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Deficiency of the G protein Gαq ameliorates
experimental autoimmune encephalomyelitis with
impaired DC-derived IL-6 production and Th17
differentiation

Weiming Lai1,5, Yingying Cai1,5, Jinfeng Zhou1, Shuai Chen1, Chaoyan Qin1, Cuixia Yang1,
Junling Liu2, Xin Xie3 and Changsheng Du1,4

Many G protein-coupled receptors (GPCRs) are reported to be involved in the pathogenesis of multiple sclerosis
(MS), and ~40% of all identified GPCRs rely on the Gαq/11 G protein family to stimulate inositol lipid signaling.
However, the function of Gα subunits in MS pathogenesis is still unknown. In this study, we attempted to
determine the role of Gαq in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a well-known
mouse model of MS. We discovered that compared with wild-type mice, Gαq-knockout mice exhibited less severe
EAE symptoms, with lower clinical scores, reduced leukocyte infiltration and less extensive demyelination.
Moreover, a significantly lower percentage of Th17 cells, one of the key players in MS pathogenesis, was observed
in Gαq-knockout EAE mice. Studies in vitro demonstrated that deficiency of Gαq in CD4+ T cells directly impaired
Th17 differentiation. In addition, deficiency of Gαq significantly impaired DC-derived IL-6 production, thus
inhibiting Th17 differentiation and the Gαq-PLCβ-PKC and Gαq-MAPKs signaling pathways involved in the reduced
IL-6 production by DCs. In summary, our data highlighted the critical role of Gαq in regulating Th17 differentiation
and MS pathogenesis.
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INTRODUCTION

Multiple sclerosis (MS) is a common autoimmune inflamma-
tory disease of the central nervous system (CNS) characterized
by immune-mediated demyelination, axonal loss and tissue
destruction. The animal model, experimental autoimmune
encephalomyelitis (EAE), has many pathological and histolo-
gical similarities with MS. The pathogenesis of MS is still
unclear. Many environmental risk factors have been reported
to be involved in MS pathogenesis, such as viral infection,
sunlight exposure and cigarette smoking.1,2 Recently, many
studies have shown that both Th1 and Th17 cells play a role in

MS.3 T cell polarization, leukocyte migration and infiltration
into the CNS are very important steps involved in EAE
pathogenesis.4 However, how various environmental stimuli
participate in MS and EAE pathogenesis is unclear. G protein-
coupled receptors (GPCRs) are known to mediate most of the
physiological responses to environmental stimuli, suggesting
that GPCRs may play an important role in MS pathogenesis by
mediating signal transduction.

GPCRs, which are important drug targets, mediate a number
of biological processes by transmitting signals across the cell
membrane.5 The binding of agonist and receptor leads to the
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activation of the G protein Gα subunit and the Gβγ dimer,
which can regulate a set of independent effectors.6 Gα subunits
are divided into five different families: Gαq, Gαs, Gαi, Gαv and
Gα12, according to sequence similarity.7,8 The Gαq/11 family
has four family members; Gαq and Gα11 are ubiquitously
expressed, Gα14 is expressed in the kidney, liver and lung, and
Gα15/16 is only found in hematopoietic cells.9 Many cellular
proteins have been reported to interact with Gαq, such as
phospholipase C β (PLCβ), Akt and MAPK members.10

Many GPCRs have been reported to participate in MS or
EAE pathogenesis.11 In MS patients, β-adrenergic receptors
have been reported to be increased in PBMCs and correlated
with disease activity;12 a significant decrease in kappa opioid
receptors has been found in the spinal cords of MS patients and
are thought to be related to neuropathic pain.13 CVT-6883, an
A2BAR-specific antagonist, alleviates EAE pathogenesis via
reducing IL-6 secretion from dendritic cells (DCs);14 CXCR3
signaling reduces the severity of EAE by controlling the
distribution of effector and regulatory T cells in the CNS.15

However, the function of G proteins in MS or EAE is still not
clear. It has been estimated that almost 40% of all identified
GPCRs rely on the Gαq/11 family to stimulate signaling. In this
study, we found that Gαq-KO mice showed less severe clinical
symptoms of EAE and reduced CNS infiltration of inflamma-
tory cells. Further research demonstrated that Gαq-KO mice
showed reduced Th17 differentiation by inhibiting IL-6 pro-
duction by DCs, which was mediated by Gαq-PLCβ and
MAPK signaling. Our results revealed a critical role of Gαq
in regulating EAE pathogenesis by influencing Th17 differen-
tiation and IL-6 production in DCs.

