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A stochastic 𝑆𝐼𝑅 model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold
dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced.
Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.

1. Introduction

The history of mankind is filled with struggle with diseases.
Infectious diseases such as smallpox, cholera, plague of
leprosy, diphtheria, syphilis, typhus fever, malaria, rabies, and
tuberculosis have threatened the health of human beings.
People have realized the importance of quantitative studies
on the spread of infectious diseases to predict and to control
them. It can be known from referring to the literature [1–4]
that, with the aid of the establishment of infectious disease
models, people can understand the crucial laws of infectious
diseases and provide reliable and enough information to
predict and control infectious diseases. For example, as
early as 1760, Bernoulli and Blower [5] proposed the first
mathematical model in epidemiology for studying the spread
and inoculation of smallpox. Further, in 1927, Kermack
and McKendrick [6] proposed the concept of the so-called
“compartmental model,” in which all the population was
classified into three compartments: susceptible compartment𝑆, infected compartment 𝐼, and removed compartment𝑅. It is
assumed in themodel that the susceptible class can transform
into the infective class through contact with infected indi-
viduals, and the infectives can recover through treatment so
that they have permanent immunity.Therefore, it is now well
known that many scholars have paid attention to 𝑆𝐼𝑅models;
as a result, it can be seen in the literature that a large number

of mathematical models of ordinary differential equations,
delay differential equations, and partial differential equations
have been constructed to study the spread of infectious
diseases (see, e.g., [7–23]). In the last decades, we observed
that scholars published few papers in scientific journals
related to mathematics considering infectious diseases with
vertical transmission which are transmitted from parents to
their offspring (e.g., [1, 24–26]). Although scholars neglect the
effect of vertical transmission, it is very important to study the
real situation of the transmission of infectious diseases. The
current diseases affecting humanity such as AIDS [27–31],
Chagas’ disease [32–34], hepatitis B [35, 36], and hepatitis C
[37] are vertically transmitted. From this, it can be clearly seen
that mathematical modeling including vertical transmission,
horizontal transmission, and vaccination [38, 39] is more
realistic than without them. Therefore, in this study, we have
focused our attention on this and an 𝑆𝐼𝑅 epidemic model
involving vertical transmission and vaccinationwas proposed
as follows [1, 24] (see Figure 1):̇𝑆 (𝑡) = −𝛽𝑆 (𝑡) 𝐼 (𝑡) + (1 − 𝑚) 𝑏 (𝑆 (𝑡) + 𝑅 (𝑡))+ 𝑝𝑏𝐼 (𝑡) − 𝑏𝑆 (𝑡) ,̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝑞𝑏𝐼 (𝑡) − 𝑏𝐼 (𝑡) − 𝛾𝐼 (𝑡) ,�̇� (𝑡) = 𝛾𝐼 (𝑡) − 𝑏𝑅 (𝑡) + 𝑚𝑏 (𝑆 (𝑡) + 𝑅 (𝑡)) ,

(1)
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Figure 1: The compartmental diagram for the 𝑆𝐼𝑅 model with
vertical transmission and vaccination.

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the members of the
susceptible, the infectious, and the removed or the recovered
members from infection, respectively. 𝑏 is the birth and death
rate of 𝑆(𝑡) and 𝑅(𝑡), 𝑏 is the birth and death rate of 𝐼(𝑡), 𝛽
is the contact rate, and 𝑚 (0 < 𝑚 < 1) is the vaccination
proportion to the newborn from 𝑆(𝑡) and𝑅(𝑡).Then, constant𝑝 (0 < 𝑝 < 1) is the proportion of the offspring of infective
parents that are susceptible individuals and 𝑝 + 𝑞 = 1. 𝛾
is the recovery rate of the infective individuals. Obviously,
the total population size is normalized to one, and the basic
reproductive number of system (1) is 𝑅0 = 𝛽(1−𝑚)/(𝑝𝑏+𝛾).
By constructing a Lyapunov function and using the LaSalle
invariance principle, we can show that if𝑅0 < 1, the infection-
free equilibrium 𝑃0(1 − 𝑚, 0,𝑚) is globally asymptotically
stable, while if 𝑅0 > 1, the infection-free equilibrium 𝑃0
is unstable and the endemic equilibrium 𝑃∗(𝑆∗, 𝐼∗, 𝑅∗) is
globally asymptotically stable.

