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Abstract

Purpose of review—The erythroid progenitors BFU-E (burst-forming unit-erythroid) and CFU-

E (colony-forming unit-erythroid) have a critical role in erythropoiesis. They represent a 

heterogeneous and poorly characterized population of cells with modifiable self-renewal, 

proliferation and differentiation capabilities. This review focuses on the current state of erythroid 

progenitor biology with regard to immunophenotypic identification and regulatory programs; in 

addition, we will discuss the therapeutic implications of using these erythroid progenitors as 

pharmacologic targets.

Recent findings—Erythroid progenitors are classically defined by the appearance of 

morphologically defined colonies in semisolid cultures. However, these prior systems preclude a 

more thorough understanding of the composite nature of progenitor populations. Recent studies 

employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and 

suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. 

Moreover, the identification of cell surface marker patterns in human BFU-E and CFU-E enhance 

our ability to perform downstream functional and molecular analyses at the population and single 

cell level. Advances in these techniques have already revealed novel subpopulations with increased 

self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into 

pharmacologic mechanisms of glucocorticoids and pomalidomide.
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Summary—Immunophenotypic and molecular characterization resolves the diversity of 

erythroid progenitors and may ultimately lead to the ability to target these progenitors to 

ameliorate diseases of dyserythropoiesis.
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Introduction

Although identified in the 1970s, few studies have focused exclusively on detailed cellular 

and molecular characterization of the erythroid progenitors, BFU-Es and CFU-Es, which are 

central to the generation of red blood cells during erythropoiesis. The development of new 

methodologies has enabled the isolation and molecular characterization of erythroid 

progenitors. This review focuses on recent advances made in erythropoiesis, including 

immunophenotyping, regulation of self-renewal and differentiation, and the pharmacological 

targeting of erythroid progenitors for the treatment of anemia.

Hematopoiesis revisited: implications for erythroid differentiation

The conventional hematopoietic hierarchy depicts multipotent long-term and short-term 

hematopoietic repopulating stem cells at the apex, which give rise to progressively more 

differentiated hematopoietic progenitors and terminal blood cell lineages. The first branch 

point after the multipotent progenitor (MPP) divides lymphoid and myelo-erythroid lineages 

at the common lymphoid progenitor (CLP) and common myeloid progenitor (CMP) (1). 

Two additional hematopoietic progenitors emerge from CMPs including the oligopotent 

granulocyte macrophage progenitor (GMP) and bipotent megakaryocyte-erythroid 

progenitor (MEP) (2). Further commitment of MEPs toward the erythroid lineage is marked 

by the formation of BFU-E, the first erythroid restricted progenitor (3). BFU-Es ultimately 

differentiate into the erythropoietin(EPO)-sensitive CFU-E, which then progress through a 

series of erythroblast stages, reticulocyte maturation and ultimately terminal red cell 

formation (4). Thus, in this classical model of hematopoiesis, erythropoiesis relies on the 

stepwise differentiation of increasingly erythroid restricted hematopoietic progenitors 

(Figure 1A).

Studies over the last decades in mice and more recently humans, have revised this model of 

hematopoiesis through the identification of alternative differentiation pathways and 

subpopulations within these previously defined progenitor stages. Hematopoietic progenitors 

may branch earlier than previously thought, as megakaryo-erythroid and myelo-lymphoid 

potential have been shown to diverge at a lymphoid-primed multipotent progenitor (LMPP); 

this route bypasses MPP and CMP (5, 6). Alternatively, myelo-erythroid output may 

predominantly rely on myeloid-restricted progenitors with long-term repopulating activity. 

These cells undertake a “myeloid bypass” whereby oligo- and bi-potent progenitors with 

self-renewing capacity at the single cell level give rise to erythroid, megakaryocyte and 

granulocyte-macrophage lineages (7). There is also growing evidence that the bipotent MEP 

contains multiple populations with varying lineage biases (8*, 9*).
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Furthermore, hematopoiesis appears to be developmental stage specific. Through the use of 

novel single cell lineage potential assays and single cell transcriptome analyses, Notta et al. 
recently demonstrated that the fetal hematopoietic tree consists of multi-, oligo- and uni-

potent progenitors, whereas adult hematopoiesis relies mostly on unipotent progenitors 

(Figure 1B–C). In addition, a higher amount of erythroid-megakaryocyte progenitors were 

shown to branch directly from the multipotent and oligopotent fractions during fetal 

hematopoiesis suggesting that the regulation of erythroid biased programs differ in fetal and 

adult hematopoietic progenitors (10**). It remains to be determined whether the fetal and 

adult erythroid progenitors derived from varying levels of the hematopoietic tree also differ 

at transcriptional and functional levels (i.e. higher self-renewal, differential globin gene 

expression). Future investigations should focus on these progenitors to identify whether all 

erythroid progenitors possess “memory” from their hematopoietic predecessors and whether 

this carries physiologic significance.

