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Abstract

Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. 

These cells also move and deform, and the physical mechanisms driving these movements and 

shape changes are important in fundamental cell biology, tissue mechanics, as well as disease 

biology. This article reviews some of the basic mechanical concepts in cells, emphasizing 

continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell 

membrane. We discuss how cells can generate movement and shape changes by controlling mass 

fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of 

actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell 

membrane. By combining hydraulic pressure control with force balance conditions at the cell 

surface, we discuss a quantitative mechanism of cell shape and volume control. The broad 

consequences of this model on cell mechanosensation and tissue mechanics are outlined.
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1. Introduction

In a cluttered corridor of a rather drab-looking concrete laboratory tower, a young graduate 

student, S, is walking briskly, immersed in thought. She is on her way to a meeting with her 

mentors, still dressed in a stained lab coat and clutching safety glasses. These weekly 

meetings are a part of her interdisciplinary training program, where researchers from physics 

and cell biology are brought together to tackle basic biophysics questions. Today, she just 

completed a round of laboratory experiments, and now her mind is brimming with 
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excitement and questions. The door is open, and in seconds she is in the office of biology 

professor B.

Her co-mentors, physics professor P together with B, are already seated at the small 

conference table. S gives a slight nod in their direction and sits down.

S: This week, I performed live cell microscopy experiments on different types of eukaryotic 

cells. I was able to capture images of several fluorescently labeled cytoplasmic proteins and 

the cell membrane. What I saw was fascinating! Cells seem to have a mind of their own, and 

can take on variety of shapes and sizes. Cells can also migrate and change shapes at different 

stages of their cell cycle (figure 1). What are the molecular components that allow cells to 

behave this way? Cytoplasmic proteins I observed also can move and form patterns that are 

correlated with the cell shape and cell movement. Do we understand how cells control their 

shape and movement?

B: These are of course key questions in understanding how cells work. We now know the 

genetic sequences of many organisms, and it is fairly straightforward to find out the protein 

content (the proteome) of a given cell type [1]. But how these expressed proteins are 

organized and controlled to perform essential cell functions like movement and division are 

still not clear. There is a lack of quantitative models that adequately address phenomena at 

the cell scale. From experiments, it is also apparent that there are higher-order mechanical 

structures in the cell. For instance, we know that the cytoplasm of the cell is not a 

structureless liquid. There are complex micron-sized assemblies such as cross-linked actin 

filament networks, microtubules and intermediate filaments [2–7]. These filaments are very 

dynamic, undergoing cycles of polymerization and depolymerization, regulated by other 

proteins. In addition, organelles such as the nucleus, mitochondria and endoplasmic 

reticulum have dynamic and distinct shapes as well [8]. Several different types of molecular 

motors also work together with the cytoskeleton filaments to generate movement and 

transport within the cell [9–11].

S: So how do cells uses these elements to actively move, divide and change shape?

2. Forces and conservation laws

P: Newton’s laws state that motion is related to forces. In the context of cells, we clearly see 

a lot of movement, and forces can be generated in several ways. Molecular motors can 

directly provide forces derived from small molecules such as ATP or GTP. These motor 

molecules make small (nanometer-sized) conformational changes during the ATP hydrolysis 

cycle [11–13]. When many of these molecules sum up their forces, large cell-scale forces are 

developed. But there are other ways of generating forces as well. From fundamental 

conservation laws, mass transport is connected to momentum flux and therefore movement. 

For a continuous material with density ρ, fundamental mass conservation is [14, 15]

(1)
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where g = ρv is the momentum density and v is the spatial velocity field. J is a source (or 

sink) term coming from an external mass flux. For simplicity, let us consider the cell as a 1D 

continuum strip of material with length L (figure 2(A)), and the mass flux can come from 

material outside of the cell or added from the cytoplasmic fluid phase. There is new mass 

added at the front x = x2, and mass is removed at the back, x = x1. Therefore the source term 

can be written as J=J2δ(x−x2) − J1δ(x−x1) If the material density ρ is constant, then the mass 

conservation equation is simply

(2)

for x∈(x1,x2) implying that the velocity field inside (x1,x2) is a constant. However, from 

overall mass conservation (x1,x2) must be changing. Since the overall mass balance within 

the domain is

(3)

where L = x2 − x1 is the length of the strip, this gives a condition for the boundary velocities

(4)

The actual constant velocity field within the domain is not known, and must be determined 

from another condition. In cases where material points are fixed in space such as from 

adhesions to stationary substate (figure 2(A)), then ν(x,t) = 0 within the domain, and the 

only points that are moving are the boundaries, giving velocity conditions for individual 

boundaries: . Thus, from mass fluxes alone, we can get motion!

Note that this problem becomes more complicated in 2D, when there are two unknown 

velocity fields v = (vx,vy). In this case, other conservation laws must come into play in order 

to obtain a solution. The momentum density also satisfy momentum conservation (Newton’s 

2nd Law) [14, 15], therefore

(5)

where σ is now the momentum current tensor, or the stress tensor. In the low Reynolds 

number limit that is appropriate for the cellular scale, we can neglect the nonlinear term (2nd 

term) [16]. The momentum current tensor contains information about mechanical forces on a 

small volume element in the material. In order to mathematically solve the coupled 

equations (1) and (5), is it necessary to introduce a constitutive law, i.e. a relationship 

between σ and the velocity field v. This constitutive relationship depends on the type of 
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material, and the microscopic molecular structure. This relationship can also be measured 

experimentally.

Without complicating things, in the simplest picture, mass fluxes J are sufficient to push the 

cell boundary and generate cell shape changes.

B: In the cell, there are multiple sources of mass flux. One possibility is from polymerization 

and depolymerization of actin cytoskeleton or microtubule cytoskeleton. From experiments, 

it has been shown that the actin cytoskeletal network is important for cell shape and cell 

movement [17–19]. New actin networks in the cell are formed from monomers (G-actin) 

that polymerizes into actin filaments.

