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miRNAs: novel regulators of autoimmunity-mediated
pancreatic β-cell destruction in type 1 diabetes

Ying Zheng1, Zhen Wang2,3 and Zhiguang Zhou2,3

MicroRNAs (miRNAs) are a series of conserved, short, non-coding RNAs that modulate gene expression in a
posttranscriptional manner. miRNAs are involved in almost every physiological and pathological process. Type 1
diabetes (T1D) is an autoimmune disease that is the result of selective destruction of pancreatic β-cells driven by
the immune system. miRNAs are also important participants in T1D pathogenesis. Herein, we review the most
recent data on the potential involvement of miRNAs in T1D. Specifically, we focus on two aspects: the roles of
miRNAs in maintaining immune homeostasis and regulating β-cell survival and/or functions in T1D. We also
discuss circulating miRNAs as potent biomarkers for the diagnosis and prediction of T1D and investigate potential
therapeutic approaches for this disease.
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease that results
from the selective destruction of pancreatic β-cells driven by
autoimmunity. In genetically susceptible individuals, abnormal
immune responses induced by ill-defined environmental trig-
gers insult pancreatic islets, subsequently resulting in β-cell loss
and insulin deficiency.1–4 The pathogenic processes of this
disease involve autoimmune responses and β-cell destruction.5
A better understanding of the exact mechanisms involved in
these pathogenic events would help to not only uncover the
pathogenesis of T1D but also hunt for new therapeutic
approaches for this disease.

MicroRNAs (miRNAs) are endogenous, evolutionarily con-
served and short (21–23 nucleotides) non-coding RNAs that
function as key modulators of gene expression in a posttran-
scriptional manner.6 The majority of miRNA-coding genes are
located in the introns of protein-coding genes. However, these
genes can also be localized in exons, intergenic regions, or
5′ and 3′ untranslated regions (UTRs). miRNA genes are
transcribed in the nucleus primarily by RNA polymerase II
to produce primary miRNAs (pri-miRNAs), which have multi-
ple stem-loop structures. Most pri-miRNAs are processed to

produce miRNA precursors (pre-miRNAs) by the Drosha–
DGCR8 microprocessor complex (canonical pathway). Then,
the pre-miRNAs are transported to the cytoplasm and further
cleaved by the RNase III endonuclease Dicer to generate mature
miRNAs. The mature miRNAs can be loaded into the RNA
induced silencing complex (RISC) assembly, which subsequently
mediates the regulatory functions of miRNAs. Generally,
miRNAs exert their functions via binding with the 3′ UTRs of
their target genes, resulting in translational silencing or direct
mRNA degradation.6 Interestingly, recent findings have revealed
that miRNAs may also modulate gene expression in a positive
manner.7,8 A representative paradigm is that miR-10a can bind
to the 5′ UTR of ribosomal protein mRNAs and enhance their
translation.7 In addition, miR-21 has been found to directly
target mitochondrial cytochrome b (mt-Cytb) and positively
regulate mt-Cytb translation.8 miRNAs play important roles in
the normal maintenance of cell homeostasis and biological
functions. Aberrant miRNA expression is associated with many
pathological conditions in humans, including cancers, neuro-
degenerative disorders, infectious diseases and autoimmune
diseases.9–13 Recently, a growing number of studies have
implicated miRNAs in the pathogenesis of autoimmune T1D.
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Herein, we focus predominantly on the key roles of miRNAs
in the pathogenic events of T1D (Figure 1), including (1) the
roles of miRNAs in maintaining immune homeostasis and the
effect of aberrant miRNA expression on autoimmunity during
the onset and progression of autoimmune T1D and (2) the
roles of miRNAs in pancreatic β-cell apoptosis and/or dysfunc-
tion in T1D. In addition, we discuss how miRNAs serve as
potent biomarkers for the diagnosis and prediction of T1D and
investigate their therapeutic potential for this disease.

MIRNAS: REGULATORS OF IMMUNE PATHOGENESIS

IN T1D

The immunopathological mechanisms in T1D
Islet-reactive T cells are excited, expanded and subsequently
recruited into islets in both humans and animal models,
eventually causing damage to β-cells and accelerating the onset
of T1D.14,15 T cells (including CD4+ and CD8+ T cells),
macrophages, dendritic cells (DCs), natural killer (NK) cells,
B lymphocytes and a series of chemokines and cytokines
released by various immune cells are involved in the auto-
immune attack on β-cells.2,3 Major histocompatibility complex
(MHC) class II molecules are not expressed on β-cells.15 Thus,
antigen-presenting cells (APCs), such as macrophages and DCs,
take up β-cell-related autoantigens and present the respective
antigens to naïve T cells with the help of the MHC II molecules
expressed on the APCs. Upon excitation, T cells are expanded
and differentiated into functional immune cells.15