MATERIALS AND METHODS

Mice
C57BL/6 mice were purchased from Nanjing Biomedical Research
Institute of Nanjing University (Nanjing, China). Gαq-KO mice
were derived from the C57BL/6 strain, and genotype identification
was based on PCR.16 All mice were maintained at the Tongji
University animal care facility in pathogen-free conditions. The
experiments were carried out in accordance with the Tongji
University Animal Care Committee guidelines.

EAE induction
Female mice (8–10 weeks of age) were immunized with
MOG35-55 (200 μg) in CFA, which contained heat-killed
Mycobacterium tuberculosis (5 mg/ml). Pertussis toxin (200 ng/
mouse) was IP injected on day 0 and day 2. Clinical appearance
was assessed daily and scored as follows: 0, normal; 1, paralyzed
tail; 2, mildly paralyzed hind legs; 3, totally paralyzed hind legs;
3.5, paraplegia with mildly paralyzed forelimbs; 4, paraplegia
with paralyzed forelimbs; 4.5, moribund and 5, death.

Histopathological and immunohistochemical analysis
For the histological analysis, mice were anesthetized with
chloral hydrate and then perfused with phosphate buffer saline
(PBS), followed by 4% paraformaldehyde (pH 7.4). Lumbar
spinal cord samples were collected and fixed in 4%

paraformaldehyde ⩾ 12 h. Paraffin-embedded tissue sections
(5 μm) were stained with H&E and Luxol fast blue to analyze
inflammatory infiltration and demyelination. Image-Pro soft-
ware was used to calculate the number of infiltrating cells and
the percentage of myelin loss in inflammatory foci per section
for quantization of inflammation and demyelination levels,
respectively. Paraffin-embedded sections of the spinal cords
were rehydrated and put in antigen retrieval solution at 95 °C
for 20min before proceeding to immunohistochemistry. Sec-
tions were incubated with rabbit polyclonal anti-NFH antibody
(N4142, 1:500) and mouse anti-GFAP antibody (MAB360,
1:500) at 4 °C overnight. The secondary antibody was con-
jugated to Alexa Fluor 546 (Thermo Fisher, A-11010, 1:1 000)
or 488 (Thermo Fisher, A-11001, 1:1 000), and nuclei were
stained with DAPI. An Olympus IX51 inverted fluorescence
microscope was used for fluorescence detection.

Reverse transcription and quantitative real-time PCR
Total RNA was extracted from mouse tissues (lymph nodes,
spleen, cerebrum and lumbar spinal cord) using TRI reagent
(Molecular Research Center, Inc.). Reverse transcription was
performed with random hexamer primers and murine leuke-
mia virus reverse transcriptase (Promega, Madison, WI, USA).
Quantitative real-time PCR was assayed in a LightCycler
quantitative PCR apparatus with SYBR Green 2× qPCR
Master Mix (Bioneer, Seoul, South Korea). Expression was
normalized relative to β-actin and then to the expression of the
control. The primer sequences are listed in Supplementary
Table 1.

Flow cytometry
Lymphocytes from tissues or CD4+ T cells from in vitro differen-
tiation assays were incubated with PMA (50 ng/ml; Sigma, St
Louis, MO, USA), ionomycin (750 ng/ml; Sigma) and brefeldin A
(10 μg/ml; Sigma) for 5 h at 37 °C. Surface markers were
incubated with relevant antibodies for 30min at 4 °C in the dark.
Then, the cells were subjected to fixation and permeabilization,
followed by intracellular cytokine (IL-17 and IFN-γ) staining with
relevant antibodies for 30min at 4 °C in the dark. A Foxp3
staining buffer set (eBioscience, San Diego, CA, USA) was used to
detect Treg cells after fixation, permeabilization and staining with
antibody for 30min at 4 °C in the dark. Flow cytometric analysis
was carried out with a Guava EasyCyte 8HT system and
GuavaSoft software.