S: Ahh, that means by controlling where and when actin polymerization and 

depolymerization happens (figure 2(B)), the cell can control its motion and generate forces!

B: Precisely. It is known from experiments on cells on 2D substrates that by depolymerizing 

the actin cytoskeletal network using drugs such as Latrunculin A/B, cells no longer can 

change shape or move on 2D flat substrates [20, 21]. Therefore, actin is necessary for 2D 

migration. From extensive studies on the shape of rapidly migrating cells, we now have very 

sophisticated models of how actin network dynamics generate the shape of moving cells 

[22–24]. Features such as myosin contraction, diffusion of G-actin in the cytoplasm and 

detailed branched structure of the actin network has been incorporated [25]. So we know a 

lot about how actin drives cell movement.

S: In order to predict how cells move and change shape, we need information on the stress 

tensor in equation (5), right? A constitutive law as you described?

3. Actin cytoskeleton mechanics

P: You are absolutely right. There has been a lot of work in this area, trying to understand 

properties of the actin cytoskeleton [26–30].

B: From a biological perspective, the actin network plays a crucial role in a cell’ s 

morphology, migration and force production [31–33]. In mammalian cells, a large portion of 

actin is located within a cell cortex, which is just below the plasma membrane [33–37]. It is 

within this actin rich cortex that F-actin interacts with molecular motors and actin 

crosslinking proteins [38–40].

P: There has been also a lot of work on structural composition of actin networks in cells. For 

example, actin crosslinking proteins such as α-actinin, cortexilin, and fascin are important 

proteins in forming actin networks [41–43]. In addition to exerting active forces, myosin 

also forms mini-filaments that cross-links F-actin [44]. Branch forming proteins such as 

Arp2/3 generate a mesh-like network [45]. Speckle microscopy has been developed to 

measure movement of individual actin monomers [46–48]. So far, hundreds of actin-binding 

proteins have been identified. These proteins seem to regulate all aspects of the actin 

network, including polymerization, depolymerization, cross-linking and mechanical rigidity. 

Thus, to by-pass the molecular complexity, a constitutive model is an useful approach to 
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describe the actin network mechanics. In such a constitutive model, molecular components 

will influence the mechanical moduli, but the mathematical relationship between kinematic 

variables and stress remains similar.

There are several broad classes of constitutive models. Of course, solids and fluids are 

already familiar, the primary difference being that solids can sustain shear stress at static 

mechanical equilibrium while fluids cannot. Actin networks are examples of semi flexible 

polymer networks [49–52]. These networks are viscoelastic, meaning that they retain some 

properties of solids and fluids. However, it is important to keep in mind that actin networks 

in cells are viscoelastic fluids. Therefore, the stress at long times is only a function of 

deformation rate:

(6)

where I is the identity tensor and vn is the spatial velocity field of the actin network. μ is the 

shear viscosity of the network. The diagonal part of the stress tensor acts like a pressure, but 

the shear part (off-diagnol) vanishes when vn = 0 or when vn is spatially constant. This is the 

long time behavior of actin networks.

The dynamic nature of the cross-linking proteins and accessory proteins that depolymerize 

actin allow the cell to tune the mechanical properties of its actin network [53–55]. When 

cross-linking proteins bind to filaments they contribute to the elasticity within the meshwork 

and when they unbind they allow the filaments to slide past one another, thus contributing to 

the development of shear stress (figure 3). The elastic behavior of the network is modeled by 

a Young’s modulus, E. When it is combined with the viscosity μ, a relaxation time scale 

τ=E/μ emerges. After an initial step perturbation or deformation, τ is the time scale which 

the material still retains some elastic characteristics. After τ, the material behaves as a fluid 

and flows. For actin in the cytoplasm, τ is about 10 s [56, 57].

S: Okay, so measurements show that the viscosity of actin network, μ, is about 1000 times 

higher than that of water [26, 58, 59].

P: Correct. It is also important to note that a single time scale as described above is a 

simplification. Rheological properties of actin network also depend on other factors like 

filament stiffness, filament bending and entropic fluctuations. There are multiple time scales 

in the viscous behavior [60, 61]. In the simplified case of rigid filaments with dynamic 

cross-links, the force-velocity behavior of filaments sliding with respect to each other 

resembles viscous friction, and the friction coefficient can be explicitly related to cross-

linker binding kinetics and linker stiffness [62–64]. Furthermore, when forces are applied to 

the network, the mutual sliding friction tend to align the filaments and generate large actin 

bundles, so-called stress fibers [65, 66]. These stress fibers tend to attach to substrates 

through integrin focal adhesions [67–69]. The movement of adhesions depend on substrate 

stiffness [62].

B: Myosin molecular motors also add to the fluidity of the actin network. The heads of 

myosin motors bind F-actin and utilize ATP hydrolysis to generate force to move toward the 
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positive end of actin filaments [39, 44]. This movement also slides filaments with respect to 

each other and further fluidizing the network [39, 52]. Indeed, activities of small myosin 

assemblies is responsible for the contractile nature of actin networks in cells. If the 

contraction is isotropic, the contractile stress can be modeled as an active part of σ0 in 

equation (6). The contraction acts as a negative pressure, i.e.

(7)

where σp is the passive pressure in the actin network and σa is the negative pressure from 

active contraction of myosin. σa depends on energy input, such as ATP hydrolysis [32, 70], 

and signaling pathways that controls concentrations of myosin [71–73]. In order for 

sustained network contraction by myosin to occur, it is not sufficient to only have filament 

sliding, since the sliding movement does not decrease overall network volume. It is shown 

that buckling of actin is also necessary for contraction [74, 75]. In addition, filaments under 

mechanical compression should also depolymerize faster [76]. This elevated 

depolymerization in compressed networks allows recycling of G-actin and sustained 

contractile stress generation by myosin. Finally, network contraction can result not just from 

myosin motor activity, but also from passive crosslinking. Actin cross-linkers such as α-

actinin can directly cause network contraction [64, 77], simply from favoring closer 

filament-filament interaction.