Naïve CD4+ T cells eventually develop into four major
phenotypes (T-helper 1 (Th1), Th2, Th17 and regulatory T
(Treg) cells).16,17 Considering the importance of these cells in
autoimmunity, the pathogenic contributions of Th1 cells and
protective effects of Th2 cells also play crucial roles in the
pathogenesis of T1D.16 The Th1 population mainly produces

principle cytokines including interleukin-2 (IL-2), interferon-γ
(IFN-γ) and tumor necrosis factor-β (TNF-β), whereas Th2
cells predominantly secrete IL-4, IL-5 and IL-10.16 In T1D
patients, β-cell autoantigen-specific CD4+ T cells show a more
proinflammatory phenotype with concomitant secretion of
IFN-γ.14,18 Conversely, CD4+ T cells from healthy individuals
seem to have similar β-cell specificity but exhibit higher IL-10-
secreting activity, and the phenotypes and functions of these
cells are more regulatory.14,18 The transfer of Th1 cells into
neonatal non-obese diabetic (NOD) mice, which is an animal
model of spontaneous T1D, leads to T1D onset.19 Detailed
experiments using mouse models have shown that IFN-γ
receptor (IFN-γR) mutations that abrogate the expression of
the IFN-γRα chain to render it unresponsive to IFN-γ not only
delay the appearance of insulitis in NOD mice but also
completely prevent cyclophosphamide-induced diabetes in
BCR2.5 transgenic mice.20 Administration of exogenous
IL-10 or IL-4 has been demonstrated to halt T1D development
in NOD mice.21,22 Tregs are a heterogeneous subgroup of
CD4+ T cells that intervene by averting the proliferation and
activation of auto-reactive effector T cells (Teffs) and inducing
immune tolerance, thereby leading to a decline in inflamma-
tory responses.23,24 Tregs exert their immunosuppressive
functions mainly via four mechanisms: cell-to-cell contact,
secretion of immunosuppressive cytokines, killing or modifica-
tion of APCs and competition for growth factors.25–27 Treg
deficiency may deprive or blunt their immunosuppressive
capabilities, thereby accelerating autoimmunity.28 The tran-
scription factor Foxp3 is believed to be the master key
controlling Treg cells. Thus, altered Foxp3 expression in
CD4+ T cells will influence Treg development and functions.
Deletion of Foxp3 or administration of an anti-CD25 antibody
(Ab) can accelerate diabetes onset in NOD mice and enhance
its severity.29,30 At the onset of autoimmune diabetes, a
significant enhancement of Foxp3+ Treg cells is observed in
the pancreatic lymph node. However, a progressive decrease in
Treg cells accompanies the development of T1D. Moreover,
intra-islet Foxp3+ Tregs show decreased CD25 and Bcl-2
expression, which probably promotes their sensitivity to
apoptosis. Importantly, these abnormalities are ascribed to
local IL-2 deficiency.31 Previous studies have shown that low-
dose IL-2 therapy promotes Treg survival and leads to a
dampening of T1D.31,32 Th17 is another subset of Th cells that
is characterized by secretion of the proinflammatory cytokines
IL-17, IL-17F, IL-22 and IL-21. IL-17 is a key cytokine with the
ability to induce the synthesis of other inflammatory cytokines
and chemokines.33,34 Recently, the contributions of Th17 cells
to T1D pathogenesis have been increasingly recognized.35 Th17
cells exert immunological functions in T1D mainly through the
following pathways: (1) Th17 cells counteract Treg cells to
expand and disturb the Teff/Treg cell ratio, which allows the
development of T1D, (2) Th17 cells may convert to diabeto-
genic T cells and enhance the islet-destruction effects in T1D
and (3) Th17 cells can stimulate CD8+ cytotoxic T lymphocytes
(CTLs), thereby contributing to the development of T1D.33 In
conclusion, a ‘balanced auto-reactive set-point’ (Th1/Th17 vs

Figure 1 miRNAs: new regulators of autoimmunity and pancreatic
β-cell destruction in type 1 diabetes. miRNAs may regulate naïve T
cell, Th cell (including Th1, Th2, Th17 and Treg cells), B cell and
APC differentiation, proliferation, cell death and functions,
consequently inducing the appearance of autoimmunity and
causing β-cell destruction. These effects lead to the onset and
development of type 1 diabetes. In addition, miRNA dysregulation
may affect β-cell survival, functions and regeneration, thereby
contributing to the pathogenesis of type 1 diabetes
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Treg/Th2 cells) is a key determinant of the pathological
outcome in T1D.