In fact, the spread of diseases is inevitably disturbed by the
influence of random factors; the stochastic epidemic system
is more in line with the actual situation. Therefore, epidemic
systems described by stochastic differential equations have
been paid extensive attention in recent years (see, e.g.,
[40–46]). Various stochastic perturbation approaches have
been introduced into epidemic systems and excellent results
have been obtained. In this study, our main objective is
to introduce four approaches. The first one is to analyze
epidemic systems including the environment noise by using
the method of time Markov chain (see, e.g., [47–51]). The
second one is to consider the parameters’ perturbation (see,
e.g., [52–72]). The third one is to introduce Lévy jump noise
into the system [73–75]. The fourth one is to investigate
stochastic perturbation around the positive equilibria of
deterministic systems (see, e.g., [41, 42, 76–78]).

Parameter perturbation induced by white noises is an
important and common form to describe the effect of
stochasticity. In this paper, we adopt the perturbation with
white noises, that is, 𝛽 → 𝛽 + 𝜎�̇�(𝑡), where 𝐵(𝑡) is a standard
Brownian motion with intensity 𝜎2 > 0.Then, the resultant
system transforms into the following form:𝑑𝑆 (𝑡) = (−𝛽𝑆 (𝑡) 𝐼 (𝑡) + (1 − 𝑚) 𝑏 (𝑆 (𝑡) + 𝑅 (𝑡))+ 𝑝𝑏𝐼 (𝑡) − 𝑏𝑆 (𝑡)) 𝑑𝑡 − 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,𝑑𝐼 (𝑡) = (𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝑞𝑏𝐼 (𝑡) − 𝑏𝐼 (𝑡) − 𝛾𝐼 (𝑡)) 𝑑𝑡+ 𝜎S (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,𝑑𝑅 (𝑡) = (𝛾𝐼 (𝑡) − 𝑏𝑅 (𝑡) + 𝑚𝑏 (𝑆 (𝑡) + 𝑅 (𝑡))) 𝑑𝑡.

(2)

This paper is organized as follows. In Section 3, we will
discuss the extinction of infectious diseases and explore the
conditions leading to the extinction of infectious diseases. In
Section 4, we will deduce the condition for a disease in order
to be persistent.

2. Preliminaries

Throughout this paper, we let R𝑑 : be the 𝑑-dimensional
Euclidean space. R𝑑+ fl {𝑥 ∈ R𝑑 : 𝑥𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑑}, that is,
the positive cone.

Let {𝐵𝑡}𝑡≥0 be a one-dimensional Brownian motion
defined on the complete probability space (Ω,F,P) adapted
to the filtration {F}𝑡≥0. Let L1(R+;R𝑑) denote the family
of all R𝑑-valued measurable {F𝑡}-adapted processes 𝑓 ={𝑓(𝑡)}𝑡≥0 such that

∫𝑇
0

𝑓 (𝑡) 𝑑𝑡 < ∞ a.s. for every 𝑇 > 0. (3)

Let 𝐶2,1(R𝑑 × R+;R) denote the family of all real-valued
functions 𝑉(𝑥, 𝑡) defined on R𝑑 × R+ such that they are
continuously twice differentiable in 𝑥 and once in 𝑡. We set

