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ABSTRACT We consider a randomly diluted higher-order
network with noise, consisting of McCulloch-Pitts neurons that
interact by Hebbian-type connections. For this model, exact
dynamical equations are derived and solved for both parallel
and random sequential updating algorithms. For parallel dy-
namics, we find a rich spectrum of different behaviors includ-
ing static retrieving and oscillatory and chaotic phenomena in
different parts of the parameter space. The bifurcation param-
eters include first- and second-order neuronal interaction
coefficients and a rescaled noise level, which represents the
combined effects of the random synaptic dilution, interference
between stored patterns, and additional background noise. We
show that a marked difference in terms of the occurrence of
oscillations or chaos exists between neural networks with
parallel and random sequential dynamics.

Oscillations and chaos have been the subject of extensive
studies in many chemical, physical, and biological systems.
The Belousov-Zhabotinsky reaction (1), Rayleigh-Benard
convection (2), and glycolysis (3) are well known examples.
Oscillatory phenomena frequently occur in living systems;
some of these are a result of rhythmic excitations of the
corresponding neural systems (e.g., locomotion, respiration,
and heart beat). Recently, oscillations and chaos in neural
networks have become the focus of a number of research
efforts (4-19). Oscillations can occur in a neural system due
to properties of single neurons (4-7, 20) and properties of
synaptic connectivities among neurons (8-18) (for recent
reviews on neural networks, see, e.g., refs. 21 and 22).
Single neurons with periodic forcing and delays in feedback
have been studied (4) and oscillations and chaos have been
found (for a review on oscillations in biological membranes,
see ref. 20). Experimental observations have been made on
the Onchidium pacemaker neuron and transition to chaos by
intermittency has been pointed out (5). Both Hodgkin—
Huxley-type (6) and Eyring multibarrier rate (7) theories for
oscillatory behavior have been developed for single neurons.
The studies on oscillations in neural networks, originating
from synaptic connectivities among neurons, may be further
separated into the following two categories: (i) special ge-
ometries of neural network architecture that promote oscil-
lations and (if) delays in neural information transmissions. In
category i, Derrida and Meir (8) studied chaotic behavior of
a layered feed-forward neural network. Chaos has also been
found in a neural network with completely random connec-
tivity among neurons (9); however, no information (patterns)
can be stored in this system. Other geometries that promote
oscillations include ring-like (with closed loops) neural net-
works (10) and a network with both random synapses and
random firing thresholds (11). Category ii includes natural or
imposed delays that may also result in oscillations and chaos
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in neural networks (12, 13), as they do in many physical and
chemical systems (23). Oscillations can also occur in tempo-
ral sequence retrieving that can be achieved through delays
(14-16) and time-dependent synaptic connections (17, 18).
In this paper we present a model closer to standard neural
network theory, one based on the work of Derrida ez al. (24).
Our neural network model can however, unlike their model,
display oscillations and chaos. In this approach, we study a
higher-order neural network that consists of simple McCul-
loch-Pitts neurons (25); the connections in the network are
defined by a modified Hebb learning rule. Both first- and
second-order synapses are disconnected randomly at one
time to model the observed incomplete connectivity in real
neural systems; thereby, we derive exact solutions of the
network dynamics. Two updating algorithms are considered:
random sequential updating and synchronous updating. We
show that the network can exhibit a variety of dynamical
behaviors such as stable retrieving, oscillations, and chaos.
A difference between asynchronously and synchronously
updated neural networks exists inasmuch as the occurence
and the size of oscillatory and chaotic attractors depend on
the size of the network for randomly updated neural networks
and are independent of the size in the synchronous case. We
show that a rescaled noise level that represents the combined
effects of the random synaptic dilution, interference between
stored patterns, and additional background noise acts as an
important bifurcation parameter in the present system.