ELISA
Serum was collected from the orbital venous blood. To collect
culture supernatants, lymphocytes were isolated from the
draining lymph nodes, seeded into 96-well plates (2× 105/
well/100 μl and restimulated with MOG35–55(20 μg/ml) for
3 days at 37 °C. The concentration of IL-17A, IFN-γ, TGF-β
and IL-6 in the serum and the culture supernatants was
measured using ELISA kits (eBioscience).
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CD4+ T cell isolation and in vitro differentiation
CD4+ T cells were isolated by magnetic depletion of non CD4+

T cells using a cocktail of biotin-conjugated antibodies from
single-cell suspensions of mouse spleen (Invitrogen, Oslo,
Norway). Cells were activated with anti-CD28 (2 μg/ml) and
anti-CD3 (2 μg/ml). Anti-IL-4 (10 μg/ml) and IL-12 (10 ng/ml)
were added for Th1 polarization. Anti-IFN-γ (10 μg/ml), anti-
IL-4 (10 μg/ml), IL-6 (30 ng/ml), TGF-β1 (3 ng/ml), IL-1β
(10 ng/ml) and TNF-α (10 ng/ml) were added For Th17
polarization. Anti-IFN-γ (10 μg/ml), IL-2 (10 ng/ml) and
TGF-β1 (5 ng/ml) were added for Treg polarization. Cells were
collected on day 4 for analysis.

DC generation, stimulation, IL-6 measurement and
migration assay
Bone marrow progenitors, isolated from the femurs and tibias
of mice, were cultured in complete medium supplemented
with murine GM-CSF (20 ng/ml) and murine IL-4 (1 ng/ml)
for 7 days to generate bone marrow-derived dendritic cells
(BMDCs). LPS (1 μg/ml) was added and incubated for 24 h to
induce maturation of BMDCs. The supernatants were col-
lected, and IL-6 was measured by ELISA assay. Transwell
chambers with 5 μm pore size (Costar 3421, Corning, Kenne-
bunk, ME, USA) was used for the migration assay. A total of
5 × 105 LPS-matured BMDCs were placed in the upper
chamber, and CCL19 (100 ng/ml; Peprotech, Rocky Hill,
NJ, USA), CCL21 (100 ng/ml; Peprotech), and CXCL12
(200 ng/ml; Peprotech) were placed in the lower chamber at
37 °C. After incubation for 3 h, cells in the lower chamber were
collected and stained with CD11c for flow cytometric analysis.
The numbers of migrated BMDCs are given as the fold increase
over the blank control.

DC-T cell co-culture
A CD4+CD62L+T cell Isolation Kit II (Miltenyi Biotec,
Auburn, CA, USA) was used to isolate naive T cells from
single-cell suspensions from the spleen; in the first step, non-
CD4+ cells were magnetically depleted, and magnetically
labeled CD62L+ T cells were positively selected in the second
step. In the DC-T cell co-culture assay, naive T cells and
BMDCs were cultured at a ratio of 3:1 in complete medium
supplemented with anti-CD28 (2 μg/ml), anti-CD3 (2 μg/ml)
for 72 h. Anti-IFN-γ (10 μg/ml), TGF-β1 (3 ng/ml), and anti-
IL-4 (10 μg/ml) were added for Th17 polarization. Cells were
collected on day 4, and the percentage of Th17 cells in the
CD4+ gate was detected by flow cytometric analysis.

Statistical analysis
A two-way ANOVA test was used to assess the significance of
EAE clinical scores between the two groups throughout the
disease course. The Mann–Whitney U-test was used to
compare the significance of EAE clinical scores between the
two groups on a given day. Student’s t-test was used to assess
the other analyses. All data are expressed as the mean± s.e.m.
P valueso0.05 were considered significant.

RESULTS

G protein Gαq-KO mice develop less severe EAE
Approximately 40% of GPCRs rely on the Gαq/11 G protein
family to perform their functions. In addition, some GPCRs,
such as the A2B adenosine receptor, β2-adrenergic receptor
and CXCR3, coupled to Gαq/11 protein, were reported to play
a role in the pathogenesis of EAE and other autoimmune
disease. Thus, we were interested in the role of Gαq in EAE
pathogenesis. C57BL/6 mice were induced to develop EAE with
MOG35-55, and we assessed the mRNA level of Gαq in different
tissues (lymph nodes, spleen and brain) on days 3, 6, 9, 12, 15
and 18 post-immunization (PI). Expression of Gαq was

