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Abstract

The forced swim test (FST) measures coping strategy to an acute inescapable stress and thus 

provides unique insight into the neural limb of the stress response. Stress, particularly chronic 

stress, is a contributing factor to depression in humans and depression is associated with altered 

response to stress. In addition, drugs that are effective antidepressants in humans typically promote 

active coping strategy in the FST. As a consequence, passive coping in the FST has become 

loosely equated with depression and is often referred to as “depression-like” behavior. This 

terminology oversimplifies complex biology and misrepresents both the utility and limitations of 

the FST. The FST provides little construct- or face-validity to support an interpretation as 

“depression-like” behavior. While stress coping and the FST are arguably relevant to depression, 

there are likely many factors that can influence stress coping strategy. Importantly, there are other 

neuropsychiatric disorders characterized by altered responses to stress and difficulty in adapting to 

change. One of these is autism spectrum disorder (ASD), and several mouse genetic models of 

ASD exhibit altered stress-coping strategies in the FST. Here we review evidence that argues a 

more thoughtful consideration of the FST, and more precise terminology, would benefit the study 

of stress and disorders characterized by altered response to stress, which include but are not 

limited to depression.
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INTRODUCTION

The forced swim test (FST) was originally introduced in 1977 by Porsolt and has been 

implemented and analyzed in several different ways.1,2 In any form, the test is based on the 

observation that when rodents are faced with an inescapable aversive situation they can elect 

different strategies of coping that can be scored as either active or passive. Active strategies 

(climbing and swimming) predominate in the initial exposure to the swim but these are 

typically replaced over time with the appearance of a passive strategy (floating). The key 

observation that brought the test into widespread use was the discovery that effective 

antidepressants in humans had the ability to increase the amount of active strategies adopted 

by the animal in the FST. Thus, the major advantage of the FST has been its predictive 

validity: a drugs’ effectiveness in promoting active coping in the FST had potential to predict 

its efficacy as an antidepressant. This was a particularly important observation because it 

yielded a simple screen in animal models to identify similarly acting drugs.3,4

The utility of the FST was extended by observations that conditions that are thought to 

contribute to depression in humans tend to shift rodent FST performance toward a passive 

coping strategy. For example, stress in humans is a key risk factor for depression.5–8 

Likewise, in rodents, stressful conditions during development, or adult chronic mild stress or 

repeated injections of the glucocorticoid corticosterone promote passive coping.9–14 Thus, 

there is a possibility that the FST can have predictive validity to detect pro-depressant 

manipulations.

The observation that behavior in the FST is influenced not only by antidepressants but also 

potentially “prodepressant” manipulations suggests that the neural networks that control 

coping strategies in response to acute stress likely overlap heavily with those impacted in 

depression. For example, these networks probably include the hypothalamic–pituitary–

adrenocortical (HPA) axis. Responses to acute stress are governed in large part by the HPA 

axis and dysregulation of the HPA axis often occurs in depressed patients.6,15 Reduced 

hippocampal volume is one of the hallmarks of depression and the hippocampus is a key 

feedback regulator of the HPA axis.16–20 Brain networks involved in the neural limb of the 
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stress response such as the extended amygdala and septal complex, as well as hindbrain 

serotonin- and norepinephrine-containing nuclei may also contribute to both depression and 

stress-coping strategy.21–23 There is likewise evidence for overlap in cortical processing. For 

example, while deep brain stimulation (DBS) of Brodmann Area 25 alleviated depressive 

symptoms in patients,24 high-frequency DBS of the rat ventromedial prefrontal cortex, the 

rodent correlate of Area 25, promotes active coping in the FST.25–28 Thus, employed in 

conjunction with a larger behavioral profile and interpreted carefully, the FST is an 

important tool that can provide unique insight into the neurobiology of stress coping, which 

is relevant, but not equivalent, to major depressive disorder.

However, as a result of these interesting characteristics, performance in the FST is now 

routinely labeled as “antidepressant-like” or “depression-like” (Figure 1). That is to say, 

behavior in the FST is often egregiously overinterpreted. While it is likely that behavior in 

the FST is relevant to the biology of depression, there are many factors that can influence 

performance in the FST that have nothing do to with depression. Specifically, the term 

“depression-like” to refer to FST behavior is pointedly incorrect for three key reasons.