P: There is a growing body of literature on the active behavior of the actin cytoskeleton, 

including non-isotropic networks and active chiral behavior [78–81]. In these more complex 

scenarios, the stress depends on possible nematic order in the network and active stresses are 

not necessarily isotropic [70]. As one can imagine, studying the actin network within a cell 

is difficult due to the presence of other structures within the cell. Researchers have therefore 

been using reconstituted actin works in vitro to further investigate the behavior of the actin 

cytoskeleton [54, 61, 62, 82–86].

S: Ok, but the cytoplasm is more complex than just the cytoskeleton right? What about the 

water phase? I recently read that water is apparently 70% of the cell mass content [87], and 

the cytoplasm is a porous material where water can flow [88]. Are there other mass fluxes 

that are important for cell shape and mechanics?

4. Water dynamics in cells

P: Indeed, in addition to cytoskeletal polymerization, the cell can passage water through the 

cell membrane directly, or through the membrane water channel aquaporin [89, 90]. The 

direction and magnitude of the water flux depend on the water chemical potential difference, 

Δμ, across the cell membrane, which is influenced by both the hydrostatic pressure 

difference, ΔP, and the osmotic pressure difference, ΔΠ [91]:

(8)
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Here α is a permeation constant proportional to aquaporin density. Since this flux depends 

on two kinds of pressures, mechanical forces that influence ΔP and solute concentration 

changes that influence ΔΠ will both drive water flow across the membrane (figure 4). 

Therefore, mechanics and chemical contents inside and outside of the cell determine water 

flow.

B: This water flux has been studied in various physiological contexts, including coupled 

transport of water and salt across epithelia [92]. Indeed, aquaporin was discovered in kidney 

epithelium cells and every day your kidney re-absorbs 180 liters of water from blood that 

leaks into the glomerulus [93]. For cells, water flux also plays a role in membrane blebbing 

[94, 95], and the ameboid mode of cell migration [96, 97], where extruded blebs is refilled 

with cytoskeleton, and the cell can move by repeated development of blebs [36, 98–100]. 

Outside of physiological situations, osmotic effects can drive microfluidic pumping [101] 

and has been proposed as a way to generate energy [102, 103].

S: So water can flow in and out of the cytoplasm. Does this mean that the cell size increases 

when there is net water flux into the cell? How fast can the cell size change? What are the 

factors influencing the cell size?

4.1. Cellular pressure/volume regulation: a qualitative description

P: Yes, water permeation is an important element in the regulation of cell volume [104]. 

Mathematically, on the time scale of water flow, we have [105],

(9)

where V and A are the volume and surface area of the cell, respectively. Here, the 

hydrostatic pressure difference ΔP is mechanically balanced by cell surface tension and 

surface curvature. We will discuss the precise force balance conditions a little later. The 

osmotic pressure difference, ΔΠ=Πin − Πout depends on concentration of solutes inside and 

outside of the cell. Potentially there is larger concentrations of solutes in the cell, therefore 

Πin > Πout. Note that the osmotic pressure is an entropic force, arising from entropy of 

mixing [106], and therefore does not depend on molecular details. Πin ≈ RATcin=RAT(n
+Np)/V, where n is the number of small transportable ions and molecules such as Na+, K+, 

Cl− and  in the cytoplasm. Np is the number of untransportable proteins and 

macromolecules in the cytoplasm, and Ra is the gas constant and T is the temperature. Note 

this estimate of the osmotic pressure is valid for simple solutes in dilute solutions, and 

additional corrections could be necessary for complex cytoplasmic environments.

B: The cell of course actively controls both the protein content Np, and the ion content, n. 

For ions, there are many ionic species to consider. Na+, K+, and Cl− are the most abundant 

ones, each with concentrations in the 100 mM range. But Ca2+, H+, , and other small 

organic molecules are also involved. Transport of sugars and other small nutrients are 

obviously needed for increasing Np. Ions flow across the cell membrane both passively and 

actively. Passive ion channels allow ions to flow according to the chemical potential 
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difference of each ionic species. Active ion pumps can transport ions against the chemical 

potential gradient; and the pumping process requires energy input. Some common pumps 

and co-transportors include Na/K pump [107], Na-K-Cl cotransport [108], and Na/H 

exchanger [109, 110]. These channels and pumps are essential for cells to maintain 

intracellular osmolyte concentrations.

P: These ion channels and pumps work on relatively fast time scale (~s). We can describe 

cell volume regulation on this time scale by considering water and ion fluxes in 

mathematical models. If osmolarity and cell mechanical behavior are the main concerns, we 

can consider simplified models with neutral osmolytes [105]. Equation (9) implies that at 

equilibrium, the hydrostatic pressure difference is equal to the osmotic pressure difference: 

ΔP = ΔΠ, and the water content does not change. One can induce water flow and cell volume 

change by applying osmotic shock [111], i.e. changing ∏out, or by changing the hydrostatic 

pressure difference either by changing Pout [112] or applying mechanical forces to the cell. 

When the extracellular osmolarity varies, the ion flux across the membrane changes, leading 

to an increase or decrease of intracellular ions within a few minutes. This process changes 

the volume of the cell, primarily from ion fluxes driving water flow. From experiments, it is 

known that cells can adapt to osmotic shocks, and the cell volume can recover within tens of 

minutes [111]. The cell volume change also depends on the mechanical stress in the 

actomyosin cortex, which directly influences ΔP. The coupled water and ion fluxes together 

with cortical contraction are responsible for the volume recovery [105, 111]. Note that water 

fluxes are equally influenced by both hydrostatic pressure and osmotic pressure (equation 

(9)). Therefore, mechanical response of the cell on the time scale of minutes is also 

influenced by water and ion dynamics as well as actomyosin dynamics.