In addition to CD4+ T cells, CD8+ T cells have been
implicated in the pathogenesis of T1D. HLA I molecules are
primarily expressed on CD8+ T cells and are linked to the risk
of the development of autoimmune T1D.36 Islet-specific
hyperexpression of the HLA I protein is consistently observed
in human islets from post-mortem collections of T1D patients,
and CD8+ T cells are predominant in the lymphocyte
infiltrates.37 Furthermore, β-cell autoantigen-specific CD8+

T cells have been detected in the peripheral blood (PB) of
patients with T1D.38 These data strongly suggested an impact
of cytotoxic CTLs on β-cell damage.

The pathogenic effects of B cells in NOD mice have been
demonstrated by the observation that their ablation using
either a genetic approach or antibody treatments offers strong
protection from T1D.39–41 The unique ability to specifically
take up β-cell antigens allows B cells to function as a subset of
APCs and improve the expansion of diabetogenic T cells.42,43

Innate immunity also exhibits vital functions in T1D. For
example, APCs present β-cell antigens to T cells, resulting in
immunological molecular events and leading to β-cell
destruction.44 DCs and other APCs have been observed to
infiltrate islets in both human T1D patients and NOD
mice.45,46 The inflammatory cytokines secreted by these
immune cells can also destroy β-cells.47

In addition, a series of studies organized by the Network for
the Pancreatic Organ Donor with Diabetes (nPOD), which
recovers pancreas and lymphoid tissues from organ donors
with islet autoimmunity and T1D, have provided new evidence
on the etiology and pathogenesis of T1D. For example, C4d
deposition has been found to be elevated in the pancreas of
T1D patients. Studies have also supported an association of
enteroviruses with T1D, including cases with a longer disease
duration that might be due to viral persistence or multiple
infections.48

The roles of miRNAs in the regulation of T1D
immunopathogenesis
miRNAs have been implicated in a wide scope of functions.
They play important roles in many physical and pathological
processes. Accumulating evidence has shown that miRNAs are
important participants in the control of the delicate immune
system equilibrium. miRNAs function as key modulators of
immune responses mainly through the regulation of immune
cell differentiation, development, activation and functions.
During T-cell development, deletion of Dicer in immature
thymocytes leads to a drastic reduction in total thymocyte
numbers, with a significant reduction in the more mature
double-positive (CD4+CD8+) and single-positive (CD4+ or
CD8+) thymocytes probably as a result of increased cell death
and attenuated proliferation.49 In the case of Th cell differ-
entiation, CD4+ T cells lacking Dicer fail to evolve into the Th2
phenotype due to a bias toward Th1 differentiation and their
inability to prevent IFN-γ production.50 In addition, the
specific overexpression or deletion of individual miRNA genes

affects T-cell development. The miR-17-92 family is hyperex-
pressed in T precursor cells, but the expression levels of these
family members decrease concomitant with T-cell maturation.
Exogenous overexpression of the miR-17-19 cluster in lym-
phocytes can result in severe lympho-proliferative disease in
mice in which a mass of CD4+ T cells (and CD8+ T cells to a
lesser extent) are expanded.51 CD4+ T cells isolated from
miR-155-deficient mice are apparently biased toward Th2
differentiation and are accompanied by the secretion of Th2
cytokines. At the same time, the Th1 populations in these mice
have altered functions despite normal IFN-γ production.52,53

Treg cells with specifically deleted miRNAs due to Dicer or
Drosha ablation can develop an early fatal onset of
autoimmunity.54–56 Individual miRNA-deficient Tregs are
predisposed to have an inadequate ability to underscore their
functional relevance. For example, inhibition of miR-155 can
disturb Treg development and functions. Tregs with a miR-155
deficiency exhibit upregulated expression of cytokine signaling 1
(Socs1) and a diminished ability to respond to IL-2.57 In
addition, miR-21 and miR-31 regulate Treg development by
changing Foxp3 expression.58 Several miRNAs have been
reported to promote Th17 cell development. For example,
miR-326 facilitates Th17 development and accelerates the
progression of autoimmunity by directly inhibiting ETS1, which
is a negative modulator of Th17 differentiation.59 In addition,
the regulatory roles of miRNAs are crucial for early B-cell
development. Deletion of Dicer has been demonstrated to halt
the pro- to pre-B-cell transition.60 miRNAs also exert important
effects on NK, NKT and APC development and functions.61