Isolation and characterization of megakaryocyte-erythroid and erythroid 

progenitors

Initial studies first identified the erythroid restricted progenitors, BFU-E and CFU-E, as well 

as early BFU-E with megakaryocyte potential by the morphology of hematopoietic colonies 

formed in semisolid media (11*). Later studies confirmed the existence of a discrete bipotent 

MEP using colony forming assays and a limited panel of cell surface markers by flow 

cytometry (12). Although crucial for our basic understanding of erythroid progenitor 

biology, these early studies were unable to discern the considerable variability among 

progenitor populations that advances in flow cytometry, genomic approaches (e.g. global and 

single cell RNA-seq) and novel in vitro culture systems have more recently highlighted.

An extensive discussion of the MEP is beyond the scope of this review; however, it should 

be noted that in contrast to murine hematopoiesis (13), a clear consensus for the cell surface 

markers that define human MEPs is lacking. As summarized in Table 1, MEPs have been 

characterized using a combination of cell surface markers including IL-3R, FLT3, MPL 

(assessed using BAH1 clone and other antibodies), CD36, CD41, CD71 and CD105 (8*, 9*, 

10**, 14**). Using a combination of approaches including functional, single cell 

transcriptomics and lineage potential assays, these studies reveal that the identification of 

MEP and their subpopulations appears highly dependent on gating strategy; this likely 

reflects their extensive heterogeneity.

To date, few gating strategies exist for erythroid progenitors, and therefore considerably less 

is known about their heterogeneity (Table 1). Murine studies identify fetal liver BFU-Es and 

CFU-Es as c-Kit+CD45+Ter119−CD71low and c-Kit+CD45−Ter119−CD71hi, respectively 

(15), while murine bone marrow CFU-Es are characterized as Lin−c-

Kit+Sca-1−IL-7Rα−IL3Rα−CD41−CD71+ cells (16). The immunophenotypic identity of 

human erythroid progenitors was less clear, until Li et al. first demonstrated that BFU-E 

reside in the IL-3R−GPA−CD34+CD36− fraction, and IL-3R−GPA−CD34−CD36+ denotes 

CFU-E. These populations give rise to characteristically pure colonies in methylcellulose 

and discrete gene expression signatures by RNAseq (17**). More recently, in the murine 
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system, Gao et al. used single cell RNAseq to demonstrate that the transient expression of 

Type-III Transforming Growth Factor-β Receptor (TβRIII) distinguished early (large cluster 

forming) BFU-E and late (small cluster forming) BFU-E in fetal livers (18*). Whether these 

TβRIII− cells represent a novel more immature BFU-E or a functional subpopulation of 

BFU-E requires further investigation.

Despite these pivotal studies, the utility of these markers may only apply to steady-state 

erythropoiesis. Indeed, stress erythroid progenitors express the cell surface markers 

CD34−CD133−c-Kit+Sca-1+ and CD34−CD133−c-Kit+ in mice and human-derived cells, 

respectively (19*). Thus, erythroid progenitors represent a heterogeneous population of 

cells, and moving forward, it will be critical to understand the regulatory mechanisms that 

underlie this diversity.

Regulation of erythroid progenitor self-renewal, proliferation and 

differentiation

Erythroid progenitors uniquely act as a critical interface between the hematopoietic stem cell 

and the more mature stages, dictating programs that eventually control the function of 

terminal erythroblasts. Indeed, terminal erythroblasts are largely pre-programmed, and as 

cells enter terminal erythroid differentiation they possess little or no capabilities for 

proliferation and self-renewal (20**). This programming confines erythroblasts to one 

division per stage with a single proerythroblast giving rise to 16 or 32 enucleate 

reticulocytes. Therefore, an active area of investigation lies in the identification and 

understanding of how these progenitors integrate soluble, cell-contact and cell-autonomous 

signals in order to control red cell mass and differentiation programs.