B: On longer time scales, tens of minutes to hours, cell volume is determined by changes in 

Np, or the total protein content of the cell. Cells actively import molecules and nutrients to 

grow. And over the cell cycle, the cell volume roughly doubles [113–115]. Indeed, one 

possibility is that the osmotic regulation system roughly keeps a constant osmolyte 

concentration in the cell, and therefore Np and volume should increase at the same rate 

[116]. The regulation of Np is an important aspect of the cell cycle and signaling pathways 

are involved in this regulation [117–119]. A full quantitative picture is still not clear. It is 

evident that these pathways must also couple with ionic fluxes, actin cytoskeleton and 

myosin contraction. More work is needed to understand this area.

S: Huh, cell volume regulation is quite complex! I guess it makes sense since the cell 

volume determines the concentration of everything in the cell. The cell has to get that right. 

Coupling with water dynamics is also interesting. Water fluxes are clearly important in the 

kidney. Are there other situations where water fluxes has an important role?

4.2. Water-driven cell migration—an osmotic engine

P: It’s a good question. So far, we have discussed how isotropic (i.e. spatially uniform) water 

flux can lead to cell volume increase and decrease. If the water flux is spatially varying, this 

mass flux can lead to cell movement, exactly in the same manner as depicted in figure 2(A). 

For cells confined in a 1D narrow channel, it was discovered experimentally that cells can 

move without actin or myosin [21, 120]. Therefore, we can neglect their contribution to 
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mass fluxes. In this case, the cell moves by permeating water through the cell: the so-called 

osmotic engine model (OEM, figure 5) [121]. This concept has been proposed sometime ago 

[122–124], and it is possible because, for a polarized cell, the intracellular osmolyte 

concentration is non-uniform. This allows an influx of water at the leading edge of the cell 

and an efflux at the trailing edge. When the intracellular fluid is stationary with respect to a 

fixed frame, the polarized water flux drives cell migration through the extension of cell 

membrane (figure 5(A)).

B: In order to develop the gradient of osmolytes in the cell, it is important to have a 

polarized distribution of ion channels and pumps in the cell. In the experiments of [121], 

they studied cancer cells migrating in 1D confined channels, a situation mimicking cancer 

metastasis in tissues. They observed that the cell has an elevated concentration of Na/H 

exchanger at the leading edge [121].

B: The interesting aspect is that the cell appears to be able to move with and without actin 

[120, 121]. The cell speed in actin-dependent motility appears to be faster, and the osmotic 

engine appears to be slower. Therefore, the cell seems to have two different gears, possibly 

for different environmental conditions. Water fluxes can also come from asymmetric 

external hydrostatic pressures, which also can drive cell migration [125].

S: Ions have electrical charges. Therefore, is it correct to consider neutral osmolytes in the 

OEM?

P: Only in a simplified phenomenological manner. In general we need to consider charged 

ionic species and the associated electric fields and voltage gradients [107, 126, 127]. This is 

true for both cell volume regulation and OEM. When transmembrane voltages are 

introduced, there is then a natural coupling between the osmotic engine model and cell 

migration under external electric fields (electro-motility) [128].

B: Electro-motility has been experimentally explored in 2D cells [129, 130]. Cells can go to 

either the cathode or the anode, and this ‘galvanotaxis’ appears to be cell-type dependent. 

Again, just as in the osmotic engine case, polarization of the cell plays an important role. It 

is not clear how cells turn these external electrical signals into spatial arrangements of 

various proteins in the cell. In general, actin and myosin are perhaps involved in both 

polarization dynamics and driving motility, and in the case of galvanotaxis, cell polarization 

maybe organized by downstream signal pathway from the electric signals [129].

P: In 2D the story could be more complicated. The water flux across the membrane now can 

come from any direction; it is the spatial distribution of water flux that determines cell shape 

and movement. In addition, we also need to consider the intracellular fluid dynamics [94, 

131]. But in 1D, the story is simpler. We can think of 1D cells with non-zero intracellular 

fluid velocity. In this case, as shown in figure 5(B), both the intracellular fluid velocity, vc, 

and water flux, Jwater, contribute to the cell migration. At the leading edge of the cell, we 

have a simple relation for the leading edge velocity

(10)
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This velocity condition is again a result of mass conservation.

B: Absolutely. Experimental observation shows that knocking out aquaporins in cells 

reduces cell migration speed [121, 132]. In many cases water flux and actin polymerization 

probably work together to facilitate cell migration. Although the exact details require further 

elucidation.

4.3. Actin and water together? A two-phase model of the cytoplasm

P: Yes. Indeed, for the general cell migration case, we can consider a two-fluid-phase model 

to understand physical elements giving rise to cell velocity. Let’s still consider a 1D cell. Let 

the volume fraction of the fluid (actin network) phase be θc (θn).θc+θn= 1 by volume 

conservation. Since now the fluid only occupies a fraction of the total mass of the cell, as 

illustrated in figure 5(C), then the velocity of the cell leading edge is related to the velocity 

of the fluid and fluxes by

(11)

whereJactin is the mass flux of new actin polymerizing at the cell boundary.Jactin depends on 

the G-actin concentration and the density of polymerizing actin ends. Now we observe that 

the water flux and actin polymerization add constructively to the velocity of the leading 

edge, as seen in the experiments [133]. Note that all the variables in entire system are 

potentially coupled,Jwater,Jactin, vc, and vn could all depend on each other.

S: That’s interesting! The actin phase and the water phase are coupled. Does this mean that 

water flux is always necessary during cell migration?

B: The kinematic relationship in equation (11) is clear, but how the actin and water 

velocities are regulated is unclear. The regulation of these kinematic variables has to do with 

mechanisms of cell polarization, and it is known that in addition to chemical factors, 

mechanical factors such as the cell membrane tension are involved [25, 134]. Actin perhaps 

is involved in setting up a polarized cell as well as contributing to membrane velocity. The 

answer is still out there.

