chosen for
trial k. We used standard function optimization methods to maximize
the log of the likelihood of the data given the parameters. Because
estimation can settle in local minima, we used 10 initial values for the
parameters. We then used the maximum of the final log-likelihood
across fits.

Bayesian model of reversal learning. We fit a Bayesian model to estimate
probability distributions over several features of the animals’ behavior as
well as ideal observer estimates over these features (Costa et al., 2015;
Jang et al., 2015; Costa et al., 2016). The Bayesian ideal observer model
inverts the causal model for the task, so it is the optimal model. For the
current study, we extracted probability distributions over the reversal point
as well as the block type. With the Bayesian estimate of the reversal point, we
were able to split each block into an acquisition and reversal phase. Particu-
larly for the difficult schedules (i.e., 70%/30% and 60%/40%) this is a
better estimate of the information the animal had about reversals than
the actual programmed reversal point.

To estimate the Bayesian model we fit a likelihood function given by
the following:

f� x, y�r, p, h, b� � � k�1

T q�k� (4)

Where r is the trial on which the reward mapping is reversed (r � 0 – 81),
p is the probability of reward of the high reward option. The variable h
encodes whether option 1 or option 2 is the high reward option at the
start of the block (h � 1, 2) and b encodes the block type (b � 1, 2 – What or
Where). The variable k indexes trial number in the block and T is the
current trial. The variable k indexes over the trials up to the current trial
so, for example, if T � 10, then k � 1, 2, 3, . . . 10. The variable r ranges
from 0 to 81 because we allow the model to assume that a reversal may
not have happened within the block and that the reversal occurred before
the block started or after it ended. In either scenario in which the model
assumes the reversal occurs before or after the block, the posterior prob-
ability of reversal would be equally weighted for r � 0 or 81. The choice

data are given in terms of x and y, where elements of x are the rewards
(xi � 0, 1) and elements of y are the choices (yi � 1, 2) in trial i. The
variable p was varied from 0.51 to 0.99 in steps of 0.01. It can also be
indexed over just the exact reward schedules (i.e., 0.8, 0.7. and 0.6),
although this makes little difference because we marginalize over p for all
analyses.

For the ideal observer model used to estimate the reversal trial and the
“ideal” curve in the Bayesian analysis, we estimated the probability that a
reversal happened at the current trial T based on the outcomes from the
previous trials. Therefore, the estimate is based on the information that
the monkey had when it made its choice in the current trial. For each
schedule, the following mappings from choices to outcomes gave us q(k).
For estimates of What (b � 1), targets 1 and 2 refer to the individual
images and saccade direction is ignored; whereas for Where (b � 2),
targets 1 and 2 refer to the saccade direction and the image is ignored. For
k � r and h � 1 (when target 1 is the high probability target and the trial
is before the reversal) choose 1 and get rewarded q(k) � p, choose 1 and
receive no reward q(k) � 1 � p, choose 2 and get rewarded q(k) � 1 � p,
choose 2 and have no reward q(k) � p. For k � r, these probabilities are
flipped. For k � r and h � 2, the probabilities are complementary to the
values where k � r and h � 1. To estimate reversal, all values were filled
in up to the current trial T.

For the animal’s choice behavior, used to estimate the posterior over b
for each group, the model is similar except the inference is only over the
animal’s choices, not whether it was rewarded. We assumed that the
animal had a stable choice preference which switched at some point in
the block from one higher rewarded choice (a saccade direction or an
image) to the other. Given the choice preference, the animals chose the
less rewarded option at some lapse rate 1 � p. Therefore, for k � r and
h � 1, choosing option 1: q(k) � p, choosing option 2: q(k) � 1 � p. For
k � r and h � 1, choosing option 1: q(k) � 1 � p, choosing option 2:
q(k) � p. Correspondingly, for k � r and h � 2, choosing option 1: q(k) �
1 � p, choosing option 2: q(k) � p. For k � r and h � 2, choosing option
1: q(k) � p, choosing option 2: q(k) � 1 � p.