Cytokines and growth factors

Soluble factors that govern erythroid progenitor physiology come from diverse families of 

signaling molecules, and often work synergistically to amplify progenitor numbers. For 

example, stem cell factor (SCF), the ligand for c-kit receptor, cooperates with erythropoietin 

(EPO), TGF-α, insulin-like growth factor 1 (IGF-1) and IL-3 in regulating erythroid 

progenitor biology. Studies using erythroid cell lines and primary CFU-Es demonstrate that 

the synergy of SCF and EPO act at the receptor and downstream effector levels (21–24). 

Moreover, SCF and TGF-α increases growth and self-renewal of avian erythroid progenitors 

(25). Additional factors that synergize with SCF include IL-3 and IGF-1. IL-3 and SCF 

increase BFU-Es in liquid cultures (26), and SCF and IGF-1 enhance peripheral blood 

erythroid progenitors ex vivo (27).

IL-3 also functions independently of SCF at the BFU-E stage. IL-3 stimulates BFU-E 

proliferation (28), and may regulate self-renewal as evidenced by the emergence of sub-

colonies in methylcellulose (29). Further, IL-3 with activin A induces BFU-E mitogenesis 

and increased colony numbers (30).

TGF-β exerts a pro-differentiation role during early erythropoiesis. The expression of 

CD105 (endoglin) on human erythroid progenitors accelerates their differentiation in the 
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presence of TGF-β (8*), and TβRIII expression appears restricted to BFU-E subpopulations 

with diminished self-renewing capacity in vitro (18*).

Despite the cooperative nature of these signaling molecules, murine studies implicate EPO 

and SCF as the sole endogenous factors required for mammalian erythroid progenitors. 

SCF/c-kit mutant and EPO-R deficient mice both exhibit severe anemia with varying 

erythroid progenitor defects, whereas erythropoiesis remains unaffected in the absence of 

IL-3R (31–33). Activating mutations in the c-kit receptor prevent erythroblast maturation, 

and expand progenitors (34*). Further, EPO acts directly on CFU-Es to promote survival as 

opposed to proliferation (35). In the absence of EPO, CFU-Es undergo apoptosis through the 

FAS-FAS ligand pathway, and fail to progress into terminal erythroid differentiation (36, 

37).

Extracellular signals may also promote the expansion and differentiation of specialized 

erythroid progenitors during times of erythropoietic stress. Studies in mice and more 

recently in humans have shown that in addition to EPO and SCF, hypoxia, bone 

morphogenic protein 4 (BMP4), growth differentiation factor-15 (GDF-15) and hedgehog 

contribute to the expansion of BFU-Es during stress erythropoiesis. These progenitors also 

express higher levels of genes associated with self-renewal such as Pu.1 and GATA2 (19).

A largely unanswered question is how and in what context cytokines shape the 

transcriptional landscape and composition of erythroid progenitor subpopulations as well as 

the functional consequences of soluble factor signaling.

Cell intrinsic

Considerably less is known regarding how intrinsic factors such as transcriptional, post-

transcriptional and translational regulators control erythroid progenitor function. However, it 

is well appreciated that discrete gene subsets must be turned on and off in progenitors and 

terminal erythroblasts to facilitate the proper balance of self-renewal and differentiation. The 

reciprocal expression of the GATA family of transcription factors, GATA2 and GATA1, 

during erythropoiesis exemplifies this necessity (38). These studies indicate that the 

expression of self-renewal genes by sustained GATA2 expression could theoretically lead to 

increased levels of erythroid progenitors (39). Although GATA2 functions in multiple 

hematopoietic lineages, its overexpression leads to megakaryocyte differentiation (40, 41) 

suggesting that the careful dosage of transcription factors is needed for self-renewing pro-

erythroid transcriptional programs. A similar dose-dependent mechanism may underlie PU.

1-mediated BFU-E self-renewal. PU.1 is highly expressed in multi- and oligo-potent 

progenitors as well as in more committed myeloid and lymphoid cells, and is proposed to 

mediate BFU-E self-renewal at low levels (42). Fetal liver cells null for PU.1 show 

perturbations of erythroid progenitor numbers including attenuated proliferative capacity, 

accelerated differentiation and failure to respond to SCF and EPO (43). The exact molecular 

mechanisms remain elusive as PU.1 binding partners and gene targets have yet to be defined 

in primary erythroid progenitor populations.