5. Cell volume and cell shape dynamics: a quantitative view

P: In order to examine the combined contributions of actomyosin dynamics and osmotic 

flow in cell mechanics, it is useful to develop a quantitative description of forces and flows 

in cell volume regulation and cell shape change. To start we have to consider how 

mechanical forces are balanced at the cell surface for different cell geometries. This force 

balance requires us to consider the cell membrane, the actomyosin cortex, active contraction 

and polymerization, and potential water flows across the membrane. Using a continuum 

mechanics approach, it is possible to get an order of magnitude estimates of these 

contributions to the steady state cell shape.
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5.1. Cell surface force balance

P: To see how the details work, we can focus on a small section of the cell surface which 

includes the membrane and the actomyosin cortex underneath (figure 6). Since the cortex is 

permeable to water, at steady state the hydrostatic pressure within the cortex is relatively 

uniform. At mechanical equilibrium, the total force acting on the membrane surface element 

S enclosed by C is zero (figure 6(A)), and we have

(12)

where σ · n is the total force acting on the surface element S from the actomyosin network. 

σ is the mechanical stress in the cortex. T is the membrane tension, and the last term can be 

shown to be:

(13)

where the right hand side is the total force from membrane tension. Therefore, within the 

continuum framework, force balance gives an explicit relationship between actomyosin 

activity, cell hydrostatic pressure and membrane tension.

S: Ok, what is the stress in the actomyosin cortex, σ? How do we compute it?

B: Within the cytoskeleton network, actin actively polymerizes near the cell membrane and 

depolymerizes some distance from the membrane. This continuous mass flux generates an 

actin flow, and maintains a relatively constant cortical thickness, h ~ 200–500 nm [135]. As 

discussed earlier, myosin actively applies a contractile stress tangential to the membrane 

surface. Therefore, the total stress is σ=σp+σactive, and σactive = −σa(t ⊗ t+m ⊗ m), where 

we have assumed that the myosin-generated stress is isotropic: equal in both t and m 
directions. The negative sign in front of σa indicates that it is contractile. Since signaling 

networks can control the activation of myosin (figure 6(C)), σa is proportional to the amount 

of activated myosin, M: σa = KmaxM, in which Kmax is the maximum contractile stress when 

100% of myosin is activated. Kmax is a function of protein expression, and therefore can be 

assumed to be a constant over a short period of time (<hours).

P: σpassive can be estimated using the constitutive relation in equation (6). The results are 

straightforward [116], and we find that the passive stress within the network is relatively 

small when compared with the contractile stress and hydrostatic pressure, and the normal 

component of the force balance obtained from dotting equation (12) with n becomes

(14)

The tangential component is also interesting, and depending on the spatial variations in σ, 

there could be membrane flow and tension gradients. Geometrically, ∇ · n = 2H where H is 

the cell surface mean curvature [136]. Therefore we see that the active stress in the cortex 
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and the membrane tension both balance the hydrostatic pressure difference. Also, from our 

discussions earlier, if the cell is steady and there is no net water flow across the membrane, 

i.e. ΔP = ΔΠ, which means that osmotic pressure is related to membrane and cortical tension.

B: Another good thing about equation (14) is that it is essentially exact for rapid cortical 

turnover. Other cortical components like actin cross-linkers, Arp2/3 and bundling proteins 

may change the viscosity of the actin network, and could introduce a passive stress 

contribution in equation (14). Proteins like spectrin may further help to stiffen the cortex and 

generate elastic behavior [137]. But the general form of equation (14) still remains the same, 

only the passive stress contribution may change.

S: So we have local force balance for a stationary cell. What does this say about cell volume 

and cell shape?

P: The force balance equation is sufficient to determine the overall cell shape! Since ∇ · n is 

related to the mean curvature, we can relate the cell geometry to forces at the cell surface. 

For a spherical cell, ∇ · n = 2/R, where R is the cell radius. For other geometries, 

computation of the complete cell shape is possible from equation (14). We can discuss this a 

little later.

B: Moreover, equation (14) gives us a good view on how active regulation of myosin activity 

contributes to cell volume adjustment (figure 6(C)). σa depends on active chemical 

regulation of myosin. Some details on this are fuzzy, but studies suggest that 

mechanosensitive transmembrane protein is responsible for Rho activation, a crucial signal 

upstream for activating myosin. For example, mechanosensitive Ca2+ channel, such as 

TRPV4, can directly activate Rho [138, 139]. These mechanosensitive ion channels are 

membrane tension sensitive. Estimates have shown that membrane tension at steady state is 

low, in the order of 0.01 pN nm−1 [140, 141]. However, if there is a sudden changes in cell 

mechanical and chemical environment, such as during a osmotic shock or changes in 

mechanical force, the membrane tension can increase dramatically. The jump in membrane 

tension opens these mechanosensitive channels, and signals to the cell to activate Rho and 

myosin contraction. Since equation (14) is correct at times scales of tens of seconds, changes 

in σa re-adjusts ΔP and T, so that overall cell volume can adapt to change.

5.2. Dynamic control of cell volume and pressure

P: The sequence of events described by B can be put in mathematical form. We will limit 

our discussion to spherical cells where everything is spatially uniform. The first equation 

describes the total water content of the cell,

(15)

Here ΔΠ = RAT(n + Np)/V − RATcout where cout is the extracellular concentration. From 

what we know about ion channels, n changes much faster than Np, therefore we have
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(16)

where Iactive could be the flux through the active ion pumps and Ipassive is the flux through 

passive ion channels. The functional forms of Ipssive,active will depend on specific channels, 

and could depend on T and membrane electrical potential ϕm, and (cin, cout) where cin,out are 

concentrations inside and outside of the cell. For example, for the Na/K exchanger, which is 

an ATP-driven ion pump that exchanges 3Na+ with 2K+ ions, the flux depends on both 

intracellular and extracellular Na+ and K+ concentrations. The flux expression has been 

proposed, and is dependent on transmembrane voltage, ϕm [126]. Na+ flux is coupled to Cl− 

flux through Na-K-Cl co-transporters [108].