Figure 1 Expression profile of Gαq in the peripheral immune
tissues and central nervous system during EAE pathogenesis. Total
RNA was isolated from the spleen, lymph nodes and brains of naive
controls and EAE mice on days 3, 6, 9, 12, 15, and 18 post
immunization. qPCR was performed to analyze gene expression.
The expression was normalized to relative β-actin and then to the
expression of the control. (a–c) Relative expression level of Gαq in
lymph nodes (a), spleen (b) and brain (c). The data are expressed
as the mean± s.e.m. (n=6).
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Figure 2 Gαq-KO suppresses EAE pathogenesis. (a) Clinical scores of EAE in WT (n=14), heterozygous (n=15) and Gαq-KO (n=5) mice.
The data are expressed as the mean± s.e.m. ###Po0.001 versus WT group throughout the disease course (two-way analysis of variance
(ANOVA)), *Po0.05 and **Po0.01 versus WT on any given day (Mann–Whitney U-test). (b) Hematoxylin and eosin and (c) Luxol Fast
Blue staining of the paraffin sections of the spinal cords isolated from naive and EAE-induced WT, heterozygous, and Gαq-KO mice on day
17 PI, and boxed areas in the top column are enlarged and presented at the bottom; the circular areas show infiltration or demyelination.
Scale bars, 200 μm. (d and e) Quantization of CNS infiltrates; the percentages of demyelination presented in (b) and (c) were quantified
by Image-Pro. Five mice from each group were killed, and 20 sections from each mouse were analyzed. The data are expressed as the
mean± s.e.m. ***Po0.001 versus naive group, ###Po0.001 versus WT-EAE.
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abundant in the detected tissues, and a slight upregulation of
Gαq was observed in lymph nodes (Figure 1a), while no
significant changes were found in either the spleen or central
nervous system during EAE pathogenesis (Figures 1b and c).
The stable expression level of Gαq is reasonable, as Gαq plays
broad and critical roles in the regulation of physiology.

To investigate the function of Gαq during EAE development,
Gαq-KO mice (PCR identification, Supplementary Figure 1)
were subjected to EAE induction with MOG35-55 immunization,
together with the relative heterozygotes and wild-type litter-
mate controls. The clinical appearance of EAE was assessed
daily for 30 days. Our results showed that compared with the
WT controls, EAE severity was significantly alleviated in the
Gαq-KO mice, with low incidence (80%), and a slight relief of
disease symptoms was observed in the heterozygous group
(Figure 2a, Table 1). Because our previous work showed that
the expression of some proinflammatory cytokines, such as
IL-17 and IL-6, was uniformly upregulated on day 15 and
reduced on day 18 in the CNS (data not shown), the lumbar
spinal cords, which had the most leukocyte infiltration and the
most severe demyelination, were collected on day 17 to detect
leukocyte infiltration and myelin loss in CNS. Based on the
quantization of H&E staining with Image-Pro software, we
found that compared with WT mice, leukocyte infiltration in
the lumbar spinal cord was remarkably decreased in Gαq-KO
mice (Figures 2b and d), and less demyelination in the Gαq-
KO mice was also shown by Luxol fast blue staining (Figures 2c
and e). Fluorescent staining of the nucleus with DAPI in the
paraffin sections of spinal cords was also performed to test
leukocyte infiltration in the CNS, which confirmed that
deficiency of Gαq efficiently prevented leukocyte infiltration
of the spinal cord (Supplementary Figures 2A and B). We also
assessed the gliosis and neurofilament expression in the
inflammatory foci of the spinal cord by immunostaining with
antibodies targeting GFAP (gliosis) or NFH (neurofilaments)
(Supplementary Figure 2C).17,18 The increase of GFAP-reactive
gliosis, which correlated with EAE progression, was suppressed
in Gαq-KO mice. NFH staining showed that the extensive
axonal damage in the spinal cord sections of WT mice was
absent in Gαq-KO mice. All these results demonstrated that
Gαq was functionally involved in EAE pathogenesis.