In addition to transcriptional controls, RNA stability and accessibility to translational 

machinery could also determine erythroid progenitor self-renewal. The RNA binding protein 
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ZFP36L2, which is strongly induced following glucocorticoid receptor agonism in murine 

progenitors, promotes BFU-E self-renewal by negatively regulating gene transcripts 

associated with terminal erythroid differentiation and delaying the BFU-E to CFU-E 

transition (44). An additional, largely unstudied RNA binding protein in erythroid 

progenitors is LIN28B. LIN28B regulates the expression of the let7 family of microRNAs 

and HMGA2, which plays a critical role in fetal hematopoiesis (45**, 46*). Furthermore, 

fetal CFU-Es exhibit increased responsiveness to EPO, and therefore, the LIN28B-let7-

HMGA2 axis may possess an unappreciated function during fetal erythropoiesis (47). Since 

ectopic expression of LIN28B has already been shown to induce HbF in adult erythroid 

progenitors (48), investigation into whether this also affects erythroid progenitor self-

renewal should be explored.

The erythroblastic island

These critical niches for erythropoiesis are composed of a central macrophage surrounded 

by differentiating erythroid cells at all stages of maturation beginning with the CFU-E. 

Through still poorly elucidated mechanisms, it is hypothesized that BFU-E migrate towards 

these islands, and following differentiation to CFU-E, adhere to macrophages through a 

number of different molecules (49, 50**, 51*). Whether central macrophages promote CFU-

E self-renewal or merely increase proliferation of CFU-E/Pro-EB requires further 

investigation. However, in vitro and murine studies clearly demonstrate an essential function 

for erythroblastic islands during steady-state and stress erythropoiesis (52, 53).

Erythroid progenitors as a target for treating disordered erythropoiesis

As previously mentioned, erythroid progenitors are crucial for determining the overall red 

cell mass. It is therefore not surprising that erythroid defects such as the inherited bone 

marrow failure syndromes (e.g. Diamond Blackfan anemia [DBA]) demonstrate a paucity of 

erythroid progenitors, specifically CFU-Es (54*, 55). Although two major theories, (i) 

increased p53 levels or (ii) translational defect of GATA1, have been proposed as central to 

the pathophysiology of DBA, it is generally accepted that the apoptosis of the EPO-

responsive CFU-E causes the red cell failure associated with the disease (56–58). Thus, 

understanding why these progenitor cells are exquisitely sensitive to abnormal translational 

and how to pharmacologically target these progenitors remains a fundamental goal.

There is a limited number of pharmacologic agents that directly target erythroid progenitors. 

Since activin and BMP signaling stimulates BFU-E self-renewal, and TGF-β accelerates 

erythroid differentiation, therapeutic interventions aimed at the TGF-β superfamily may 

ameliorate certain cases of anemia. Indeed, inhibition of the TβRI kinase by Galunisertib 

augments the number of immature early-BFU-E (18*). The ligand trap activin receptor type 

IIA and IIB fusion proteins, RAP-011 and RAP-536 respectively, stimulate red cell 

production in normal and ineffective erythropoiesis; these molecules preclude activation of 

SMAD2/3 by growth differentiation factor-11 (GDF-11) (59, 60). Whether these compounds 

act at the level of the BFU-E and/or CFU-E in addition to their action on terminally 

differentiating erythroblasts is unclear.
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Glucocorticoids (e.g. prednisone and dexamethasone) are the current standard of care for 

DBA and other hematologic conditions including warm autoimmune hemolytic anemia. 

They are hypothesized to act at the level of the erythroid progenitors (61). However, the 

mechanism of action of glucorticoids in erythropoiesis remains unclear. Conflicting findings 

in murine and human systems have generated controversy regarding the exact progenitor 

stage at which glucocorticoids act (44, 62*, 63*). Furthermore, in vitro studies utilizing 

dexamethasone as an expansion agent prevent a stage-specific assessment of its function on 

erythroid progenitors (64). Together, glucocorticoids may exhibit species specificity with the 

targeted population being BFU-E and CFU-E in mice and humans, respectively. Indeed, data 

from others (61) and our unpublished data suggest that in humans, dexamethasone acts at the 

CFU-E stage (Figure 2A,B). Further experimentation using purified human erythroid 

progenitors is currently being explored to understand the molecular and stage-specific 

actions of glucocorticoids.