1. The FST actually measures coping strategy to an acute inescapable stress, not 

something like a pathological internal state of mind. Coping strategy is measured 
in the FST; “depression-like” is an inference that may or may not be correct 

(Figure 2).

2. “Depression-like” is jargon, used to acknowledge the limitations of the model 

system. However, “depression-like” is easily misunderstood by those less 

familiar with animal research including students, researchers in other fields, 

clinicians, patient advocates, and funding agencies.

3. The neurobiology underlying stress-coping strategy revealed in the FST is likely 

relevant to additional clinical conditions where there is poor behavioral response 

to acute stress. In this review, we highlight autism spectrum disorder as well as 

substance use disorder as contexts where the FST may be useful (Figure 1).

The FST has been closely and exclusively associated with depression research despite poor 

construct validity. Specifically, the shift from active to passive coping strategy that occurs 

over time when rodents are exposed to an inescapable swim appears to be normal, meaning 

typical of most rodents. Since the 1990s, it has been argued that the transition to floating 

behavior is an adaptive coping strategy to conserve energy, rather than a coping failure.29,30 

The term “depression” typically connotes clinically relevant depression or major depressive 

disorder, which is an impairment of the normal state. Major depressive disorder is a chronic 

disorder that often develops and persists over time, and in part, is defined by its extended 

duration. Sometimes pathological depression is initiated within the context of normal 

feelings of depression, or intense sadness, precipitated by a major stress such as the loss of a 

loved one. Normal depression could be argued to be an adaptive emotion that promotes 

rumination on loss serving to understand the cause and to motivate strategies to mitigate 

future loss. Similar to normal pain or normal anxiety, the experience of normal depression is 

unpleasant but is only considered to be pathological when it persists with sufficient intensity 

to result in the pervasive disruption of daily behavior. Moreover, while normal (transient) 

depression is widely experienced, this state only becomes pathological in a subset of 
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individuals. The FST falls short of a test for depression because these features of the 

pathological state of major depressive disorder are poorly represented.

The FST also lacks face validity for depression, in that there is little similarity between the 

clinical symptoms of depression in humans and the behaviors measured in the test. While it 

could be argued that passive coping strategies to stress are characteristic of depression, the 

connection between swimming and the human condition begs an abstraction at best. 

Behavior in the FST is a reaction to the acute stressful stimulus of being placed in a 

container without an escape route, and human depression reflects a chronic subjective 

emotional state rather than a reaction to an individual stimulus. Most importantly, depression 

is a pathological subjective internal emotional state and, to date, the subjective internal 

emotional state of nonverbal species is not knowable. Do rodents in the FST experience 

despair, sadness, frustration, or emotional exhaustion and are these equivalent to being 

depressed or depressed-like? A fundamental premise underlying neurobehavioral research 

involving animals is that nonhuman species likely experience emotion that is parallel to 

humans in many ways. However, the problem is in ascertaining exactly what those emotions 

are without a means of communication. In fact, the diagnosis of major depressive disorder in 

humans is exceedingly difficult in the absence of subjective report. Therefore, it is 

impossible to conclude with certainty that the FST is a measure or a test of depression, or a 

“depression-like” state.

The limitations of the FST as a test for depression or “depression-like” behavior have been 

emphasized previously.30–32 However, an important additional consideration is that 

treatment of the FST as a test of depression-like behavior negates the importance of this test 

in assessing stress coping behavior as it relates to a much broader range of neurobehavioral 

disorders than just depression. For example, autism spectrum disorders (ASD) are frequently 

associated with altered behavioral responses to acute stress and difficulty adapting to 

change. Similar to depression, there is also evidence for alterations of the HPA axis in 

ASD.33,34 Moreover, accumulating evidence supports the contention that stress plays an 

important role in the severity of repetitive behavior, a core feature of ASD.35 Likewise, 

stress is a factor that influences social interaction: another core behavioral feature disrupted 

in ASD. Taken together, an altered behavioral response to an acute stress has the potential to 

represent an endophenotype for ASD that could provide unique insight into the 

neurobiological underpinnings of this disorder.

There are now several genetic mouse models for ASD, some of these are based upon gene 

associations, copy number variants, or missense mutations found in human ASD. Others 

have less construct validity but provide face validity in their overall behavioral repertoire. 