Gαq deficiency inhibits in vivo Th17 development
Th1 cells and Th17 cells are thought to be the major
pathogenic effector cells in EAE. To reveal the role of Gαq in
the development of T cells during EAE pathogenesis, we

detected the percentages of Th1 and Th17 in the CD4+ cell
population from the lymphocytes of EAE mice. Our previous
findings have shown that proinflammatory cytokines such as
IL-17A increased on days 6 and 9 and reduced on day 12 in the
spleen and lymph nodes (data not shown). Therefore, the EAE
mice were killed on day 10. Compared with the WT controls
(5.29%), the percentage of the Th17 subset was significantly
reduced in the lymph nodes of Gαq-KO mice (1.71%)
(Figures 3a and b). Compared with WT mice (2.91%), the
percentage of the Th1 subset was also decreased (1.81%) but
was not significant (Figures 3a and c). IL-17A is the main
effector cytokine of the Th17 subset; thus, we measured IL-17A
production from lymph node cells with MOG restimulation
in vitro for 72 h. The ELISA results showed that IL-17A was
also significantly suppressed by nearly 61% in Gαq-KO EAE
mice (Figure 3d). However, IFN-γ secreted by Th1 cells or
TGF-β secreted by Tregs was not significantly altered between
the Gαq-KO and WT lymphocytes (Figures 3e and f). Th17-
associated genes (il22, il17a, il23r), which are typically upregu-
lated in peripheral lymphoid organs during EAE progression,
were also detected in the lymph nodes. Our results indicated
that the expression of these genes in Gαq-KO mice was lower
than in WT mice (Figure 3g). In contrast, compared with WT
mice; ifng, a Th1-related gene, showed no significant change
(Figure 3g). All these data demonstrated that Th17 develop-
ment was impaired in Gαq-KO mice during EAE pathogenesis.

Gαq deficiency inhibits in vitro Th17 differentiation
Gαq has been reported to be involved in the pathways that
regulate the migration and survival of T cells.16,19 We further
investigated whether Gαq directly influenced the polarization
of T cells. Th1, Th17, and Treg cells, three subsets of CD4+

T cells, were induced from CD4+ T cells using different
combinations of cytokines and antibodies as previously
described.20 As depicted in Figure 4, Gαq deficiency in CD4+

T cells did not affect Th1 differentiation (Figures 4a and b),
but a significant impairment of Th17 differentiation, from 17
to 6.9%, was observed (Figures 4d and e). We also found
that Gαq deletion induced Treg differentiation from 22.58 to
29.20% (Supplementary Figure 3), which was in accordance
with the less severe EAE symptoms, as Tregs play an immuno-
suppressive role during EAE pathogenesis. Then, we measured
IL-17A and IFN-γ levels in the supernatant by ELISA.
The results showed that Gαq deletion led to reduction of
IL-17A secretion by nearly 89.2% (Figure 4f), but it did not
influence IFN-γ production (Figure 4c). All these data

Table 1 Development of EAE

Group Incidence Day of disease onset Maximum clinical score Score43

Wild type 14 of 14(100%) 15.0±0.9 3.1 (±0.4) 9 of 14
heterozygote 14 of 15(93.3%) 14.2±0.4 2.4 (±0.3) 7 of 15
Gαq-KO 4 of 5(80%) 11.5±0.3 1.1 (±0.4)* 0 of 5

Development of MOG35–55-induced EAE. Incidence reflects the number of mice that developed EAE relative to the total mice in a group; Day of disease onset is
presented in days (mean± s.e.m.); Maximum clinical score is the average of the highest score reached by each mouse in a group (mean±SEM.); Score43 shows the
number of mice achieving an EAE score of greater than 3 relative to the total mice in a group. *Po0.05, versus wild type (Student’s t-test).
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demonstrated that a deficiency in Gαq directly impaired Th17
differentiation.

Gαq deletion leads to reduction of IL-6 production by DCs
DCs, as the most powerful APCs in the peripheral immune
system, can influence the fate of naive CD4+ T cells by
producing cytokines, such as IL-1, IL-6 and IL-23.21,22 IL-6
initiates the development of Th17 and forms a positive feed-
back loop with IL-17.23 To test whether Gαq could modulate
Th17 differentiation indirectly through regulating cytokine
production by DCs, we detected changes in IL-6 at the mRNA
and protein levels during EAE pathogenesis. The expression of
the IL-6 gene in the spleen was decreased in Gαq-KO mice
(Figure 5a), and compared with WT controls, the serum
concentration of IL-6 was significantly reduced by nearly
74% in Gαq-KO EAE mice on day 10 PI (Figure 5b). These
data indicated that Gαq was involved in regulating IL-6
expression during EAE pathogenesis. To identify the role of
Gαq in the IL-6 production of DCs, BMDCs induced from
bone marrow progenitors, were stimulated with LPS, and the
IL-6 production capacity was evaluated. Compared with WT
controls, IL-6 production was significantly decreased by nearly
40% in Gαq-KO DCs (Figure 5c). We then detected the
secretion of two other cytokines, IL-23 and TNF-α, which also
play roles in Th17 development. IL-23 was significantly
decreased by nearly 83.7% in Gαq-KO DCs (Figure 5d), but
TNF-α production was not affected by Gαq deficiency
(Figure 5e). This result suggested that decreased production

of IL-23 was another cause of impaired Th17 differentiation in
Gαq-KO mice.