There is increasing evidence that the immunomodulatory drugs (IMiDs), pomalidomide and 

lenalidomide, target erythroid progenitors at the level of the BFU-E or during the transition 

of the BFU-E to CFU-E stage. Lenalidomide increases CFU-Es suggesting that these drugs 

could be used to stimulate red blood cell production (65). Alternatively, IMiDs also induce 

fetal hemoglobin (HbF) production in adult-derived CD34+ HSPCs, and pomalidomide 

appears to exert this effect at the level of the BFU-E (66**). A provocative implication from 

these studies is that globin gene regulatory programs reside in erythroid progenitors. Indeed, 

Papayonnopoulou and collaborators provide early evidence of this phenomenon, and imply 

that a minority of “pre-programmed” adult erythroid progenitors give rise to erythroblasts 

expressing HbF (67, 68). Therefore, the most effective pharmacologic agents might exploit 

the regulatory mechanisms in erythroid progenitors to either enrich this small population of 

“HbF programmed cells” or override γ-globin silencing in the majority of BFU-Es engaged 

with adult globin expression regulatory factors (Figure 2C).

Conclusion

The rapidly growing technological advances such as genomic, proteomic and cell biological 

characterization of single cells and advances in flow cytometry approaches are likely to add 

to our understanding of the role, regulation and differentiation potential of erythroid 

progenitors, and their contribution to red cell production. Ultimately, these findings will lead 

to the discovery of new therapies for the treatment of disorders of erythropoiesis.
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Keypoints

1. Recent advances reveal that erythroid progenitors are not a uniform 

population, but rather, composed of different subpopulations with variable 

levels of self-renewing capabilities.

2. The discovery of cell surface marker panels that resolve BFU-Es and CFU-Es 

populations enables the study of erythroid progenitor dynamics in vivo and in 
vitro.

3. An active area of investigation is how erythroid progenitors integrate soluble, 

cell intrinsic and microenvironment signals to regulate self-renewal, 

proliferation and differentiation.

4. BFU-Es and CFU-Es may represent appealing population of cells for 

pharmacologic stimulation of fetal hemoglobin and red blood cell mass.

5. Due to the molecular and cellular heterogeneity of erythroid progenitors, 

future studies should use single cell approaches whenever feasible.
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Figure 1. Erythroid lineage potential arises from different progenitor subsets according to 
revised hematopoietic hierarchy
(A) Classical view of hematopoiesis suggests that erythroid progenitors are derived from 

discrete multipotent progenitors populations that undergo a series of differentiation steps 

whereby these progenitor cells become increasingly erythroid restricted. (B–C) New insights 

reveal that hematopoiesis is specific of the developmental stage and progenitor populations 

are heterogeneous. A simplified view of these findings with an emphasis on erythroid 

differentiation is depicted. During fetal hematopoiesis (B), erythroid potential arises from 

multipotent, oligopotent and unipotent progenitors. Conversely, the adult erythroid lineage 

(C) is derived from multipotent stem and predominantly unipotent progenitors. Finally, and 

common to both, erythroid progenitors can arise from a bypass directly from the multipotent 

progenitor.
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Figure 2. Pomalidomide and glucocorticoids are hypothesized to act on different erythroid 
progenitor populations
(A) During steady-state erythropoiesis in the adult, the BFU-E population contains a small 

minority of HbF-producing cells (purple), and cells possess limited self-renewal. BFU-Es 

differentiate into CFU-Es followed by erythroid precursors and erythrocytes containing 

mainly adult hemoglobin (HbA). (B) Glucocorticoids appear to affect erythroid progenitors 

in a species-specific manner. In mice, glucocorticoids increase BFU-E self-renewal (green), 

whereas increased CFU-Es may result from glucocorticoid treatment in humans. The 

proportion of HbF-producing cells (purple) remains unchanged by glucocorticoid treatment. 

(C) Pomalidomide exerts its effect at BFU-E or on the BFU-E to CFU-E transition to induce 

HbF and increase BFU-E numbers through two potential mechanisms: (i) stimulate the 

expansion of pre-programmed HbF producing BFU-E (purple) or (ii) reprogram adult 

progenitors to prevent γ-globin repression (striped).
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