Using these mappings for q(k), we then calculated the likelihood as a
function of r, p, h, and b for each block of trials. The posterior is given by
the following:

p�r, p, h, b�x, y� � f� x, y�r, p, h, b� p�r� p� p, h, b�/p� x, y�

(5)

For p, h, and b, the priors were flat. The prior on r, p(r), was for r � 30 or
r 	 50, p(r) � 0 and for r 	 29 and r � 51, p(r) � 1/21. With this prior,
there is general agreement between the ideal observer estimate of the
reversal point and the actual programmed reversal point (Costa et al.,
2015, 2016).

With these priors, we calculated the posterior over the reversal trial by
marginalizing over p, h, and b as follows:

p�r�x, y� � �p,h,b p�r, p, h, b�x, y� (6)

The posterior over block type could correspondingly be calculated by
marginalizing over r, p, and h.

Before calculating a point estimate of the reversal using the ideal ob-
server, we calculated the posterior evidence that a reversal had occurred
before trial k, specifically, the following:

p�r � k�x, y� � �i�1

k�1

p�r � i�x, y� (7)

To define the reversal trial, we compared this evidence to a threshold,
p�r � k�x, y� 	 
, and the first trial to exceed the threshold was defined
as the reversal point. We assumed a distribution over thresholds to com-
pute a point estimate of the reversal trial, uniform on 0.51– 0.99, and
computed an expectation over this distribution as follows:

� r � k 	 : � � �min �k��p�r � k�x, y� 	 
� 	p�
 � (8)

Classical statistics. We entered each dependent variable into full facto-
rial, mixed-effects ANOVA models implemented in MATLAB. Depen-
dent variables that we analyzed were fraction correct, learning rate
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(positive and negative), and inverse temperature. When appropriate,
group, block type, schedule, feedback type, and learning phase were spec-
ified as fixed effects, session as a random factor nested under monkey,
and monkey nested under group. In our analyses comparing monkeys’
choice behavior in the current task with that in a previous bandit task
(Costa et al., 2016), we specified group, task, learning phase, and schedule
as fixed effects, with session as a random effect nested under both group
and task. For our post hoc tests of significant interactions, we computed
univariate ANOVAs for component effects and corrected for multiple
comparisons.

Results
We tested eight rhesus macaques on a two-armed bandit reversal
learning task with a stochastic reward schedule (Fig. 1A). The task
featured two types of learning blocks: stimulus based (What) and
action based (Where) (Fig. 1B). The subjects included three mon-
keys with bilateral excitotoxic lesions of the VS (Fig. 1C) and five
unoperated controls. The monkeys were tested on multiple, ran-
domly interleaved blocks of 80 trials in each session. Each block
was either a What block or a Where block. In addition, the op-
tions were stochastically rewarded according to one of three re-
ward schedules: 80%/20%, 70%/30%, or 60%/40%, which was
held constant throughout a block. At the beginning of each block,
the monkeys were presented with two novel images as choice
options. The monkeys were allowed to select one option per trial
by making a saccade and fixating on their choice. The images
were randomly assigned to the left or right of fixation on each
trial. In What blocks, the higher-probability choice was one of the
two images independent of the saccade direction needed to select
it. In Where blocks, the higher probability choice was one of the
two saccade directions independent of the image. There was no
cue to indicate which type of block was in force; the monkeys
determined block type through inference over choices and feed-
back. In each block, on a randomly selected trial from 30 to 50,

the reward mappings were reversed, making the previously less
rewarded option the more rewarded option and vice versa. In
addition, the occurrence of a reversal was not signified to the
monkeys in any way. After the 80 trials had been completed, a
new block began and two novel images were introduced. The
monkeys then had to learn again via trial and error whether the
reward mapping was based on action type (left or right saccade)
or image identity.

Choice behavior
We visualized the monkeys’ choice behavior by aligning each
block around a reversal point determined by a Bayesian change-
point analysis (Fig. 2). The VS lesion group performed substan-
tially worse than controls in What blocks (Fig. 2A). In contrast,
the VS lesion group performed as well as controls in Where
blocks (Fig. 2C). To summarize the monkeys’ accuracy, we cal-
culated the average fraction correct for each group separated by
each schedule and learning phase in both block types (Fig. 2B,D).

