Skip to main content
. 2017 Jun 30;35(2):101–111. doi: 10.3857/roj.2017.00325

Table 1.

Summary of reviewed DIR application

Study Transformation model Application Site
Yan et al. [12] FEM-based linear elastic Dose accumulation Prostate cancer
Christensen et al. [14] Viscous fluid flow Dose accumulation Cervix cancer
Schaly et al. [15] Thin-plate splines Dose accumulation Prostate cancer
Velec et al. [16] FEM-based linear elastic Dose accumulation Lung cancer
Sohn et al. [13] FEM-based linear elastic Mathematical modeling Prostate cancer
Nguyen et al. [17] FEM-based linear elastic Mathematical modeling Liver cancer
Budiarto et al. [18] Thin-plate splines Mathematical modeling Prostate cancer
Oh et al. [19] Parametric active contour Mathematical modeling Cervix cancer
Shekhar et al. [20] B-splines Automatic segmentation Lung cancer and abdomen cancer
Chao et al. [21] Demons algorithm Automatic segmentation Head and neck cancer
Lee et al. [22] Calculus of variance Automatic segmentation Head and neck cancer
Wang et al. [23] Commercial algorithm (Pinnacle) Automatic segmentation Head and neck, prostate, and lung cancer
Reed et al. [24] Demons algorithm Automatic segmentation Breast cancer
Guerrero et al. [25] Optical flow Functional imaging Breath hold CT of lung
Yaremko et al. [26] Optical flow Functional imaging 4D CT lung
Yamamoto et al. [27] Calculus of variance Functional imaging 4D CT lung

DIR, deformable image registration; FEM, finite element method; CT, computed tomography.