Naive T cells can be induced into Th17 cells in a polarizing
condition containing anti-CD3/CD28, IL-6 and TGF-β. There-
fore, we co-cultured WT or Gαq-KO DCs with naive WT
CD4+ T cells to test the DCs’ capacity for inducing Th17
development. Compared with the WT group, the percentage of
Th17 cells in the Gαq-KO group was reduced from 4.13 to
1.42% (Figures 5f and g). The impaired production of IL-6 and
IL-23 from Gαq-deficient DCs contributed to the reduced
Th17 differentiation.

In addition to cytokine production, the migration ability
of DCs is closely related to EAE pathogenesis. Here, we
detected the role of Gαq in DC migration with three different
chemokines and found that migration of Gαq-KO DCs was
also suppressed (Supplementary Figure 4).

Gαq mediates IL-6 production in DCs via Gαq-PLCβ-PKC
and Gαq-MAPK signaling
PLCβ is a canonical effector of Gαq. To investigate whether
PLCβ was involved in the Gαq-mediated production of IL-6 in
DCs, BMDCs were pretreated with inhibitors targeting differ-
ent signaling pathways before stimulation with LPS or not.
Treatment with the PLCβ inhibitor U73122 and the protein
kinase C (PKC) inhibitor Ro 31-8220 led to reduced IL-6
production induced by LPS (Figure 6a). It has been reported
that Gαq signaling can stimulate MAPKs including ERK1/2,
JNK, and p38 via PLC-DAG-PKC, as well as PLC-IP3-Ca2+

Figure 3 Gαq-KO inhibits in vivo Th17 development. Leukocytes were isolated from the lymph nodes of WT mice and Gαq-KO mice on day
10 PI and analyzed with flow cytometry. (a–c) Th1 and Th17 cells were analyzed by intracellular staining of IFN-γ and IL-17A,
respectively, in the CD4+ gate. (d–f) Lymph node leukocytes from EAE-induced WT mice and Gαq-KO mice were re-stimulated in vitro with
MOG35–55 (20 μg/ml) for 72 h, and IL-17A (d), IFN-γ (e) and TGF-β (f) in supernatants were analyzed with ELISA. (g) qPCR analysis of
Th1- and Th17-related gene expression in lymph nodes. The data are expressed as the mean± s.e.m. (n=3), * Po0.05 versus WT-EAE.

Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis

W Lai et al

562

Cellular & Molecular Immunology



signaling mechanisms.24–27 We used a p38 inhibitor
(SB203580), an ERK inhibitor (U0126) and a JNK inhibitor
(SP600125) to test which pathway might be involved in IL-6
production by DCs. The results showed that all three MAPK
inhibitors reduced IL-6 production by DCs in a dose-
dependent manner (Figure 6b). Immature DCs secreted very
low amounts of IL-6 into the supernatant. Inhibition by
various inhibitors could also be observed (Figures 6a and b).
Thus, we concluded that Gαq might regulate IL-6 production
in DCs via Gαq-PLCβ-PKC and Gαq-MAPK signaling.

DISCUSSION

MS is an autoimmune disease primarily mediated by overactive
T cells and is characterized by demyelination in the CNS and
problems with strength and muscle control. It is one of the
foremost causes of nontraumatic neurologic disability in young
adults.28 To date, there is still no curative treatment for
multiple sclerosis. The eight disease-modifying drugs approved
by the FDA can only reduce disease activity and are accom-
panied by a variety of side-effects. Interferon therapies, the first
and most common modifying agents for MS, have side effects,
including injection-site reactions and flu-like symptoms.
Glatiramer acetate, the best option in the early stages of
MS, is often associated with injection pain, rapid heartbeat
and shortness of breath. Most of these approved drugs are

given by subcutaneous injections or intramuscular injections.
A major step towards mechanistic novelty has been taken
through the first oral drug, fingolimod, which targets a GPCR
called sphingosine 1-phosphate receptor (S1P1). Despite its
convenience and superior efficacy, side effects such as head-
ache, influenza and diarrhea are still a major concern for
fingolimod. To develop new therapies with enhanced curative
efficacy and fewer side effects, more underlying molecular
mechanisms should be discovered.29,30