In What blocks, the controls performed better than the VS
lesion group (Fig. 2B; group: F(1,224) � 1005, p � 0.001). In
addition, the VS lesion group’s performance decreased in the
reversal phase from the acquisition phase (phase: F(1,87) � 14.81,
p � 0.001), whereas the control group’s performance improved
in the reversal phase from the acquisition phase (phase: F(1,136) �
47.70, p � 0.001). While the VS lesion group performed worse
than the control group in What blocks, both groups’ performance
increased in the richer reward schedules (schedule: F(2,446) � 146.98,
p � 0.001). In addition, this effect of schedule was consistent
when we analyzed both groups’ individually (VS lesioned: F(2,167) �
41.85, p � 0.001; control: F(2,267) � 151.39, p � 0.001). In Where
blocks, however, the VS lesion group performed as well as the
control group (Fig. 2D; group: F(1,221) � 0.09, p � 0.76). In ad-
dition, both groups’ performance improved in the richer reward
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schedules (schedule: F(2,441) � 353.34, p � 0.001) and in the
reversal phase (phase: F(1,228) � 30.91, p � 0.001). Furthermore,
we found that there was no effect of previous block type on per-
formance in the current block, whether it was a What or Where
block, for both groups (group � block type � previous block
type: F(1,632) � 0.020, p � 0.887).

The VS lesion animals had previously performed a related
version of the current task (Costa et al., 2016). Similar to the
current task, the previous task was a two-arm bandit task that had
probabilistic, 80-trial blocks with one random reversal between
trials 30 and 50. However, the previous task only had stimulus-
based reward mapping blocks and no action-based reward map-
ping blocks. We plotted the choice data from the control and VS
lesion groups in What blocks in the current study and from the
previous task (Fig. 3). It was clear that having to discern whether
actions or stimuli were being rewarded impaired performance
(task: F(1,9519) � 355, p � 0.001) and this was consistent when we
analyzed within groups (VS lesioned, task: F(1,2632) � 322.82, p �
0.001; control, task: F(1,4721) � 44.83, p � 0.001). However, in the
VS lesion group, there was a larger decrease in performance in the
current versus the previous task compared with controls
(group � task: F(1,4721) � 44.83, p � 0.001).

RT effects on choice accuracy
Next, we analyzed the RTs in both What and Where blocks, as
well as the speed–accuracy tradeoff for each group (Fig. 4). We

found that, in both the What and Where blocks, the VS lesion
group’s RTs were faster than the control group’s (KS test, p �
0.001). In What blocks (Fig. 4A), the VS lesion group’s average
RT was 159.2 ms and the control group’s average RT was 211.4
ms. The control group’s accuracy peaks near the mode of their RT
distribution. The VS lesion group’s accuracy peaks at a point
similar to the control group. Because the VS lesion group re-
sponded more quickly, however, the peak of their RT distribution
is to the left of the peak in their accuracy curve. In Where blocks
(Fig. 4B), the VS lesion group’s average RT was 156 ms and the
control group’s average RT was 203.2 ms. Unlike in What blocks,
both groups showed the highest accuracy at the lowest RTs and
then their accuracy decreased as their RTs increased. In addition,
the control group’s RT distribution peaked as their accuracy be-
gan to fall off.

RL model analyses
We fit an RL model to further analyze the monkeys’ choice behavior
in terms of choice consistency and feedback-dependent learning. We
first plotted the RL model predictions over the actual choice behav-
ior separated by group, schedule, and block type (Fig. 5).

Choice consistency
We examined choice consistency using the inverse temperature
parameter of the RL model for both groups, block types, phases,
and all three stochastic schedules (Fig. 6A). The inverse temper-
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ature parameter quantifies how consis-
tently the monkeys chose the higher value
option. A low inverse temperature indi-
cates noisy choice behavior, whereas a
high inverse temperature indicates that
the monkeys more frequently chose the
better option.