FORMULATION
We consider N McCulloch-Pitts neurons (25) that have two
states (i.e., §; = *1) and are connected by both first-order
and second-order Hebbian-type connections. Suppose that
the total input for the ith neuron is (26, 27)

N N

hi(t) =71 21 T;Si(1) + v,

Jj=

T Sj(®)Si(t) + miy 1]

jk=1
where S;(¢) represents the state of the jth neuron at time ¢,

i - .. P
N p=1 J g N &5 i)

T;= [2]

are the modified Hebbian synaptic efficacies (26-30), 3‘ * is the
uth stored pattern, and p is the number of patterns stored.
Coefficients y; and y, measure the relative strengths of first-
order and second-order interactions (for experimental evi-
dence of nonlinear multiplicative neuronal interactions, see,
e.g., refs. 31-33). We have introduced random asymmetric
dilution in the efficacies T; and T, by choosing random
variables C;; and C;; according to the following distributions:

C C
p(Cy) = Y, (Cy—-H+(|1- N 8(Cy), [31
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and
2C 2C
p(Cip) = NG (Ci—D+{1- NG 8(Cij). [4]

Eq. 3 was first used by Derrida et al. (24) in their discussion
of a first-order diluted network. Synaptic dilution is essential
in modeling the observed incomplete connectivity in real
neurophysiological systems and for the possibility of assuring
an exact solution (24). We generalize their work to include
higher-order interactions. We include a background random
Gaussian noise 7n; with a standard deviation oy in Eq. 1 to
account for the presence of noise (temperature). Noise in
neurophysiological systems may be attributed to spontane-
ous neural firing and statistical variation of the number of
vesicles containing neurotransmitters (e.g., acetylcholine)
released at the synaptic junctions (34-37) (for experimental
evidence that supports a Gaussian noise distribution, see,
e.g., page 21 of ref. 36). In artificial implementations of neural
networks (38—42), noise may result from electrical, thermal,
and quantum fluctuations.
The updating rule is

S;(t + Ar) = sign[h;(1)], 5]

where sign(x) = —1 for negative x and sign(x) = +1 for
positive x. We consider the following two dynamics: parallel
and random sequential dynamics. In parallel dynamics, all
neurons are updated simultaneously and Ar = 1. In random
sequential dynamics, one neuron among the N neurons is
chosen at random at time ¢ and this neuron is updated
according to Eq. 5; Ar = 1/N for random updating to ensure
that the same number of neurons is updated per time step in
the parallel mode and in the sequential mode.

Suppose that the mmal state of the network is set in the
neighborhood of pattern 3 Explicitly, we let

m}(0) = max{m*()|u=1,2,...,p}, (6]

Whele
1 > >

is the overlap between the state of the system at time ¢ and
the uth pattern.

Consider the ith neuron and let jy, js, . . . , jk, be the K,
neurons j such that T; # 0. Let jiky, joka, . . . , jk,kk, be the
K pairs of neurons {jk} such that T;; # 0. These choices of
notation do not imply that, for a given j', if T # 0, then Tj;
# 0, since dilutions of first- and second-order interactions are
independent of each other. According to Eqs. 3 and 4, the
averages of K; and K, are both C, compared with fully
connected networks where the numbers of first-order and
second-order synaptic connections are on the orders of N and
NN + 1)/2 = N?%/2 (for large N), respectively.

We separate the first two terms in the total signal (Eq. 1)
into two parts (24, 27, 43):

7 & 7 &
hit) = {N 2 mn)+— 2 m},mmi,(r)}s,-‘

r=1

{” > 2 SESES, (1) 8]
N u=2r=

ZI‘<

r K
Z 2 srs;jszs,,(r)sk,m};
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where
my(t) = S8 4(1). &)