Consistent with associations between ASD and altered behavioral responses to acute stress, 

many of these models exhibit altered behavior in the FST. Several ASD mouse models 

display enhanced active coping behavior in the FST and/or fail to show the normal 

adaptation from active to passive coping during the time-course of the test. These include 

Fragile-X Mental Retardation 1 (FMR1) knockout, Timothy Syndrome Type 2 (TS2-neo) 

mice, BTBR T+tf/J, and mice modeling 16p11.2 chromosomal microdeletion.36–41 Of these, 

only the FMR1 knockout mice display generalized hyperactivity outside of the FST that 

could account for increases in active coping behavior.
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Nonetheless not all genetic mouse models for ASD show uniform behavioral changes in the 

FST. For example increased passive coping in the FST has been observed with the Engrailed 

2 (En2) null mice, male but not female growth-associated-protein-43 (GAP43) heterozygous 

knockout mice, Grik4 overexpressing mice and Npas4 deficient mice.42–46 Of these only 

Grik4 overexpressing mice are hypolocomotive outside of the FST. Perhaps it is not 

surprising that these various mouse models of ASD show different behavior in the FST 

considering their variable relationship to the human disorder, diversity in genetics and 

overall behavioral profile. In fact, human ASD is characterized by a marked heterogeneity of 

behavioral features. However, the propensity of mice models related to ASD to exhibit 

altered stress coping behavior in the FST is striking, and suggests that the FST may provide 

a unique perspective to help to illuminate more generally the biological underpinnings of 

ASD. Moreover, they raise the possibility that the FST could be used to clarify how these 

differences in stress coping strategies influence or exacerbate the expression of the core 

behavioral features perturbed in mouse models of ASD that include social interaction, 

communication, and repetitive behavior.

It is imperative to point out that there is little rationale to interpret these alterations in stress 

coping strategies in genetic mouse models related to ASD with respect to depression, that is, 

as “depression-like” or “antidepressant-like”. In humans, there is little evidence to support 

the idea that depression is either over- or under-represented in ASD.47 Although 

antidepressants may be highly prescribed in ASD, their efficacy is unsupported. In fact, 

individuals with ASD may be more likely to experience adverse effects from antidepressant 

treatments.48,49 Randomized control trials do not show any compelling efficacy for tricyclic 

antidepressants in the treatment of ASD.50 Likewise, “there is no evidence of effect of 

SSRIs in children with ASD and emerging evidence of harm”.51

While observations of altered stress coping in mouse models with ASD related genetic 

mutations have only been noted more recently, they add to a growing literature indicating 

that the FST is relevant to other disorders such as substance use disorder, which is also stress 

related. Stress clearly contributes to substance use disorder emphasizing the importance of 

understanding how these factors converge and/or overlap in the brain. In rodents, previous or 

current exposure to drugs of abuse changes coping strategies in the FST.52–58 In addition, 

acute swim stress is sufficient to promote relapse to drug seeking.59 Interpretation of 

behavior in the FST in the context of depression in addiction models is not trivial. While 

there are similarities between depression and the dysphoria associated with withdrawal, they 

are not equivalent and most antidepressants have little effect on relapse behavior.60

Moreover, there are additional known factors that can generate “false-negative” or “false-

positive” effects in the FST when interpreted with respect to depression or antidepressants. 

Stimulants and sedatives have long been known to change behavior in the FST, and general 

changes in locomotor activity should always be evaluated in the absence of stress to interpret 

behavior in the FST more accurately.61 Likewise factors that influence how stressful the 

swim may be perceived, i.e., age, metabolism, weight, and the ability to stay afloat, impact 

behavior in the FST.62–64 These factors tend to receive little consideration when interpreting 

behavior in the FST with respect to depression.
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Nevertheless, the FST is a unique and valuable tool in the field of behavioral neuroscience. It 

constitutes a well-characterized assay providing insight into the neural limb of the stress 

response in the context of an acute, ethologically relevant stress. The value of the FST for 

the study of depression as well as other disorders would be considerably enhanced, not by 

technical tweaking, but by understanding its limitations. Interpretation related to subjective 

emotional state needs to be thoughtfully considered holistically, that is hand-in-hand with 

data from a suit of related behavioral tests as well as within the overall experimental context 