In What blocks, the inverse tempera-
tures were generally higher in the control
group compared with the VS lesion group
(group: F(1,232) � 58.14, p � 0.001). In
addition, the two groups differed in how
consistently they chose the higher value
option in the reversal phase (group �
phase: F(1,232) � 8.62, p � 0.004). Among
controls, choice consistency increased in
the reversal phase compared with the ac-
quisition phase (phase: F(1,110) � 27.12,
p � 0. 001). The opposite was observed in the VS lesion group
because choice consistency decreased after reversal of the reward
contingencies (phase: F(1,58) � 23.87, p � 0.001). We did not find
group differences in the inverse temperature parameter in Where
blocks (group: F(1,233) � 0.63, p � 0.428).

Feedback-dependent learning
Next, we investigated the feedback-dependent learning rate pa-
rameters, which characterize how quickly the monkeys were able
to update the expected value of each of the two choice options in
a block. We quantified the monkeys’ ability to update value from
both negative feedback (no reward) and positive feedback (re-
ward), reflected in negative and positive learning rates, respec-
tively (Fig. 6B).

In What blocks, learning rates fit to the behavior of the VS
lesion and control groups indicated they differed in their sensi-
tivity to negative and not positive feedback (group � feedback
type: F(1,699) � 14.77, p � 0.001). Learning rates in the control
group indicated they were more sensitive to positive versus neg-
ative feedback (feedback type: F(1,472) � 96.49, p � 0.001). How-
ever, in the VS lesion group, learning rates indicated equivalent
sensitivity to positive and negative feedback (feedback type:
F(1,335) � 3.72, p � 0.055). Moreover, direct comparisons of neg-
ative learning rates in the two groups indicated heightened sen-
sitivity of the VS lesion group to negative feedback relative to
controls (group: F(1,235) � 55.79, p � 0.001), whereas positive
learning rates did not differ between the groups (group: F(1,239) �
1.78, p � 0.183). Overweighting negative feedback is maladaptive
in a stochastic learning environment and likely prevented the
monkeys with VS lesions from accurately learning and updating
the values of the two images in What blocks.

We found similar effects when we examined learning rates in
Where blocks. The lesion and control groups, again, specifically
differed in their sensitivity to negative versus positive feedback
(group � feedback: F(1,440) � 6.77, p � 0.009). In Where blocks,
negative learning rates were higher in the VS lesion group com-
pared with controls (group: F(1,228) � 42.26, p � 0.001),
whereas positive learning rates were equivalent in the two
groups (group: F(1,227) � 3.41, p � 0.066). However, unlike in
What blocks, both the VS lesion (feedback type: F(1,88) � 86.95, p �
0.001) and control (feedback type: F(1,130) � 277.63, p � 0.001)
groups exhibited higher learning rates for positive versus negative
feedback (feedback type: F(1,796) � 325.80, p � 0.001). This re-
flects the improved performance of the VS lesion group in Where
compared with What blocks.

Bayesian analysis of reversal learning and
posterior probabilities
We used a Bayesian model to predict, for each block, whether the
monkeys’ choices were consistent with choosing one of the im-
ages (What block) or one of the saccade directions (Where block)
because this would presumably reflect their inference over block
type. We also compared both groups with an ideal observer. For
the ideal observer, as the block continued and the observer gained
more information about the outcomes associated with each
choice, the posterior probability over block type reflected the
actual reward mapping in that block. Unsurprisingly, for both
What and Where blocks, the ideal posterior probabilities in-
creased throughout the block, reflecting the ideal observer’s in-
ference of the correct block type (Fig. 7, pink). In addition, the
ideal observer’s posterior probabilities were higher in easier re-
ward schedules, reflecting that, with more consistent feedback,
the ideal observer can more accurately infer the block type.