There is increasing evidence that miRNAs associate with
multiple immunity-related genes and pathways, and conse-
quently regulate immune homeostasis; additionally, miRNA
alterations can result in autoimmune responses that favor the
progression of many types of autoimmune diseases, including
systemic lupus erythematosus, multiple sclerosis, rheumatoid
arthritis (RA) and T1D.28 For example, dysregulated miRNA
expression, such as miR-31, miR-146a and miR-155, in Tregs
has been shown to impair Treg functions in RA.28,62

miR-326 expression is significantly increased in peripheral
blood mononuclear cells (PBMCs) from T1D patients; the
elevated levels correlate with ongoing islet autoimmunity and
the disease severity.63 Several possible target genes of miR-326,
including vitamin D receptor and erythroblastosis virus E26
oncogene homolog 1, are vital modulators of the immune
system, suggesting that the miRNA probably has important
effects on autoimmunity in T1D by targeting these genes.63

Another study performed by Yang et al.64 identified 26 differen-
tially expressed miRNAs in PBMCs from newly diagnosed T1D
patients, among which miR-146 was the most downregulated
molecule. The study also showed that the miR-146 levels were
associated with ongoing islet autoimmunity.64 Moreover,
miR-21a and miR-93 are decreased in PBMCs from T1D
patients;65 both miRNAs have been reported to participate in
inflammatory and apoptosis signaling pathways39 and are not
affected by glucose stimuli.65 Thus, the two miRNAs might be
involved in the autoimmune responses of T1D.
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In autoimmune T1D, self-reactive T cells in the periphery
develop into pancreas-infiltrating T lymphocytes (PILs), which
induce insulitis and cause β-cell damage. T1D does not occur
in the absence of CD3+ T cells with either a CD4+ or CD8+

phenotype. Furthermore, the development of T1D follows the
changing levels of immune-related genes during the evolution
of thymocytes into peripheral CD3+ T cells.66 In a comparative
analysis of thymocytes derived from pre-diabetic 1-month-old
NOD mice (1 mo), CD3+ peripheral T cells from pre-diabetic
(1 mo or 7 mo) and diabetic NOD mice (47 mo), and PILs
from pre-diabetic (1 mo) NOD mice, Fornari et al.66 found
that the thymocytes exhibited four altered miRNAs (upregu-
lated miR-34a and miR-345-5p, and downregulated miR-29c
and miR-101a), the CD3+ peripheral T cells exhibit two altered
miRNAs (upregulated miR-378 and downregulated miR-296-5p)
and the PILs exhibited seven upregulated miRNAs (miR-10b,
miR-202-3p, miR-697, miR-705, miR-709, miR-712 and
miR-877). Through the construction of miRNA–mRNA inter-
action networks, the authors determined the links between
miR-202-3p and the CCR7 chemokine receptor and Cd247
(Cd3 zeta chain) mRNAs, which have been proven to
participate in the control of autoimmunity in NOD mice.66

A miRNA profile provided by De Jong et al. suggested that
some miRNAs predicted to target the apoptotic genes
Trail, Trail-R2, Fas and Faslg (that is, miR-23b, miR-98 and
miR-590-5p) were simultaneously hyperexpressed in auto-
reactive CD8+ T cells derived from T1D patients. The
transfection of these miRNAs into primary T cells led to
reduced Fas and Trail mRNA levels, which subsequently
performed their relevant functions and generated excessive
expansion of diabetogenic cytotoxic T cells.67

Different miRNA expression patterns have been observed
within specific T-cell subtypes between pre-T1D and healthy
donors. Naïve CD4+ T cells derived from pre-T1D patients
displayed 32 dysregulated miRNAs compared with the healthy
controls, of which 28 were decreased. Naïve natural Tregs
(nTregs) in pre-T1D patients displayed two dysregulated
miRNAs, and nTregs activated in vivo displayed a large number
of dysregulated miRNAs. These differentially expressed
miRNAs share a common characteristic: they can alter T-cell
functions.68 For instance, both naïve CD4+ and transitional
memory cells hyperexpress miR-101 in the pre-T1D stage. One
of its targets is the histone 3 methyltransferase Ezh2, which is a
catalytic subunit of the polycomb repressive complex 2. Ezh2
deficiency in naïve CD4+ T cells can induce differentiation of
these cells with a bias toward a Th1 phenotype in both mice
and humans.69,70 nTregs in pre-T1D display two differentially
expressed miRNAs (upregulated miR-15a and downregulated
let-7c). In addition, one target of miR-15a is the antiapoptotic
gene Bcl2, and increased miR-15a can impair rTreg survival.71