Many factors, such as chemokines, neural transmitters,
neuropeptides and hormones, are thought to have an effect
on MS-associated morbidity, and many receptors for these
factors are GPCRs. In addition to the fingolimod receptor,
S1P1, an increasing number of GPCRs have been reported to
be involved in the pathogenesis of MS/EAE.11 Gαq/11, one of
the G protein subfamilies, has recently attracted attention
for its immune regulation in autoimmunity. In the murine
systemic lupus erythematosus (SLE) model, the mRNA and
protein level of Gαq/11 in splenocytes is up-regulated and
correlated with disease activity.31 Blocking Gαq/11 in lupus-
prone mice effectively reduces the clinical evaluation of disease
activity, such as serum IgG levels, anti-DNA antibody levels
and proteinuria.32 Gαq overexpression results in mice that are
prone to developing progressive cardiac dilation, which is

Figure 4 Gαq-KO inhibits in vitro Th17 differentiation. (a–f) Naive CD4+ T cells from WT and Gαq-KO mice were induced to differentiate
into Th1 (a, b) or Th17 (d, e) cells in vitro. Antigen-specific Th1 and Th17 responses were measured by ELISA for IFN-γ and IL-17A
production in the supernatant (c, f). The data are expressed as the mean± s.e.m. (n=3), ***Po0.001 versus WT.
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considered an autoimmune disease, with infiltration of inflam-
matory cells in the heart.33 Acute pancreatitis, resulting from
the inflammatory auto-digestion of the pancreas, is associated
with high expression of Gαq in pancreatic tissue.34

Many GPCRs, considered therapeutic targets for MS/EAE, are
reported to be Gαq-coupled. The receptor cysLT1 is thought to
predominantly couple with Gαq, and intracellular-extracellular
calcium and Erk activation have been observed through the
pathway.35,36 Our previous work found that Montelukast and
Zafirlukast, two oral antagonists of this receptor, could attenuate
symptoms of EAE, with reduced infiltration of inflammatory
cells in the CNS.20 Prostaglandin E2 has been found to be
increased in the CSF of MS patients and reported to facilitate the
EAE response. Its receptors (EP1-EP4), revealed as a therapeutic
target for MS by targeted lipidomics, are thought to couple with

Gαq and mediate inflammatory pain sensitization. In contrast,
the neuroprotective effect mediated by PGE2 is dependent on
Gαi-coupled signaling.37–39 The receptor H1R, which has been
identified as a susceptibility gene in EAE, has been reported to
trigger a regulatory mechanism via a Gαq-PLC-RAC-mediated
pathway, and its antagonist, pyrilamine, ameliorates the
clinical signs of EAE, with alteration of Th1 cell/Th17 cell
activation.40–42 These findings suggest that blockage of Gαq
signaling may have a protective effect in MS/EAE pathogenesis.

Because Gαq is ubiquitously expressed in mammalian cells,
the mRNA expression was slightly increased in the peripheral
immune tissues and CNS tissues during the EAE pathogenesis.
However, deficiency of Gαq significantly alleviated clinical
symptoms of EAE. Gαq-KO mice showed suppressed inflam-
mation and neuroprotective effects with remarkably reduced

Figure 5 Gαq-KO impairs IL-6 production both in vivo and in vitro. (a) qPCR analysis of il6, il23, il1β, tnfα, and tgfβ mRNA expression in
splenocytes from WT or Gαq-KO EAE mice. (b) Serum was collected from WT mice and Gαq-KO EAE mice on day 10 PI, and the IL-6
level was measured. (c-e) BMDCs were induced and further stimulated with LPS (1 μg/ml) for 24 h, and the IL-6 (c), IL-23 (d), and TNF-α
(e) in the culture supernatant were measured. (f, g) Th17 differentiation was monitored with FACS analysis in the in vitro DC–T cell
co-culture system, the representative FACS (f) and statistics data (g) are shown. The data are expressed as the mean± s.e.m. (n=3),
*Po0.05, **Po0.01, ***Po0.001 versus the WT group.
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CNS leukocyte infiltration, less demyelination and less axonal
damage. These results indicated that Gαq played a prominent
role in the immune regulation of EAE pathogenesis.