The first term in Eq. 8 is proportional to the overlap of the
system with pattern § 1 The second part consists of interfer-
ences from patterns 32, $°, ,37. As shown by a number
of authors for a first- ordermteractnon (y2 = 0)(24,44-46), the
correlations between neurons can be neglected in the limit of
extreme dilution. We now prove that this result holds in the
presence of both diluted first- and second-order interactions,
as given by Eqgs. 2—-4. The calculation of the state of the ith
neuron at time ¢ [i.e., S;(t)] involves a tree of ancestors (states
of neurons at previous time steps) that connects the ith
neuron to the initial conditions at time ¢ = 0 (24), where ¢ is
the time required for the network to reach equilibrium. At
each time step the state of the ith neuron is influenced by
about C neurons through first-order interactions and 2C (C
pairs) neurons through second-order interactions, and the
number of neurons in this tree is typically less than (3C)'.
Thus as long as C << In N, almost all neurons in this tree are
different [i.e., (3C)" << N1], since In N << NV’ for large N.
So, in this diluted limit, the statesin Eq. 8 5;,. . . , Sjkl, ey
Sk, are uncorrelated. According to the central limit theorem,
the interference terms are random and Gaussian, distributed
with a total average of zero and a total squared deviation

ok =(p — DIviKi/N? + v3Ko/N?] [10]

in the limit of large N. Furthermore, when we average over
all shapes of the tree of ancestors, all the ml(r) given by Eq.
9 have the same average m(t) (24). It follows from Egs. 5 and
7-9 that for parallel dynamics

1y c
m(t+1)= ﬁ ,Zl S,-s:gn{[)q(ﬁ) m(t)
¢ 2 '
+ 7 N m@F|Si+ 7' ¢. [11]

In Eq. 11, 0’ is the combination of the internal noise n; and
the interference terms and the standard deviation of 1’ is oyta)
= (0% + o)V (27), where K; and K; in Eq. 10 have been
replaced by their averages C. We have omitted superscript
1" in Eq. 11; we refer to the overlap between the state of
the system with pattern S 1. unless specified otherwise.

Considering the fact that n’ is a Gaussian and the value of S;
can be either —1 or +1, we obtain the dynamical equation for
the parallel updating algorithm in the present model

m(t + 1) = 1 - 2y{yym(t) + y[m()P} = F[m(t), o] [12]
with

e 2dx, [13]

1
¢()’)— \/5;

and a rescaled noise deviation:

o=\ (}+¥)(p - 1/C1+ (0N/C).  [14]

In Eqgs. 3 and 4, we have used the same dilution constant
C for both the first- and the second-order interactions. If one
uses different dilution constants, the resulting effects can be
absorbed into coefficients y, and vy, (see Eq. 10). Hence no
generality has been lost by choosing the same dilution
constant C for all orders of interactions.
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For random sequential updating, we select at random a
neuron to update at time ¢ so that we have from Egs. 5, 7, and
12:

1 N-1 1 1
mit+—]|=—mt)+—m{t+ —
N N N N

1
=ml(t) + N {F[m(r), o] — m(1)}. [15]

We see (47) that the mapping function, Eq. 15, is bounded by
m(t) — 1/N[m(t) = 1] since 0 < ¢[m(z), o] = 1. It is obvious
that the bounding region for m(t + 1/N) grows as N de-
creases. It is also evident from Eqs. 12 and 15 that the fixed
points of the dynamical equations for parallel and sequential
updating are the same. But, considering the derivative of Eq.
15 with respect to m, we see that the stability of a fixed point
for random sequential dynamics depends on the size of the
system, whereas size does not have any effect on the stability
of a solution for parallel dynamics. Furthermore, unstable
fixed points of Eq. 15 may have corresponding attractors
(limit cycles, chaotic attractors) that cannot be larger than
2/N.|Am| = 2/N for two sequences with Hamming distances
d and d + 1 from the reference pattern S!. Therefore, these
attractors span, at the maximum, two sets of states: (i) the
difference of Hamming distances between states in one set
and the reference pattern (ii) and states in the other set and
the reference pattern is one. Periodic orbits of order higher
than one for random sequential dynamics (of large systems)
are, therefore, expected to be of theoretical interest only. In
the limit N — o, the attractors are infinitely small for a
sequentially updated network and the dynamics are de-
scribed by the differential equation

dm(t)
—— = F[m(t), o] — m(1). [16]
dt
RESULTS AND DISCUSSION

Eqgs. 12-16 are a generalization of the formulation of Derrida
et al. (24), who derived an exact solution of a diluted neural
network with first-order interactions only for which neither
oscillations nor chaos are possible. Furthermore, they used
Little’s definition of temperature (48) instead of the Gaussian
noise used in the present work.