Let-7c is a TGF-β-regulated miRNA, and its decreased level in
serum has been found to correlate with rapid progression
to end-stage renal disease in T1D.72 Direct comparison of
activated nTregs between pre-T1D patients and healthy con-
trols has shown a significant increase in miR-31 and miR-26a
in the pre-T1D group.68 miR-31 has been demonstrated to

reduce Foxp3 expression.58 Similar to miR-101, miR-26a has
also been shown to target Ezh2, which is related to Foxp3
expression and the suppressive functions of nTregs.68 Jeker
et al. found that miR-10a expression was lower in Tregs from
NOD mice than in Tregs from autoimmunity-resistant C57BL/
6 mice.73 miR-10a is preferentially expressed in Treg cells
derived from the mouse thymus but cannot directly modulate
Foxp3 or other molecules involved in Treg homeostasis.73 A
recent study showed that miR-10a attenuated the phenotypic
conversion of inducible Treg cells into follicular helper T cells,
which was associated with the inhibition of transcriptional
repressor Bcl-6 and co-repressor Ncor2.74 Therefore, because
miR-10a exerts important functions in the maintenance of a
specific Treg phenotype, the dysregulation of miR-10a may
contribute to T1D development. Genome-wide miRNA profil-
ing of Treg cells from patients with T1D has shown a
remarkable increase in miR-510 and decreases in miR-191
and miR-342.75 miR-510 is involved in irritable bowel syn-
drome and plays a crucial role in chronic bowel inflammatory
processes.76 miR-342 has been reported to be downregulated in
human leukocytes after lipopolysaccharide treatment.77 In
addition, regulators of cytokine signaling, such as Ep300,
Bmpr2 and Pfgfra, are predicted to be possible targets of
miR-342.

Berry et al.78 showed a protective effect of miR-34 against
T1D. miR-34a is prominently highly expressed in B-cell
progenitors and marginal zone B cells from NOD.B10 Idd9.3
mice and can negatively regulate B-cell lymphopoiesis, subse-
quently leading to an ineffective expansion of β-cell-specific
CD4+ T cells and a protective effect against T1D in NOD.B10
Idd9.3 mice.78 Multiple miRNAs within the 14q32 cluster, such
as miR-342, have been found to target the mRNAs of some
autoantigens (for example, IA-2, IA-2β and GAD65) in T1D.79

MIRNAS: PARTICIPANTS IN AUTOIMMUNITY-MEDIATED

β-CELL DAMAGE

Pancreatic β-cells have distinct miRNA expression patterns that
can regulate β-cell development and/or functions. miRNA
dysregulation in β-cells induced by proinflammatory cytokines
or infiltrating immune cells in islets is implicated in β-cell
dysfunction (for example, impaired insulin synthesis or secre-
tion) and cell apoptosis, which contribute to the development
of T1D.

miRNAs control pancreatic β-cell fate and pancreas
formation
Dicer1 or Ago2 deficiency can affect the valuable formation of
overall functional miRNA patterns in pancreatic β-cells.
A study has shown that specific ablation of Dicer1 in the
developing endocrine pancreas in mice at embryonic day 10.5
causes a prominent loss of the β-cell mass.80 However, Dicer
deficiency at a late stage of β-cell development does not have an
obvious impact on the proliferation and function of mature
β-cells but instead affects β-cell apoptosis.80 Moreover, mice
lacking Ago2 are unable to achieve compensatory expansion
of β-cells in response to insulin resistance.81 During early
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endocrine pancreatic development, miR-7 negatively regulates α-
and β-cell differentiation via direct inhibition of Pax6,
which is essential for endocrine pancreatic differentiation.82

Moreover, miR-124a directly targets the transcription factor
Foxa2, which is expressed during endocrine pancreatic devel-
opment and plays an important role in β-cell differentiation.83
Ngn3 is a marker of endocrine progenitor cells and is
indispensable for endocrine pancreatic development. Inhibition
of miR-15 during pancreatic regeneration leads to increased
Ngn3 expression and initiates the regeneration process.84

miR-199b-5p enhances β-cell proliferation at least partially
through Mlk3 downregulation.85 miR-375 has also been
reported to be essential for the formation and maintenance
of the β-cell mass.86

miRNAs control insulin synthesis and secretion
β-cell-specific ablation of Dicer1 can result in the onset of
diabetes as a consequence of impaired insulin biosynthesis and
glucose-stimulated insulin secretion (GSIS).87–89 Recent studies
have indicated that Ago2 is also critical for the insulin-secreting
capacity and compensatory expansion of β-cells.90 Deletion of
Ago2 in insulin-producing β-cells (the MIN6 cell line)
enhances insulin production.90 miR-375, which is abundantly
expressed in islets, reduces glucose-induced insulin synthesis by
targeting 3′-phosphoinositide-dependent protein kinase-1 (Pdk1).91