The remaining quantity to define is ΔP which according to equation (14) is

(17)

This introduce unknowns T and σa If σa is governed by a feedback signaling mechanism 

then

(18)

where K1,2 are phosphorylation/dephosphorylation rate constants. From properties of the 

signaling network, K1,2 can depend on membrane tension and ion concentrations inside the 

cell. It is also possible that shear stress within the cortex could signal to myosin, and K1 

depend on σp, or myosin intrinsic mechanosensitivity [142]. Finally, membrane tension can 

be described by another constitutive relation, e.g.

(19)

where A0 is the unstretched membrane area, and A would be the current membrane area. A 
would be a function of R. Note that in cells, the membrane is likely highly folded, therefore 

the actual constitutive law must incorporate entropic elasticity, and the relationship between 

A and R maybe complicated [143, 144].

Equations (15)–(19) are a closed set of dynamic equations that describe changes in (R, n, σa, 
T) for given parameters (Np,A0, Kmax, cout) and associated flux constants in α and 

Ipassive, active. This system of equations has a steady state (Rss, nss, σa,ss, Tss), which are the 

homeostatic values of these quantities in the cell. This steady state should be stable against 

perturbations, and the phase space region around the steady state will describe how cells 

responds to changes in variables such as Np and cout.
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S: Does this mean that we can predict cell volume for a given condition?

P: Precisely.

B: The details are significantly more complicated than described here. First, there are 

multiple types of permeable ions, at least Na+, K+ and Cl− are involved. Ca2+ is another 

secondary messenger. Furthermore, flux equations for Ipassive.active are generally not known. 

Since ions are charged, membrane potential ϕm also comes into play [128]. Since ionic 

species are coupled through co-transporters, flux couplings become very complicated. It is 

likely that cells have compensatory mechanisms when fluxes are disrupted. Currently there 

are no predictive models of ionic flux balance in cells.

S: So this problem is not completely understood at all!

5.3. Adherent cells: a test of the model

P: Spherical cells are not very common. But further verification of these ideas can come 

from examining adherent cells: cells that are growing on flat substrates. Let us consider a 

static axisymmetric cell confined on a circular substrate (figure 7). At steady state, T ≪ σah. 
Equation (14) then becomes: (∇ · n)−1 = hσa./ΔP For the coordinate system defined in figure 

7(A), D, which describes the shape of the adherent cell, is a function of θ. ∇ · n can be 

expressed as a function of D(θ), we therefore have

(20)

where D′ = ∂D/∂θ and D″=∂2D/∂θ2. This is a nonlinear 2nd order ODE, therefore two 

boundary conditions (BCs) are needed to determine the cell shape. One of the BC is the 

adhered size, R0, which sets D(θ = 0) = R0. The other BC can be obtained by assuming the 

cell surface is smooth at θ = π/2. Notice σa, h all can be functions of θ, but if they are 

constants, then there is a single size parameter r0 = 2hσa/ΔP. In this case, if R0 = r0, the cell 

is a prefect hemisphere. If R0 > r0, the cell will be stretched at the top, with a flatter region 

near the substrate. Figure 7 shows some computed cell shape for different adhesion size R0. 

The result predicts that for the same r0, cells with larger spread area tend to have larger 

volume (figure 7(B)).

S: It seems that equation (14) can predict at lot of features of the cell. But you only 

mentioned about suspended or axisymmetric cell shape. What about non-axisymmetric 

cells?

P: Of course, equation (14) is applicable for all types of cells under any condition. But the 

distribution of σa is in general a function of space, and depends on local signaling activity of 

Rho, Rac GTPases. If we can measure hσa/ΔP as a function of space, then we can compute 

the cell shape for any adhesion geometry. For example, by triangulating the cell surface, we 

can compute the local mean curvature around the ith vertex as (figure 7(C)) [146, 147]
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(21)

where ai is the area around the vertex, and the sum is over j vertices connected to the i-th 

vertex. lij and θij are the length of the connecting edge and the angle between triangles 

sharing the edge, respectively. Using a weak form of equation (14), we can compute the 

shape of the cell surface for a given hσa/ΔP for any substrate geometry (figure 7(C)).

The other unknown is ΔP, which if there are no protein and ionic gradients, ΔP should be 

spatially uniform. But we do not know whether it remains constant in all conditions. There 

has been efforts to measure intracellular ΔP [145]. In general, the right hand side of equation 

(20) is not clear, and generally depends on θ.

S: Ok, but why are we interested in cell shape dependence on substrate geometry? How 

would this influence important biological functions?

B: We know that substrate properties can influence many aspects of cell function [68, 148, 

149]. For example, cell cycle progression seems to depend on substrate stiffness [150]. R0 

seems to change depending on cell substrate properties. These changes also seem to 

influence mesenchyemal stem cell differentiation [151]. Therefore, many essential cell 

functions depend on substrate stiffness and substrate adhesion [67]. Extracellular matrix 

stiffness also influences cell migration and cancer metastasis [152], the list goes on… 

Indeed, gene expression profiles are changed depending on substrate adhesion and substrate 

stiffness [153]. From mechanics alone, we see that cell volume and cell shape depend on 

substrate adhesion and geometry. And since cell volume will influence all kinds of protein 

concentrations, there could be a physical basis to these biological changes [154]. There are 

lots of questions in this direction and further work is needed

5.4. Higher order models: cell and tissue mechanics

S: We see that water flux is influenced by hydrostatic and osmotic pressures equally. 