Egs. 12 and 13 have been derived first by Keeler et al. (27)
for a fully connected network by the approximation that the
interference is random Gaussian noise in the absence of
dilution. They have found that compared to the case with
only first-order interaction (y; = 1, y, = 0), the final retrieval
ability is enhanced by letting y, = 1, 7, > 0, which we call the
‘“‘positive”’ second-order interaction. The ‘‘positive’’ sec-
ond-order interaction also causes hysteresis in the retrieval-
noise curves (27). We show that the formulation of Keeler et
al. (27) becomes exact in the diluted limit.

In the present paper, we show that the system exhibits,
under certain conditions, a variety of dynamical phenomena,
such as oscillations, period doubling bifurcations, chaos, as
well as stable retrievals if second-order interactions exist. We
show this for y; > 0, v, < 0, which we call the ‘‘negative”’
second-order interaction.

Let us first consider parallel dynamics. The equation of
motion of the neural network is given by Eq. 12, which is a
one-dimensional map (49) of the ove_)rlap between the state of
the network and the stored pattern S, m(t), with three para-
meters: first-order and second-order interaction coefficients,
v, and y,, and the rescaled noise level o given by Eq. 14, which
includes the effects of random synaptic dilution, interference
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between stored patterns, and additional background noise.
Some general conclusions may be drawn from Eqs. 12 and 13.
First of all, there is no nonnegative fixed point if y; = 0. We
assume that y; # 0 from now on. Egs. 12 and 13 show that a
network with parameters y;, y,, and o are equivalent to a
network with y; = 1, y5 = y2/7:, and ¢’ = o/y;. Hence we
choose y; = 1 without loss of generality. The fixed points of
the system can be obtained by iterating Eq. 12 for many time
steps.

We now consider the case y, = —1 where the solutions of
m = m(t = «) as a function of the noise level o are presented
in Fig. 1.

When o> V2/7 = 0.798, the only nonnegative fixed points
are zeros. For V2/7 = 0.798 > o > 0.193, the system
converges to a single branch of stable positive fixed points
with any positive initial overlap. As the noise level decreases
below o, = 0.193, oscillations start to appear. As shown in
Fig. 1, there is a complete period-doubling sequence between
o1 = 0.193 and .. = 0.1234, which is the saturation point of
that sequence. Space-filling chaotic structures and periodic
windows can be seen beyond this saturation point. Period 6,
period 5, and period 3 windows are marked in Fig. 1. Period
3 implies chaos (42). The order of occurrence of these stable
periodic orbits is predicted by the Sarkovskii sequence (page
169 of ref. 49). Around the periodic windows there are the
typical chaotic ‘‘explosions’’: space-filling bands appear
abruptly at certain points of bifurcation.

As v, is increased above —1, bifurcations become incom-
plete (page 172 of ref. 49) in the sense that the oscillatory
region is smoothly connected with stable fixed points on both
sides, as shown in Fig. 2 where y, = —0.99. As 1, is further
increased, oscillatory and chaotic dynamics rapidly disap-
pear, with more complex structures diminishing first. For y,
= —0.8, for instance, the only type of oscillation the system
exhibits has a period of 2. Stable fixed points become the only
attractors of the system when y, > —0.87. For y, < —1,
however, the positive oscillatory attractors abruptly disap-
pear at certain low noise level, which is often called *‘crisis,”’
as shown in Fig. 3 for y, = —2. The solid line marked with
the arrow in Fig. 3 represents the stable negative fixed points.