miR-375 overexpression has also been proven to regulate GSIS
through directly targeting some genes relevant for insulin
exocytosis, such as Aifm1, Gephyrin, Ywhaz and Mtpn.90,92

miR-30d facilitates insulin gene expression in β-cells by negatively
regulating Map4k4, which is a negative modulator of the insulin
transcription factor Mafa.93 Moreover, miR-9 has been demon-
strated to exert its suppressive effects on insulin secretion via
cleavage of the transcription factor Onecut2 and an increase in
Granuphilin expression, which accelerate exocytosis processing.94

miRNA dysfunction mediated by autoimmunity contributes
to β-cell damage
In 2010, Roggli et al.95 determined the influences of proin-
flammatory cytokines on miRNA expression in β-cells and
investigated their presumable relationship with β-cell survival
and/or functions. In their study, Roggli et al. exposed MIN6
cells to the proinflammatory cytokines typically produced by
infiltrating immune cells (IL-1β or a cytokine mixture of IL-1β,
TNF-α and IFN-γ). The global microarray profiles revealed
three significantly upregulated miRNAs (miR-21, miR-34a and
miR-146a). The three miRNAs were enhanced upon treatment
with IL-1β or the cytokine mixture. IL-1β alone also strongly
increased miR-21 and miR-146a expression, although the two
miRNAs were also increased in the presence of TNF-α but not
IFN-γ. miR-34a is equally induced by stimulation with IL-1β
and TNF-α, whereas IFN-γ does not have any impact on its
expression. Similar results were observed following exposure of
cultured human islets to IL-1β. Interestingly, miRNA expres-
sion patterns were obtained from pancreatic islets derived from
NOD mice at 8 and 13 weeks of age compared to the patterns
obtained from 4-week-old mice. The pancreatic islets of NOD

mice at 4 weeks of age did not display any signs of insulitis.
Further experiments found that miRNA dysregulation induced
by inflammatory cytokines could affect β-cell survival and/or
functions. Overexpression of miR-34a led to a small reduction
in the insulin content together with a decreased proinsulin
mRNA level. In contrast, overexpression of miR-21 or
miR-146a did not exert a significant effect on insulin promoter
activity, proinsulin mRNA levels, or the insulin content. In
addition, miR-34a or miR-21 overexpression did not have any
effect on basal insulin secretion but reduced GSIS, which was
associated with decreased Vamp2 expression (a soluble N-
ethylmaleimide-sensitive factor attachment protein receptor
(Snare) protein required for β-cell exocytosis). In addition,
inhibition of miR-34a and miR-146a can protect MIN6 cells
from cytokine-induced cell apoptosis.95 These findings have
indicated a crucial role for these miRNAs in cytokine-mediated
β-cell dysfunction. In Ruan’s study, he and his colleagues
described a particular β-cell death regulatory pathway involving
miR-21, its target gene Pdcd4 and the upstream transcriptional
factor nuclear factor-κB (NF-κB). C-Rel and p65 are important
members of the NF-κB family. In β-cells, they can activate the
promoter of the miR-21 gene, thereby upregulating miR-21
expression; miR-21 sequentially inhibits Pdcd4 expression,96

which is involved in the progression to cell death. Previous
studies have shown that Pdcd4-deficient β-cells are resistant to
death. In vivo, Pdcd4 deficiency has been found to protect
NOD mice against spontaneous diabetes and renders C57BL/6
mice resistant to streptozotocin (STZ)-induced diabetes.96

Another study also performed by Roggli et al.97 showed that
changes in the levels of the miR-29 family contributed to the
β-cell dysfunction induced by proinflammatory cytokines
during the initial phases of T1D. miR-29a/b/c is upregulated
in islets isolated from NOD mice during the phases preceding
diabetes manifestation. These miRNAs are also augmented in
islets isolated from mice and humans after exposure to these
cytokines. Transfection of miR-29a/b/c mimics into MIN6 and
dissociated islet cells leads to impaired GSIS. In these cells,
defective insulin production is associated with a decreased
Onecut2 level and a subsequent increase in granuphilin.
miR-29a/b/c overexpression also promotes apoptosis through
suppressing the expression of the antiapoptotic protein Mcl1.97