In What blocks, the posterior over block type of the control group
increased as they completed more trials and thus had more informa-
tion about their choice options. The control group’s increasing pos-
terior probabilities in What blocks show that their choice behavior
was consistent with the stimulus-based reward mapping of those
blocks (Fig. 7A, black). In addition, the control group’s posterior
probabilities were higher in easier reward schedules, showing that
their choices were more consistently reflecting the stimulus-based
reward mapping when they had more consistent evidence. Notably,
the VS lesion group’s posterior probability throughout What blocks
was � 0.5. This indicated that their choice behavior was more con-
sistent with the reward mapping of the action-based Where blocks
(because the posteriors over block type sum to 1) even when a
block’s reward mapping is based on the images (Fig. 7A, blue; differ-
ence between Groups p � 0.001, bootstrap analysis across all sched-
ules in What blocks). Much like in What blocks, the control group
showed increasing posterior probability over block type throughout
the Where blocks as the monkeys gained more information about
the reward mapping. In Where blocks (Fig. 7B), the VS lesion group
show a posterior probability that was either above or aligned with the
ideal observer’s posterior probability and was consistently above the
control group’s posterior probabilities (Fig. 7B; difference between
groups p � 0.001, bootstrap analysis across all schedules in Where
blocks). Therefore, monkeys with a VS lesion adopted a Where strat-
egy in both block types.

To better illustrate why we believe that the posterior probabil-
ities over block type reflect that the VS lesion monkeys were
choosing in accordance to a Where strategy even in What blocks,
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we plotted example blocks from a VS lesion monkey and a control
monkey in the 80%/20% What condition (Fig. 8). When we
mapped the VS lesion monkey’s choices based on the location
chosen, it was clear that the monkey was choosing based on loca-
tion because there were groupings of choices on either side (Fig.
8A). In addition, the monkey’s posterior probability over Where
block type was increasing, whereas the ideal observer’s posterior
probability was decreasing. This indicated that, based on the
feedback, the best strategy would be to choose based on image
and not saccade direction (Fig. 8A). Conversely, when we
mapped the VS lesion monkey’s choices based on the image
chosen in the same block, there was no consistency in image
choice because the choices oscillate from image 1 to image 2 (Fig.
8B). Therefore, the VS lesion monkey was not consistently choos-

ing based on image, but rather on location. When we mapped
choices from a control monkey based on location chosen in an
80%/20% What block, the monkey’s choices oscillated between
the two locations, as they should in a What block (Fig. 8C). When
we mapped the control monkey’s choices based on image, the mon-
key consistently chose image 1, then following the reversal switched
and began to consistently choose image 2 (Fig. 8D). This was re-
flected in both the ideal observer’s and control monkey’s posterior
probabilities for the What block type. They both increased and
reached asymptote, indicating that the monkey was choosing in ac-
cordance with an image-based choice strategy, as would be ideal for
the block type.

To analyze the monkeys’ posterior updating on a trial-by-trial
basis within each block type, we examined the trial-by-trial
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derivatives of the posterior probabilities (Fig. 9). A derivative of
zero shows that a group’s posterior probability was stable. A neg-
ative derivative shows that a group’s posterior probability was
decreasing, changing to choose more consistently with the re-
ward mapping of the wrong block type. A positive derivative
shows that a group’s posterior probability was increasing and
choosing more consistently with the reward mapping of the cor-
rect block type. It can be seen that, by the reversal phase, both
groups and the ideal observer’s derivatives came back to zero
because, at that point, choices were consistent with either a
stimulus-based or an action-based RL block. In both the What
and Where blocks, the control animals tested both stimulus-
based and action-based decisions before consistently adopting
one of these choice strategies. In contrast, the VS lesion group’s
behavior reflects that, no matter what type of block they were in,
they more consistently chose a saccade direction and not an im-
age. The tendency of the VS lesion group to choose according to
saccade direction is shown in Where blocks by the derivatives
only being positive (Fig. 9B). By only having positive derivatives
in Where blocks, this shows that the VS lesion group never con-
sidered consistently choosing an image. In What blocks (Fig. 9A),
this was shown by the VS lesion group’s derivatives only being
negative. Just like in Where blocks, the VS monkeys’ derivatives
of the posterior probability over block type reflects that they were
making choices based on saccade direction, not on image iden-
tity, even though these choices were not being rewarded at a high
probability.