Our in vivo analysis in an EAE model revealed that blockage
of Gαq inhibited development of Th17 cells, with a lower
percentage in CD4+ lymphocytes as well as suppressed produc-
tion of Th17-associated cytokines and receptors, including IL-
17A, IL-22 and IL-23r. The in vitro assay further confirmed that
the inhibition was specifically of Th17 cells. We hypothesized
that Gαq-coupled platelet activating factor receptor (PAFR)
antagonists, which have been proven to alleviate EAE, were
involved in the inhibition of Th17. Because the Gαq-AC-PKA-
Src-STAT3 pathway was impaired in Gαq-KO mice, PAFR
failed to induce Th17 differentiation.43,44 It has been reported
that TCR-mediated immune responses are regulated by Gαq
through an Lck-dependent pathway. Gαq deficiency in T cells
leads to reduced activation of Lck.45 The reduced activity of

STAT3 caused by suppressed activation of Lck could be an
explanation for the impaired differentiation of Th17 cells in
Gαq-KO mice.46 However, the influence of Lck is not observed
in Th1 differentiation,47 which is consistent with our results
that the Th17 response, but not the Th1 response, was
suppressed in Gαq-KO mice. Moreover, the aberrant produc-
tion of IL-17 can also result from the Gαq-KO-induced
inhibition of RhoA, which influences the production of IL-17
and IL-21 but has no effect on Th1 cells.48,49 Because RhoA also
mediates the migration of Th17, its inhibition may influence
the percentage of Th17 in lymph nodes from EAE and further
contribute to the reduction of leukocyte infiltration in the
CNS.50

Th17 differentiation can be influenced by DCs through
secretion of Th17 cell-polarizing cytokines.51 One pro-
inflammatory cytokine, IL-6, which has been shown to be
crucial in the initiation of Th17 development,23 was reduced in

Figure 6 The downstream pathways involved in Gαq-mediated regulation of IL-6 production in DCs. BMDCs were generated in vitro and
stimulated with LPS (1 μg/ml) or not for 24 h in the presence of various pathway inhibitors, and IL-6 production was measured by ELISA.
(a-b) The effect of the PLCβ inhibitor U73122 and the PKC inhibitor Ro 31-8220 (a) and the MAPK inhibitors SB203580, U0126 and
SP600125 (b) on IL-6 production from BMDCs. (c) The working model that deficiency of Gαq ameliorates EAE through impaired DC/IL-6
production and Th17 differentiation. The data are expressed as the mean± s.e.m. (n=3), *Po0.05 versus DCs treated without LPS and
inhibitors; #Po0.05, ##Po0.01, ###Po0.001 versus DCs treated with LPS alone.
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both the spleen and serum of Gαq-KO EAE mice. Decreases of
IL-6 and IL-23 were further confirmed in BMDCs, indicating
that deficiency of Gαq in DCs might suppress Th17 through an
impaired cytokine profile. This inhibition of Gαq-KO DCs on
Th17 was similar to that of SCH23390-treated DCs. SCH23390
is an antagonist to a Gα-coupled receptor, D1-like-R and exerts
protective effects in EAE.52,53 It is thought that blockage of D1-
like-R obstructs intracellular cAMP mediated by Gαs and
consequently leads to reduced secretion of IL-6.54 However,
our results suggested that Gαq also positively mediated IL-6
production in DCs. PLCβ–PKC, which is the most well-known
downstream pathway of Gαq, has been reported to regulate
IL-6 in many types of cells.14,55 In addition, the members of the
MAPK family, which are involved in IL-6 production, are also
important signaling molecules in the Gαq signaling cascade.56

By using various chemical inhibitors, we found that both the
Gαq–PLCβ–PKC and the Gαq–MAPK pathway might be
involved in IL-6 production in DCs.

In summary, we demonstrated a critical role of Gαq in
regulating EAE pathogenesis by influencing Th17 differentia-
tion and IL-6 production in DCs (Figure 6c). There should be a
dual regulatory mechanism involved in Gαq signaling, due to
the fact that some agonists of Gαq-coupled receptors, such as
alpha-1A-adrenoceptor and gonadotropin-releasing hormone
receptors, relieve EAE severity. However, our findings sug-
gested that in EAE/MS, pro-inflammatory signals of Gαq
played dominant roles over the anti-inflammatory signals,
which supplied important clues for understanding the patho-
genesis of MS and provided new insights into strategies for
disease therapy.
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