𝑉𝑡 = 𝜕𝑉𝜕𝑡 ,
𝑉𝑥 = ( 𝜕𝑉𝜕𝑥1 , 𝜕𝑉𝜕𝑥2 , . . . , 𝜕𝑉𝜕𝑥𝑑) ,

𝑉𝑥𝑥 = ( 𝜕2𝑉𝜕𝑥𝑖𝜕𝑥𝑗)𝑑×𝑑 =((

𝜕2𝑉𝜕𝑥1𝜕𝑥1 ⋅ ⋅ ⋅ 𝜕2𝑉𝜕𝑥1𝜕𝑥𝑑... ...𝜕2𝑉𝜕𝑥𝑑𝜕𝑥1 ⋅ ⋅ ⋅ 𝜕2𝑉𝜕𝑥𝑑𝜕𝑥𝑑
)
)

.
(4)

Clearly, when 𝑉 ∈ 𝐶2,1(𝑅 × 𝑅+; 𝑅), we have 𝑉𝑥 = 𝜕𝑉/𝜕𝑥,𝑉𝑥𝑥 = 𝜕2𝑉/𝜕𝑥2. Then, we have the following.

Lemma 1 (one-dimensional Itô’s formula [40, 79, 80]). Let𝑥(𝑡) be an Itô process on 𝑡 ≥ 0 with the stochastic differential𝑑𝑥 (𝑡) = 𝑓 (𝑡) 𝑑𝑡 + 𝑔 (𝑡) 𝑑𝐵𝑡, (5)

where 𝑓 ∈ L1(R+;R) and 𝑔 ∈ L2(R+;R). Let 𝑉 ∈𝐶2,1(R𝑑 ×R+;R). Then, 𝑉(𝑥(𝑡), 𝑡) is again an Itô process with
the stochastic differential given by

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = [𝑉𝑡 (𝑥 (𝑡) , 𝑡) + 𝑉𝑥 (𝑥 (𝑡) , 𝑡) 𝑓 (𝑡)
+ 12𝑉𝑥𝑥 (𝑥 (𝑡) , 𝑡) 𝑔2 (𝑡)] 𝑑𝑡 + 𝑉𝑥 (𝑥 (𝑡) , 𝑡)⋅ 𝑔 (𝑡) 𝑑𝐵𝑡,

(6)

almost surely.

By using the methods from Lahrouz and Omari [81], we
can prove the following lemma.
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Lemma 2. For any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+, there
exists a unique solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) to system (2) on 𝑡 ≥ 0,
and the solutionwill remain in𝑅3+ with probability one, namely.

Lemma 3. On the basis of Lemma 2, if 𝑆(0) + 𝐼(0) + 𝑅(0) ≤ 1,
then 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤ 1, almost surely. Thus, the regionΓ = {(𝑆, 𝐼, 𝑅) ∈ 𝑅3+ : 𝑆 > 0, 𝐼 ≥ 0, 𝑅 > 0, 𝑆 + 𝐼 + 𝑅 ≤ 1} is a
positively invariant set of system (2).

3. Extinction

In this section, we deduce the condition which will cause a
disease to die out.

Definition 4. For system (2), the infected individual 𝐼(𝑡) is
said to be extinctive if lim𝑡→+∞𝐼(𝑡) = 0, almost surely.

Let us introduce

𝑅∗ = 𝑅01 − 𝑚 − 𝜎22 (𝑝𝑏 + 𝛾) (7)

for convenience; then, we have the following results that we
have mentioned in the following theorem.

Theorem5. If𝜎2 > max{𝛽, 𝛽2/2(𝑝𝑏+𝛾)} or𝜎2 < 𝛽 and𝑅∗ <1, then the infected individual of system (2) goes to extinction
almost surely.

Proof. Let (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) be a solution of system (2) with
initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+. Applying Itô’s formula to
the second equation of system (2) leads to

d ln 𝐼 (𝑡) = (𝛽𝑆 (𝑡) − (𝑝𝑏 + 𝛾) − 𝜎22 𝑆2 (𝑡)) d𝑡
+ 𝜎𝑆 (𝑡) d𝐵 (𝑡) . (8)

Integrating both sides of (8) from 0 to 𝑡 gives
ln 𝐼 (𝑡) = ∫𝑡

0
(𝛽𝑆 (𝜏) − 𝜎22 𝑆2 (𝜏)) d𝜏 − (𝑝𝑏 + 𝛾) 𝑡

+𝑀 (𝑡) + ln 𝐼 (0) , (9)

where𝑀(𝑡) = ∫𝑡
0
𝜎𝑆(𝜏)d𝐵(𝜏) and𝑀(𝑡) is the local continuous

martingale with 𝑀(0) = 0. Next, we have two cases to be
discussed, depending on whether 𝜎2 > 𝛽.