In our previous study, we found that IL-1β treatment
induced increased miR-101a and miR-30b expression in
β-cells and that the two miRNAs contributed to cytokine-
mediated β-cell apoptosis and dysfunction.98 miR-101a and
miR-30b downregulate proinsulin expression and reduce the
insulin content via direct suppression of the transcriptional
factor Neurod1. Furthermore, miR-101a/miR-30b-mediated
β-cell apoptosis is related to decreased Bcl2 expression. We also
showed that miR-101a impaired GSIS by inhibiting Onecut2.98

Recently, Grieco et al. reported that miR-23a, miR-23b and
miR-149 were downregulated upon exposure of β-cells to the
proinflammatory cytokines IL-1β+IFN-γ. These downregulated
miRNAs were further demonstrated to modulate the expres-
sion levels of the pro-apoptotic Bh3-only proteins Dp5 and
Puma, consequently affecting β-cell apoptosis.99
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Multiple low-dose streptozotocin (MLDS)-induced diabetes
is an autoimmune disease with clinicopathological features
similar to those of human T1D. MLDS can induce marked
production of inflammatory cytokines, such as IFN-γ, IL-1β
and TNF-α, which mediates β-cell loss. By crossing Dicer loxp
mice with mice carrying a Cre allele driven by rat insulin
promoter (RIP) II, Mi et al.100 specifically removed Dicer from
differentiated β-cells. In their study, the Dicer.RIP cre knockout
mice exhibited a significantly accelerated appearance and
higher prevalence of MLDS-induced autoimmune diabetes.100

This result highly suggested that miRNA deficiency in
β-cells promoted susceptibility to MLDS-induced autoimmune
diabetes.

Another study by Bravo-Egana et al.101 estimated the effects
of inflammation on miRNA expression in transplanted rat
islets. A series of islet miRNAs was influenced by inflammation,
of which 26 were upregulated and 5 downregulated. The
induction of miRNAs is dependent on NF-κB, which is an
important pathway involved in inflammatory responses. Using
miRNA and mRNA target-predicting algorithms, a bioinfor-
matics analysis of genome-wide RNA studies of β-cells
identified 238 potential miRNA target genes, several of which
were theoretically involved in insulin signaling, islet physiology
and diabetes pathogenesis.101

Thioredoxin-interacting protein (Txnip) is a key regulator of
β-cell loss in diabetes. Txnip expression is increased in diabetes
and causes β-cell apoptosis, whereas Txnip deficiency is
protective against both T1D and type 2 diabetes. The proa-
poptotic and diabetogenic functions of Txnip are associated
with the Txnip-mediated changes in miRNAs, such as miR-204
and miR-200.102,103 Txnip can induce miR-204 expression,
which in turn regulates Mafa expression and thus modulates
β-cell functions, such as insulin production.102 In addition,
Txnip impairs β-cell functions by inducing miR-200.103

miR-200 has been demonstrated to target and decrease Zeb1
and promote β-cell apoptosis.103 A recent study showed that
IFN-γ increased Txnip expression in β-cells via inhibition of
miR-17, whereas overexpression of miR-17 alleviated the
cytokine effect.104 IFN-γ has been reported to lead to miR-17
degradation, probably due to the effective activation of Ire1α.105

POTENTIAL APPLICATIONS OF miRNAs: NEW

BIOMARKERS AND POTENTIAL THERAPEUTIC

TARGETS FOR T1D

miRNAs act as potent biomarkers for T1D
miRNAs in blood cells can be used as potential biomarkers for
many autoimmune diseases, including T1D. As reviewed above,
miR-326 expression is upregulated in Ab-positive T1D patients
compared with Ab-negative T1D subjects. The increase in
miR-326 expression correlates with ongoing islet autoimmunity
and may serve as a candidate biomarker for the autoimmune
process in T1D.63 Yang et al. identified 26 miRNAs and 1218
genes that were differentially expressed in PBMCs from newly
diagnosed T1D patients. miR-146 was one of the most
downregulated molecules and was linked to ongoing islet
autoimmunity in T1D patients.64 In addition, miR-21a and

miR-93 are downregulated in the PBMCs of T1D patients
compared with healthy individuals.65