Therefore, it should be possible to drive water flow from externally applied mechanical 

forces too, right?

P: This is correct! In equation (14), if there is an externally applied mechanical force to the 

cell Fext, it simply adds to the force balance equation and modifies it to

(22)

This says that the hydrostatic pressure difference can be changed by externally applied 

mechanical force. A change in ΔP leads to water flux, and changes in osmotic pressure as 

well. Therefore, a complex response is initiated when an external force is applied to the cell 

[105, 155]. The response depends on the rate of deformation: since water flows across the 

membrane slowly, a rapidly applied force will generate deformations that essentially 
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preserves the cell volume [105]. Alternatively, if the deformation is slow, then water will 

flow, leading to cell volume change. It appears that the relevant deformation time scale is μm 

s−1 [105, 116]. With this time scale or slower, cells can change volume significantly.

B: This time scale of deformation is important. During organismal development, most shape 

changes occur slowly. Therefore mechanical forces in developing tissues must influence 

water dynamics in cells and tissues [156–159].

S: In some of my readings, there are already proposed models for tissue mechanics. For 

example, an approach that relates cell volume and surface area with a ‘mechanical energy’ 

has been popular [160–166] (figure 8):

(23)

where the first sum is over cells, and the second sum is over cell-cell interfaces. The first 

term models cell volume change with respect to a reference V0. The second term is a 

contractility term, describing the propensity to shrink the cell surface area from myosin 

activity. The last term is a surface energy term. The surface energy term may model cell-cell 

contact energy arising from chemical bonds such as E/N Cadherins [167]. This model has 

used to describe cell motility in the confluent epithelium [163, 168, 169], and it has been 

shown that different combinations of surface energy term and contractility can lead to a 

jamming transition, i.e. a possible lost of global cell mobility within the epithelium [169]. 

How do we interpret this model, since the cell is an active object that does not obey energy 

conservation principles?

P: Well, this is a very interesting point. This is a phenomenological model that roughly 

describes cell shape and volume dynamics using an energy. It could be interpreted as a 

Lyapunov function of the dynamical systems model, equations (15)–(19). Lyapunov function 

is an energy-like function that describes phase space flow near the steady state fixed point 

[170]. This function is generally difficult to find. For cells in normal physiological 

situations, since it actively controls its cell shape and volume, the steady state fixed point 

must be stable, and a Lyapunov function likely exists. In other contexts, the system may 

exhibit interesting limit cycle dynamics [171, 172] Therefore it would be interesting to 

connect the cell volume and cell shape model at the single cell level to the multi-cellular 

model in equation (23).

In addition, a continuum model for the tissue layer can be built from a discrete model in 

equation (23). Indeed, the material described by equation (23) can behave as a jammed solid 

or a fluid [166]. At long times, cell division and apoptosis relieves shear stress and overall 

tissue again behaves as a fluid [173].
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6. Conclusions and perspectives

S: So mechanics has a lot to do with how cells move and control their size and shape. How 

cells generate force and respond to applied force depends on functions of cytoskeleton as 

well as water flow.

B: This is good, but the next level of question for biology is how these mechanical forces 

and cell shape information are integrated to gene expression and epigenetic modification. 

For example, we know that when mechanical forces are applied to the cell, the cell responds 

at the seconds time scale by opening and closing ion channels and pumps. At the minute 

time scale, signaling molecules such as Rho, Rac and ROCK integrates this information to 

regulate cytoskeleton activity and motor function [71, 174]. At time scales longer than 

minutes, however, we observe transcription factor movement across the nuclear envelope, 

and gene expression profiles of the cell starts to change [153, 175, 176]. Ultimately, these 

changes will modify cell cycle dynamics, and perhaps even the cell phenotype. Therefore, 

the connection between cell mechanics and genetic regulation is the critical step in 

advancing biology.

P: This is absolutely right. The connection between mechanics, forces and genes ultimately 

underlies organismal development, tissue morphogenesis and disease biology [151, 177]. 

Often, there is a circular loop between mechanics and genes. Transcriptional changes alter 

cell force generation; this then of course changes the cell organization, shape and motility, 

which further alter gene activity (figure 9(A)). The opposite loop can also occur: when 

forces and mechanics experienced by cells change, this could alter signaling pathways and 

modify gene activity, which then leads to protein expression change and alterations in cell 

force production and shape. Biology is probably best explained when we consider forces and 

mechanics, together with genes as a combined system.

B: P makes an excellent point. Some preliminary evidence could link cell mechanics with 

gene expression. For example, by changing the substrate size, the variable R0 in figure 7, an 

important transcription factor can change its localization between the cytoplasm and the 

nucleus [175]. We also know that the genome of the cell is organized and folded in a 

reasonably well defined 3D structure [178, 179]. The topology of this 3D structure seems to 

determine the epigenetic state of the cell. Indeed, genetic material itself seems to be a 

mechanically active material [180]. Mechanical forces of course, can alter the structure of 

biological molecules as well as chromatin [181–184]. It is reasonable to consider how forces 

might directly alter 3D chromatin organization, and some studies have demonstrated that 

there is a connection between nuclear mechanics and cytoskeletal mechanics [185–188]

P: Indeed, there seems to be experimental evidence that links cell volume with cell nuclear 

volume and shape (figure 9(B)). When cell volume decreases, the nuclear volume also 

shrinks [189]. Cytoskeletal networks are also physically connected to the nuclear envelop, 

and actively exert forces to shape the nucleus [185, 186, 188, 190–192]. This would compact 

the chromatin loops and change transcriptional program. Of course, mechanosensory 

molecules such as membrane channels, Rho, myosin and actin network itself may also 
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directly communicate with nuclear transport and transcriptional factor localization, leading 

to direct connection between genes and cell mechanics.

S: Ahh, so many things to consider in order to understand biological organization. Where 

can physical models help?