If 𝜎2 > 𝛽, we can easily see from (9) that

ln 𝐼 (𝑡) ≤ ( 𝛽22𝜎2 − (𝑝𝑏 + 𝛾)) 𝑡 +𝑀 (𝑡) + ln 𝐼 (0) . (10)

Dividing both sides of (10) by 𝑡 > 0, we have
ln 𝐼 (𝑡)𝑡 ≤ −(𝑝𝑏 + 𝛾 − 𝛽22𝜎2) + 𝑀(𝑡)𝑡 + ln 𝐼 (0)𝑡 . (11)

Since lim sup𝑡→∞(⟨𝑀(𝑡),𝑀(𝑡)⟩𝑡/𝑡) < 𝜎2 < ∞ almost surely,
by the large number theorem for martingales (see, e.g., [53]),
one can obtain that

lim
𝑡→+∞

𝑀(𝑡)𝑡 = 0. (12)

Then, taking the limit superior on both sides of (11) leads to

lim sup
𝑡→+∞

ln 𝐼 (𝑡)𝑡 ≤ −(𝑝𝑏 + 𝛾 − 𝛽22𝜎2) < 0, (13)

when 𝜎2 > 𝛽2/2(𝑝𝑏 + 𝛾), which implies lim𝑡→+∞𝐼(𝑡) = 0.
If 𝜎2 < 𝛽, similarly, one can have that

ln 𝐼 (𝑡) ≤ (𝛽 − (𝑝𝑏 + 𝛾) − 𝜎22 ) 𝑡 +𝑀 (𝑡) + ln 𝐼 (0) . (14)

Dividing both sides of (14) by 𝑡 > 0, we have
ln 𝐼 (𝑡)𝑡 ≤ (𝑝𝑏 + 𝛾) [ 𝛽𝑝𝑏 + 𝛾 − 𝜎22 (𝑝𝑏 + 𝛾) − 1]

+ 𝑀 (𝑡)𝑡 + ln 𝐼 (0)𝑡 . (15)

By taking the superior limit on both sides of (15), one can have
that

lim sup
𝑡→+∞

ln 𝐼 (𝑡)𝑡 ≤ (𝑝𝑏 + 𝛾) (𝑅∗ − 1) . (16)

Then, when 𝑅∗ < 1, we obtain
lim sup
𝑡→+∞

ln 𝐼 (𝑡)𝑡 < 0, (17)

which implies lim𝑡→+∞𝐼(𝑡) = 0.This completes the proof of
Theorem 5.

Remark 6. Theorem 5 shows that when 𝜎2 > max{𝛽, 𝛽2/2(𝑝𝑏 + 𝛾)}, the infectious disease of system (2) goes to
extinction almost surely; namely, large white noise stochastic
disturbance is conducive to control infectious diseases.When
the white noise is not large and 𝑅∗ < 1, the infectious disease
of system (2) also goes to extinction almost surely; then, 𝑅∗
is the threshold associated with the extinction of infectious
diseases.

4. Persistence in Mean

Definition 7. For system (2), the infected individual 𝐼(𝑡) is
said to be permanent in mean if lim inf 𝑡→+∞⟨𝐼(𝑡)⟩ > 0,
almost surely, where ⟨𝐼(𝑡)⟩ is defined as (1/𝑡) ∫𝑡

0
𝐼(𝜏)d𝜏.