In addition to controlling gene expression in blood cells,
many miRNAs are also detected in serum or plasma and other
body fluids (that is, urine, saliva and breast milk) in association
with microparticles, such as microvesicles or exosomes, or with
proteins (for example, Argo-2). Although the functions of these
miRNAs remain obscure, circulating miRNAs can serve as
potential biomarkers for the detection of various forms of
cancers and autoimmune diseases. The analysis of miRNA
expression patterns in serum, plasma or other body fluids also
aids in the development of new approaches for the prediction
of T1D. The miR-21 and miR-210 levels are markedly
upregulated in the plasma and urine of T1D patients. Urinary
miR-126 levels in diabetic patients are markedly lower than the
levels in age- or gender-matched controls and are negatively
associated with the glycated hemoglobin levels of the patients.
In contrast, the plasma miR-126 levels are comparable in both
cohorts. T1D patients exhibit dysregulated miR-21, miR-126
and miR-210 levels in plasma or urinary samples, which may
indicate an early onset of diabetes-associated diseases.106 In a
comprehensive sequencing analysis of serum from new-onset
T1D patients, Nielsen et al.107 identified 12 upregulated serum
miRNAs (miR-24, miR-25, miR-26a, miR-27a, miR-27b,
miR-29a, miR-30a-5p, miR-148a, miR-152, miR-181a, miR-200a
and miR-210) in T1D patients, several of which might regulate
the expression of genes related to β-cell survival and functions.
Notably, miR-25 has been demonstrated to be negatively
associated with β-cell functions and positively associated with
glycemic control.107 Recently, plasma miRNAs were prospec-
tively obtained from a group of 40 children 1, 3, 6, 12 and
60 months after diagnosis and evaluated for miRNA expres-
sion. Six miRNAs (miR-24, miR-146a, miR-194, miR-197,
miR-301a and miR-375) at 3 months were associated with
residual β-cell functions 6–12 months after the diagnosis.108

miR-375 is highly expressed in islets and is essential for
pancreas development, insulin gene expression and insulin
secretion. miR-375 can serve as a biomarker for the detection
of β-cell death and the prediction of diabetes. Circulating
miR-375 is markedly augmented in STZ-injected mice prior to
the occurrence of hyperglycemia or in NOD mice 2 weeks
before the onset of diabetes, whereas its levels are decreased
1 week post diabetes.109 Interestingly, another study showed
that the serum miR-375 level was lower in children with newly
diagnosed T1D than in the age-matched control individuals.110

Therefore, we speculated that a sudden increase in circulating
miR-375 prior to T1D onset was likely to result from a pool of
miR-375 immediately released during the process of β-cell
death; in turn, this level will decrease after T1D onset, which
may reflect β-cell residual functions.

miRNAs may be potential therapeutic targets for T1D
Abnormal miRNA expression patterns can lead to the dysfunc-
tion of immune responses and insulin secretion. Restoration of
miRNA expression to normal levels may have therapeutic
potential for the control of immune homeostasis and the
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maintenance of sufficient insulin release. The potential of
miRNA gene therapy strategies has been tested in several studies.
Anti-miRNA oligonucleotides are one of the most common
strategies in miRNA gene therapy; in this strategy, anti-miRNA
oligonucleotides specifically bind to miRNA molecules and
subsequently prevent the binding of miRNAs to their target
genes. Other oligonucleotide-based strategies involve miRNA
mimics, which have the same nucleotide sequences as endogen-
ous miRNAs. In addition, the regulation of miRNAs by viral-
based or reagent-based transfection has been successfully applied
in vivo and in vitro, and has exhibited therapeutic potential
for T1D. As discussed above, mice with overexpression of
the miR-17-19 cluster in lymphocytes tend to develop
autoimmunity.51 The transfection of miR-23b, miR-98 or
miR-590-5p mimics into primary T cells leads to reduced Fas
and Trail mRNA levels and consequently excessive expansion
of diabetogenic cytotoxic T cells.67 Blocking miR-21, miR-34a
or miR-146a activity with anti-miRNA oligonucleotides
prevents impairment of GSIS in MIN6 cells with IL-1β
stimulation.95 However, Lovis et al. showed that blocking
miR-34a or miR-146 using oligonucleotides partially prevented
palmitate-treated MIN6 cells from undergoing apoptosis but
was insufficient to restore normal insulin release.111 In our
previous study, we found that transfection of a miR-101a or
miR-30b mimic caused β-cell dysfunction, whereas inhibition
of miR-101a and miR-30b with antisense molecules alleviated
inflammatory cytokine-induced β-cell dysfunction.98

CONCLUSIONS

Accumulating evidence has identified roles for miRNAs in
autoimmune T1D. miRNAs act as novel players in the modula-
tion of the immune system and β-cells through regulating their
survival and functions. Interestingly, circulating miRNAs also
serve as important biomarkers for T1D. Considering the
regulatory roles of miRNAs in immune cells and β-cells, we
believe that miRNAs can be used as an effective strategy for the
treatment of T1D. Although to the best of our knowledge studies
on the roles of miRNAs in T1D are in their infancy, progress in
our understanding of the roles of miRNA in this disease may
help advance its clinical management in the future.
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