Discussion
In the present study, we found that lesions of the VS affected learning
to select rewarding stimuli, but not rewarding actions. When we
used a RL model to examine the inverse temperature and learning
rates, we found that the inverse temperature was lower in What
blocks for the VS lesion group, as expected based on their perfor-
mance. There were no group differences in inverse temperature in
Where blocks. The negative learning rate was also higher for the VS
lesion group in both block types. In What blocks, elevated negative
learning rates reflected the fact that the VS lesion monkeys often
responded to the negative feedback by switching to the nonoptimal
choice. However, in Where blocks, the high learning rate for negative
feedback was balanced by a higher learning rate for positive feed-
back, which reflected accurate performance.

We used a Bayesian model to infer the choice strategy and
found that monkeys with VS lesions were using an action-based
strategy in both block types. Interestingly, because the VS lesion
group always used a Where strategy, in the Where condition,
their inference over block type, shown by the Bayesian posterior
probability over block type, was above or aligned with an ideal
observer. The control group was somewhat slower to adopt the
correct strategy because they entertained both possibilities,
stimulus-based and action-based reward mapping.

Distinct lines of research have attributed related but different
functions to the VS. Experiments that developed from behavioral
learning theory paradigms show that the VS is important for
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increasing response rate in tasks in which cues have been associ-
ated with rewarding outcomes and then presented during instru-
mental behavior (Cardinal et al., 2002). For example, in PIT,
when a cue has been associated with a rewarding outcome and a
lever has been associated with the same rewarding outcome, rats
will respond more on that lever in the presence of the cue. Lesions
of the VS decrease the response enhancement (Corbit and Bal-
leine, 2005). Similarly, in conditioned reinforcement paradigms,
rats will lever press to obtain a cue that has previously been asso-
ciated with a reward and injection of amphetamines into the VS
potentiates this effect (Burns et al., 1993). In both cases, it has
been thought that the amygdala underlies the stimulus– outcome
association and that amygdala input to the VS drives enhanced
responding. These findings have led to the suggestion that the VS
functions as a limbic–motor interface (Mogenson et al., 1980;
Shiflett and Balleine, 2010).

Aspects of our data were consistent with these findings. Spe-
cifically, we have shown the VS is important for learning to select
or direct motor responses toward visual cues that were more
frequently rewarded. In this respect, our task likely engaged a
related function; specifically, the ability of visual cues to drive
motor behavior. In our task, however, the cue was driving a
choice between options, whereas in previous studies, the cue
drove an increase in response rate. An increase in response rate
could be conceptualized as a choice between action and inaction,
but in any case, the choice is not directed at the cue. Rather, the
cue drives an action that leads to the same outcome (PIT) or that
delivers the cue (conditioned reinforcement). In this sense, our
results were perhaps closest to conditioned reinforcement be-
cause choice of a cue in our task is mediated by fixation of the cue.
However, the results from neither of these tasks can account
directly for our findings.

In a complementary line of research, fMRI has been used in
human subjects to study responses in bandit choice tasks like the
task in the current study (O’Doherty et al., 2004; Pessiglione et al.,
2006). In this work, the BOLD signal in the VS consistently cor-
relates with reward prediction error (RPE) or perhaps with re-
ward during learning. RPEs are the difference between the reward
that is expected and the reward that is received. This finding,
along with the substantial dopamine innervation of the VS and
the finding that the dopamine neurons code RPEs, has led to the
assertion that the VS represents the critic in actor– critic RL mod-
els (Houk et al., 1995; Collins and Frank, 2014). The critic learns
state value representations that provide prediction errors for ac-
tion learning systems. Our data are consistent with these previous
studies in that we found the VS to be important for learning to
select the best option of two presented images. The actor– critic
RL models, however, frame the behavioral problem as learning to
select the correct action and refer to this as instrumental learning.
There is no prediction regarding stimulus-based choices. In ad-
dition, previous studies have not explicitly separated the motor
response from the stimulus chosen; rather, they have examined
only stimulus selection independently of the action required to
select the stimulus. Although, in both cases (i.e., learning to select
an image or learning to perform a specific action), an action is
required, our data suggest that learning to select actions differs
from learning to select images. Therefore, the single term instru-
mental is not appropriate in this case.