Let us denote

R
∗∗ = 𝑅0 − 𝜎22 (𝑝𝑏 + 𝛾) (18)

for convenience; then, we have the following results that we
have mentioned in the following theorem.
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Figure 2: Illustration for the deterministic 𝑆𝐼𝑅 system where 𝛽 = 0.8, 𝑝 = 0.6, 𝑏 = 0.2, 𝑏 = 0.4, and 𝛾 = 0.2.
Theorem 8. If R∗∗ > 1, then the infected individual 𝐼(𝑡) is
persistent in mean; moreover, 𝐼(𝑡) satisfies

lim inf
𝑡→+∞

⟨𝐼 (𝑡)⟩ ≥ (𝑝𝑏 + 𝛾)𝛽 (1 − 𝑚 + 𝛾/𝑏) (𝑅∗∗ − 1) , (19)

almost surely.

Proof. Integrating from 0 to 𝑡 and dividing by 𝑡 (𝑡 > 0) on
both sides of the third equation of system (2) yield

𝑅 (𝑡) − 𝑅 (0)𝑡 = 𝛾 ⟨𝐼 (𝑡)⟩ + 𝑚𝑏 ⟨𝑆 (𝑡)⟩
− (1 − 𝑚) 𝑏 ⟨𝑅 (𝑡)⟩ ≜ Θ (𝑡) . (20)

Note that ⟨𝑆(𝑡)⟩ + ⟨𝐼(𝑡)⟩ + ⟨𝑅(𝑡)⟩ = 1; then, one can get

⟨𝑆 (𝑡)⟩ = (1 − 𝑚) + Θ (𝑡)𝑏 − (1 − 𝑚 + 𝛾𝑏) ⟨𝐼 (𝑡)⟩ . (21)

Applying Itô’s formula gives

d (ln 𝐼 (𝑡)) = [𝛽𝑆 (𝑡) − (𝑝𝑏 + 𝛾) − 𝜎22 𝑆2 (𝑡)] d𝑡+ 𝜎𝑆 (𝑡) d𝐵 (𝑡)
≥ [𝛽𝑆 (𝑡) − (𝑝𝑏 + 𝛾) − 𝜎22 ] d𝑡+ 𝜎𝑆 (𝑡) d𝐵 (𝑡) .

(22)

Integrating from 0 to 𝑡 and dividing by 𝑡 (𝑡 > 0) on both sides
of (22) yield

ln 𝐼 (𝑡) − ln 𝐼 (0)𝑡
≥ 𝛽 ⟨𝑆 (𝑡)⟩ − [(𝑝𝑏 + 𝛾) + 𝜎22 ] + 𝑀(𝑡)𝑡
= 𝛽 (1 − 𝑚 + Θ (𝑡)𝑏 − (1 − 𝑚 + 𝛾𝑏) ⟨𝐼 (𝑡)⟩)
− (𝑝𝑏 + 𝛾 + 𝜎22 ) + 𝑀(𝑡)𝑡 .

(23)

From (23), we obtain

⟨𝐼 (𝑡)⟩ ≥ 1𝛽 (1 − 𝑚 + 𝛾/𝑏) [𝛽 (1 − 𝑚) − (𝑝𝑏 + 𝛾)
− 𝜎22 ] + 1𝛽 (1 − 𝑚 + 𝛾/𝑏) [𝛽Θ (𝑡)𝑏
− ln 𝐼 (𝑡) − ln 𝐼 (0)𝑡 + 𝑀 (𝑡)𝑡 ] .