(Figure 2). For example, it would not seem meaningful to interpret a mouse model of ASD 

with a tendency for repetitive behavior as “antidepressed” if they exhibited persistent active 

coping in the FST. Likewise it is a tenuous proposition to diagnose a knockout mouse 

exhibiting passive coping in the FST as “depressed-like” in the absence of strong converging 

lines of evidence. Thoughtfully employed and interpreted though, the FST shows itself to be 

a powerful tool. As a good example, a recent study made an intriguing argument that 

manipulating housing conditions can impact affective state by using the FST in combination 

with observations on feeding behavior, HPA axis function, and antidepressant treatment.65

Similar to the FST, the tail suspension test (TST) measures the time spent employing active 

or passive behavioral coping, and this is sensitive to antidepressants.66 The TST was 

developed as an alternative method that is easily scored while avoiding the hypothermic 

effects of water immersion. While we focus our discussion on the FST, many of the same 

observations extend to the TST, which similarly measures coping strategy while depression-

like behavior is inferred. In fact, many of the same arguments cautioning against 

prepackaged interpretation could be applied to several behavioral paradigms that purport to 

measure a subjective emotional state. Foremost among these would be tests for “anxiety-

like” state, which often measure exploration.

Construct validity is how well a test measures what it reports to measure. In this review we 

have argued that the FST does not have strong construct validity for as a test for depression. 

Make no mistake: the FST has no better construct validity as a test for ASD or substance use 

disorder. Rather the FST measures coping strategy to an acute stress and therefore has 

excellent construct validity for coping strategy to an acute stress (Figure 1). Evidence 

suggests that coping strategy to acute stress is relevant for understanding depression and the 

mechanism of action of antidepressants. Moreover, we review evidence that coping strategy 

to acute stress may also be relevant to other disorders such as ASD and substance use 

disorder; providing a basis to support face validity for using the FST in additional biological 

contexts. Predictive validity of the FST, arguably the most important experimental 

characteristic of a test, is considered very good for antidepressants of known 

pharmacological classes. However, for novel classes of antidepressants or for treatments 

relevant to ASD or substance use disorder, the predictive validity of the FST remains to be 

determined.

CONCLUSION

The emotional mind-state and physical actions are inextricably linked. The problem is that 

that linkage may not be simple, direct or constant. Many rodent behavioral assays depend on 

measuring patterns of locomotion: actions. What these assays reveal in terms of emotions 
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and mind-state needs demands careful consideration. The ease with which behavior in the 

FST (or TST) is equated to depression called “depression-like behavior” in the current 

literature is disquieting because it assumes a connection between animal behavior and 

human psychopathology that discourages critical thought. The FST is not a model nor a 

stand-alone test for any neuropathological condition. Rather is an interesting and unique test 

that gives insight into the neural networks that coordinate the behavioral response to an 

acute inescapable challenge, which may be impaired in depression, ASD, and other 

disorders.
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Figure 1. 
(A) Current scheme: the forced swim test (FST) is interpreted in the context of depression/

antidepressant action. However, the FST has poor construct and face validity as either a 

model or a test for depression, and not all of the factors that change coping strategy in the 

FST are relevant to depression. (B) Proposed scheme: The FST gives unique insight by 

measuring coping strategy to an acute, inescapable, ethologically relevant stress; but is not a 

model or a stand-alone test of any psychopathology. Rather, stress-coping strategy in the 

FST can be modified by factors relevant to depression and antidepressant efficacy, arousal 

state, metabolic state, as well as additional neuropsychiatric conditions including autism 

spectrum disorder (ASD) and substance use disorder. For stress coping, the FST has 

excellent construct validity. The observation that depression, ASD, and substance use 

disorder are all associated with altered response to stress lends face validity for use of the 

FST in each of these contexts.

Commons et al. Page 11

ACS Chem Neurosci. Author manuscript; available in PMC 2018 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
“Facts are contained in the [data]. The fabric of speculation against which they are projected 

is thin indeed and has to be rewoven many times before it will stand much wear”.67 The 

mind-state of a rodent relevant to depression is the subject of speculation. Data from the 

forced swim test is an important thread of evidence that has to be carefully considered with 

respect to the entire behavioral and experimental context to support a compelling 

interpretation.
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