B: From a biologist perspective, mathematical modeling provides a framework to think 

about functional relationship between measurable quantities. For example, a relationship 

between cell size and cell cortical tension is predicted by equation (14). We can then check 

this by measuring cell size and myosin activity. It is not necessarily possible to achieve 

quantitative prediction, but it is absolutely necessary to make predictions about how things 

maybe related to each other. These functional relationships are also opportunities for us to 

test the model.

P: From the modeling perspective, models are only as good as their assumptions! Therefore, 

experimental work that test assumptions are valuable. Some of the modeling assumptions are 

not easily understood, or even noticed! Therefore, in addition to testing functional 

relationships provided by the models, another way to test models is to simply test 

assumptions of the model, implicit or otherwise!

S: Great, let me get back to the lab and checkout what we talked about today. Next week, I 

will come back and show you what I find, and I’m sure I will have more questions!
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Figure 1. 
Living animal cells must move and deform to accomplish essential processes such as cell 

division or cell motility. These active movements are thought to be generated by cytoskeletal 

filaments and molecular motors within the cell. Motors such as myosin can generate 

contractile forces within actin networks. Actin filaments can also polymerize, and together 

with actin binding proteins to form loose open networks such as the lamellipodium, or 

bundled structures such as stress fibers. These structural elements in the cell can all 

influence the shape and movement of cell boundaries.
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Figure 2. 
(A) Mass conservation is related to cell boundary movement. There is a velocity field, v(x, 

t ), within the shaded region representing the material in consideration. The boundary of the 

material can move from mass fluxes at the boundary J1,2. Cells build actin filaments from 

actin monomers; therefore the actin network can extend and retracting according monomer 

fluxes. (B) For a moving cell with a flat and broad lamellipodium, there is a polymerizing 

actin network at the leading edge. Mass flux of actin monomers (G-actin) increases F-actin 

network mass and drives membrane protrusion.
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Figure 3. 
Actin cytoskeletal network behaves as a viscoelastic fluid, primarily due to force-dependent 

binding and unbinding of cross-linker proteins and filament depolymerization. When forces 

are applied to filaments, cross-linker dynamics acts as a viscous friction between filaments 

at time scales longer than cross-linker binding rates. The network flows under force, giving a 

constitutive relationship as in equation (6).
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Figure 4. 
Cell pressure and volume regulation. There is typically an elevated cytoplasmic osmotic 

pressure (Πin) as compared to the extracellular environment (Πout). Therefore, hydrostatic 

pressure inside the cell is higher: Pin > Pout. The hydrostatic pressure difference is largely 

sustained by tension in the actin cortex underneath the membrane. When the osmotic 

pressure difference changes, this causes a change in the hydrostatic pressure difference and a 

change in cortical/membrane tension. Cells will re-adjust its osmotic content by opening and 

closing ion channels and pumps, and re-adjust cortical tension. When the cell experiences 

mechanical forces, the hydrostatic pressure difference changes, and cause the same chain of 

osmolyte flux and actomyosin tension change. It is unclear whether the cell maintains a 

constant osmotic pressure difference in all conditions.
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Figure 5. 
Directional water flux, like actin polymerization flux, can drive cell movement. (A) Cells in 

confined environments can generate water influx at the leading edge and water efflux at the 

trailing edge. The water flux is connect with directional ionic flows. (B) Fluid flux gives a 

quantitative kinematic condition for the cell boundary: equation (10). Here vc is the fluid 

velocity in the cytoplasm and v0 is the velocity of the cell leading edge. In time Δt, the new 

volume element is v0Δt which is equal to the sum of vcΔt and JwaterΔt. (C) If the cytoplasm 

is considered as a 2-phase fluid, the fluid phase only occupies a fraction of the cell volume 

θc. In this case, the new volume is given by a combination of vc, actin velocity vn, and Jwater 

and Jactin (equation 11).
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Figure 6. 
(A) Schematic illustration of mechanical forces on a membrane element S. This element 

experiences forces from stress in the actin cortex below, membrane tension in plane of the 

membrane, and hydrostatic pressure that acts normal to the membrane. (B) When actin 

polymerization and myosin contraction are consider, we can estimate the stress in the cortex. 

The sum of mechanical forces yields force balance condition equation (14). (C) Myosin 

contraction in the cortex is regulated by signaling networks. Mechanosensitive channels can 

sense membrane tension change, and activation myosin contraction relatively quickly.
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Figure 7. 
(A) Computed 3D shapes of adherent cells for different substrate adhesion size, R0. The cell 

surface is described by the function D(θ) (inset). Equation (20) predicts that the cell shape 

varies with increasing R0. (B) Cell volume increases as substrate size increases. The critical 

parameter governing the volume-area correlation is σa/ΔP. (C) Mean curvature can be 

approximately computed using triangular surfaces using equation (21). The triangulated 

surface can describe cell shape in arbitrary geometry. ((D), (E)) Computed 3D cell shapes 

using triangulation of cell surface for cells on circular and triangular substrates. Here r0 = 

2σah/ΔP.
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Figure 8. 
Epithelial cell layer mechanics. When cells form a confluent layer, the shape and forces 

within the tissue can be described by an energy formulation of the vertex model (equation 

(23)). The energy function describes cell-cell adhesion, cell volume change and cell surface 

contractility, and can be understood as a Lyapunov function of the shape and volume 

dynamical system described by equations (15)–(19).
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Figure 9. 
(A) Nuclear shape and volume is directly impacted by cell mechanics. The upper image is of 

a crumpled nucleus when a tissue cell is detaching from the substrate. The lower image is a 

computational analysis of an elastic shell undergoing crumpling transition when the pressure 

difference across the shell is increasing. (B) Mechanistic models that describe cell dynamics 

must incorporate cell mechanics, biochemistry and gene expression together in a single 

picture. These systems interact with each other and give rise to complex cell behavior in 

biological contexts.
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