The network dynamics described above can be understood
through the mapping function given by Egs. 12 and 13.
Curves a through f in Fig. 4 are plots of the mapping F(m,o)
vs. the overlap m, for different values of o and vy,. As long as
v, < 0, there are positive maxima for each noise level o,
which is the origin of the oscillatory and chaotic structures in
the system. For instance, for y, = —1 (curves a and b), as the
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FiG. 1. Fixed points for parallel updating (according to Eq. 12)
vs. standard deviation of the Gaussian noise o, with y; = 1 and y, =
-1.
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0.5

FiG. 2. Same as in Fig. 1, with y; = 1 and y, = —0.99.

noise level o is reduced below the critical value 0.798, there
is one intersecting point, other than the origin, with positive
overlap m, between the mapping function and the diagonal
straight line. In curve a, ¢ = 0.5 and the slope at the
intersecting point is greater than —1. Hence the intersecting
point represents a stable fixed point (49). As o is reduced
further, the first Hopf bifurcation to oscillations occurs when
oy = 0.193 (curve b) and the slope at the intersecting point
between the mapping function and the diagonal line (referred
as ‘‘the slope”’ thereafter) is —1. The slope decreases (be-
comes more negative) monotonically as o decreases and
more complex oscillations appear (see Fig. 1).

From Egs. 12 and 13, we observe the following general
properties of the mapping function F. For each o, F has two
zeros: F always equals 0 when m = 0, and the second zero
isat m = —1/y,. For each y,, the mapping function F reaches
its positive maximum for each ¢ when m = —1/(2y,). For

0.4

0.2}

0.16 020 024
o

FiG. 3. Same as in Fig. 1, with y; = 1 and y, = -2.
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F1G. 4. Mapping function F given by Eqgs. 12 and 13 vs. m for
different noise levels o and second-order interaction coefficients y,.
Curves: a, y, = —1, o = 0.5 (stable fixed point); b, y, = -1, =0.193
(Hopf bifurcation); ¢, y, = —0.91, o = 0.125 (period 2 oscillation);
d, v, = —0.91, o = 0.03 (stable fixed point); e, y» = —2, 0 = 0.24
(period 2 oscillation); f, y, = —2, o = 0.17 (crisis).

each m and vy,, F increases monotonically as o decreases. F
approaches 1 as o approaches 0 forall y,and0 < m < —1/y,.
Hence for v, < —1 and small enough o values, the positive
maximum of the mapping is above (outside) the square box
(curve f, with y, = —2 and o = 0.17). A trajectory initially
inside the box eventually goes out of it after some iterations
and is attracted to the stable negative fixed point (marked by
the arrow in Fig. 4), which is the reason for crisis to occur as
shown in Fig. 3 (abrupt disappearance of positive attractors
below certain noise level). In curve e, y, = —2 and o = 0.24,
the mapping function is contained in the box and the slope is
less than —1, which corresponds to a period 2 oscillation in

=T T T T T T

FiG. 5. Fixed points for random sequential updating (according
to Eq. 16) vs. standard deviation of the Gaussian noise o, with y; =
1 and y, = —1. Dashed portions are unstable.
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Fig. 3. We note that the first Hopf bifurcation appears at a
higher noise level o, for a more negative vy, (e.g., op = 0.252
for y, = —2, compared with o; = 0.193 for v, = —1).

For —0.87 > y, > —1, oscillations still exist for some noise
levels. Since the slope does not decrease monotonically as o
decreases, mappings result in incomplete bifurcations (page
172 of ref. 49; also see Fig. 2). For instance, in curve ¢, y, =
—0.91 and o = 0.125, the slope is less than —1 and corre-
sponds to a period 2 oscillation. As o decreases further, the
slope increases above —1 and the oscillation diminishes (see
curve d, with o = 0.03 and y, = —0.91). For y, > —0.87, the
mapping results only in stable fixed points for all o, since the
slope never falls below —1.

Eq. 16 describes the dynamics of random sequential up-
dating. It is well known that a one-dimensional system
described by a differential equation cannot exhibit oscillatory
behavior. Hence the random sequential dynamics given by
Eq. 16 have only two types of nonoscillatory fixed points,
either stable or unstable. The result for y, = —1 is given in
Fig. 5. The unstable fixed points shown by dashed lines
represent the boundaries of basins of attractions of the stable
fixed points (solid lines).
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