As mentioned previously, the VS lesion monkeys had faster
RTs than control monkeys. This suggests that the VS may be
important for delaying responses in some cases to obtain more
rewards. The VS has been shown to play an important role in
temporal-discounting tasks, in which choices are between imme-

diate small rewards and delayed larger rewards (Bezzina et al.,
2007; da Costa Araújo et al., 2009; Valencia-Torres et al., 2012).
Although it is unclear whether responding quickly is the same as
choosing to get rewarded faster, it is possible that these findings
are linked. In addition, it has been shown recently that VS lesions
affect RPE responses in dopamine neurons to delayed rewards,
but not to reward magnitude (Takahashi et al., 2016). Therefore,
this structure appears to play an important role in choices related
to reward timing, as well as withholding choices to increase the
probability of getting a reward.

In rats, there are anatomical differences between the NAc core
and shell (Záborszky et al., 1985). Previous research has shown
that shell lesions affect probabilistic response reversal learning,
whereas core lesions do not, and core lesions affect switching of
response strategies, whereas shell lesions do not (Floresco et al.,
2006; Dalton et al., 2014). Although it has been shown that there
are structural separations between the NAc core and shell in
monkeys, there are no studies identifying functional differences
of the same structures in monkeys (Meredith et al., 1996; Fried-
man et al., 2002) and our lesions covered both.

Although our results clearly implicate the VS in stimulus-
based RL, a remaining question is which striatal circuits are crit-
ical for action-based RL. Our previous work (Seo et al., 2012; Lee
et al., 2015) and that of others (Samejima et al., 2005; Lau and
Glimcher, 2008; Parker et al., 2016) suggests a role for the DS in
action selection. Specifically, DS neurons code the selection of
actions in action-based RL (Seo et al., 2012). Further, the DS has
an enhanced representation of action value relative to the lateral
prefrontal cortex. Interestingly, this enhanced value representa-
tion was found both in a condition in which the monkeys could
infer action value using information available within the current
trial and when action value had to be learned across trials. There-
fore, the DS action value representation was not specific to
learned values. To test the causal contribution of the DS to action
value learning, we examined the effect of injection of D2 antago-
nists into the DS and found that inverse temperature and consis-
tency in choosing the best option were affected, but not learning
rates (Lee et al., 2015). Future studies comparing the role of the
dorsal versus ventral striatum directly in stimulus-based and
action-based RL can clarify whether the DS plays a generic or
specific role in signaling state value.

We found previously that VS lesions caused learning deficits
that were affected by the reward schedule used (Costa et al., 2016).
When deterministic stimulus-based mappings were used, deficits
were statistically insignificant when the faster RTs of the VS monkeys
and their effect on the speed–accuracy tradeoff were controlled for.
However, in stochastic schedules such as those used in the current
study, the monkeys with VS lesions show deficits that cannot be
accounted for by changes in RTs. Interestingly, when we compared
the differences in the VS lesion groups’ performance in the What
blocks from the current task with their performance on the previous
task (which had only the What condition), the difference in perfor-
mance was larger in the lesioned group than in controls between
tasks (Costa et al., 2016). It seems that, when action-based RL is an
option, it interferes with stimulus-based RL more in monkeys with
VS lesions. The Bayesian analysis supports the hypothesis that the VS
lesion animals were consistently choosing a side, so their behavior
was not random in the What blocks. Therefore, some of the deficit in
the current task is attributable to the lesioned animals defaulting to
an action-based strategy, or an inability to switch between strategies
and inhibit use of an action-based strategy (Floresco et al., 2006).
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Conclusion
The current data suggest a specific role for the VS in learning to
select a more frequently rewarded image over another that is less
frequently rewarded. It is not currently evident whether these
results follow from the formation within the VS of stimulus-
based reward associations or if the information about stimuli and
reward is represented in areas that project to the VS, including the
amygdala (Averbeck and Costa, 2017), and orbital and medial
prefrontal cortical areas (Haber et al., 2006). However, it is clear
that the VS contributes to learning to select stochastically re-
warded stimuli but not actions. Therefore, it does not play a
generic, state-dependent role as a critic in RL.
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