(24)

Since both 𝐼(𝑡) ≤ 1 and𝑅(𝑡) ≤ 1, then one has lim𝑡→+∞(𝑅(𝑡)/𝑡) = 0, lim𝑡→+∞(ln 𝐼(𝑡)/𝑡) = 0, and lim𝑡→+∞Θ(𝑡) = 0. Note
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Figure 3: Comparison of the deterministic system and stochastic system, where𝑚 = 0.2, 𝛽 = 0.8, 𝑝 = 0.6, 𝑏 = 0.2, 𝑏 = 0.4, 𝛾 = 0.2, 𝜎 = 0.9,
and 𝑅0 = 1.4545 > 1.
that lim𝑡→+∞(𝑀(𝑡)/𝑡) = 0; by taking the inferior limit of both
sides of (24), we have

lim inf
𝑡→+∞

⟨𝐼 (𝑡)⟩
≥ 1𝛽 (1 − 𝑚 + 𝛾/𝑏) [𝛽 (1 − 𝑚) − 𝑝𝑏 − 𝛾 − 𝜎22 ]
= (𝑝𝑏 + 𝛾)𝛽 (1 − 𝑚 + 𝛾/𝑏) (𝑅∗∗ − 1) .

(25)

This completes the proof of Theorem 8.

Remark 9. Theorems 5 and 8 show that the condition for
the disease to die out or persist depends on the intensity
of white noise disturbances strongly. And small white noise
disturbanceswill be beneficial for long-termprevalence of the
disease; conversely, large white noise disturbances may cause
the epidemic disease to die out.

5. Conclusion and Numerical Simulation

In this paper, a stochastic 𝑆𝐼𝑅 system with vertical transmis-
sion and vaccination is proposed. The threshold dynamics
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Figure 4: Comparison of the deterministic system and stochastic system, where𝑚 = 0.2, 𝛽 = 0.8, 𝑝 = 0.6, 𝑏 = 0.2, 𝑏 = 0.4, 𝛾 = 0.2, 𝜎 = 0.85,𝑅∗ = 0.9972, and 𝑅0 = 1.4545 > 1.
depending on the stochastic perturbation are deduced by
using the theory of stochastic differential equation and
inequality technique. Our results show that the dynamics of
the stochastic system are different with the deterministic case
due to the effect of stochastic perturbation, and the persistent
diseases in the deterministic systemmay be eliminated under
the stochastic perturbation.

In the following, by employing the EulerMaruyama (EM)
method [40], we perform some numerical simulations to
illustrate the extinction and persistence of the diseases in the

stochastic systemand corresponding deterministic system for
comparison.

For numerical simulations, we set parameters as𝑚 = 0.7,𝛽 = 0.8, 𝑝 = 0.6, 𝑏 = 0.2, 𝑏 = 0.4, and 𝛾 = 0.2 in system
(1). A simple computation shows that 𝑅0 = 0.5455 < 1,
and then system (1) has a stable infection-free equilibrium𝑃0(0.3, 0, 0.7), which implies that the disease of system (1) will
be eliminated ultimately (see Figure 2(a)). If we change 𝑚 =0.7 to𝑚 = 0.2, in this case, 𝑅0 = 1.4545 > 1, and then system
(1) has a stable infection equilibrium𝑃∗(0.55, 0.3111, 0.1389),
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Figure 5: Comparison of the deterministic system and stochastic system, where𝑚 = 0.2, 𝛽 = 0.8, 𝑝 = 0.6, 𝑏 = 0.2, 𝑏 = 0.4, 𝛾 = 0.2, 𝜎 = 0.2,𝑅∗∗ = 1.4091, and 𝑅0 = 1.4545 > 1.
which implies that the disease of system (1) will be persistent
ultimately (see Figure 2(b)).

Next, we consider the effect of stochastic white noise
based on the persistent system. Let 𝜎 = 0.9, and obviously,𝜎2 > max{𝛽, 𝛽2/2(𝑝𝑏 + 𝛾)}; by Theorem 5, the disease dies
out under a large white noise disturbance (see Figure 3). If
we change 𝜎 to 0.85, in this case, 𝜎2 < 𝛽2/2(𝑝𝑏 + 𝛾) and𝑅∗ = 0.9972 =< 1; then, by Theorem 5, the disease dies out
(see Figure 4). If we reduce the intensity of noise 𝜎 to 0.2,
obviously, 𝑅∗∗ = 1.4091 > 1; by Theorem 8, the disease is
persistent (see Figure 5).
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