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Abstract

Gene expression is stochastic and displays variation (“noise”) both within and between cells. 

Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by 

applying the law of total variance to data from two-reporter assays that probe expression of 

identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., 

A. J. Levine, E. D. Siggia and P. S. Swain (2002): “Stochastic gene expression in a single cell,” 

Science, 297, 1183–1186.] for the estimation of intrinsic and extrinsic noise and provide 

interpretations of them in terms of a hierarchical model. This allows us to derive alternative 

estimators that minimize bias or mean squared error. We provide a geometric interpretation of 

these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. 

Swain (2002): “Stochastic gene expression in a single cell,” Science, 297, 1183–1186.]. We also 

demonstrate through simulation and re-analysis of published data that the distribution assumptions 

underlying the hierarchical model have to be satisfied for the estimators to produce sensible 

results, which highlights the importance of normalization.
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1 Introduction

A gene can have different expression levels in living cells that have the same genetic 

material and are subject to the same environment (Stegle et al., 2015). During early 

development of an organism, distinct expression profiles eventually lead to formation of 

different tissues. Moreover, complex tissues such as brain have many different subtypes of 

cells with different gene expression profiles. However, variation in expression between cells 

is reflective not only of distinct biological state, but also of stochasticity underlying many of 

the processes fundamental to the molecular biology of cell.

In a classic paper on the stochasticity of gene expression in single cells, Elowitz et al. (2002) 

introduced a clever two-reporter expression assay designed to tease apart “intrinsic” and 
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“extrinsic” variation (also called “noise”) from the overall variability in gene expression: the 

intrinsic noise is the variation in the expression of the same gene in identical environment, 

whereas the extrinsic noise is the variation in gene expression due to cellular environment 

that impacts all the genes at once. The idea is as follows: two identically regulated reporter 

genes (cyan fluorescent protein and yellow fluorescent protein) are inserted into individual 

E. coli. cells, allowing for comparable expression measurements within and between cells. If 

n cells are assayed, this leads to expression measurements c1, … cn and y1, … yn, where the 

pair (ci, yi) represent the expression measurements for the cyan and yellow reporters in the 

ith cell. The goal of the experiment is to measure the variance in gene expression from the 

pairs (ci, yi) (denoted by ) and to ascribe it to two different sources: first, variability due 

to the different states of cells (“extrinsic noise,” denoted by ), and second, inherent 

variability that exists even when the state of cells is fixed (“intrinsic noise,” denoted by ). 

In Elowitz et al. (2002), these noise terms are defined as squared coefficients of variation 

and specific formulas are provided for estimating  and  (hereafter referred to as 

the ELSS estimates):

(1)

(2)

(3)

where  and .

Hilfinger and Paulsson (2011) later interpreted these estimates in terms of the “law of total 

variance” (explained in the next section), which sheds light on the statistical basis of the 

ELSS estimators but does not address questions about their statistical properties. In this 

paper, we derive the bias and mean squared error of the ELSS estimators and examine their 

optimality. We also examine the geometric and biological interpretation of the estimators.

The processes that lead to the expression of the reporters (or genes in general) are much 

more complex than described here, e.g. the models described in the paper ignore the effects 

of translation. Many studies (e.g. Rausenberger and Kollmann 2008 and Komorowski et al. 

2013) have developed detailed mathematical models for these processes. While some of our 

results may generalize and be relevant in more general settings, we restrict our analysis to 

the intrinsic and extrinsic noise as examined by Elowitz et al. (2002) and accessible via 
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static reporter expression experiments. Analyses are implemented in the R package noise 

available on CRAN.

2 A hierarchical model

We begin by introducing a hierarchical model that provides a formal model for the 

experiments of Elowitz et al. (2002) and that provides insight into the numerators of (1,2,3). 

They are the key components of the Elowitz et al. (2002) formulas and can be viewed as 

estimators of true variances. We note that lower case letters such as ci and yi denote 

observations not only in the ELSS formulas but throughout our paper; we reserve uppercase 

letters for random variables.

A hierarchical model for expression of the two reporters in a cell emerges naturally from the 

assumption that reporter expression, conditioned on the same cellular environment, is 

represented by independent and identically distributed random variables. To allow each cell 

to be different from the others, we introduce independent identically distributed random 

variables Zi, for i = 1, …, n that represent the environments of cells [as in Hilfinger and 

Paulsson (2011)]. Consistent with Elowitz et al. (2002), we posit that the cellular conditional 

random variables associated to the two reporters have the same distribution F with mean Mi 

and variance , both parameters being unique to the i th cell:

(4)

and

(5)

Thinking of a two reporter experiment as “random,” in the sense that the states of cells Z1, 

… Zn are random, across cells we have

and

where G is the distribution of all the Mis, with mean μ and variance , and H that of all the 

, with mean σ2 and variance ε. In other words, both the mean and variance of reporter 

expression level is cell specific and the random variable  and its mean σ2 represent the 
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“within-cell" variation as distinguished from the parameter  which represents the 

“between-cell" variability in the ANOVA setting.

For any i, the mean of Ci or Yi is μ, according to the following calculation:

(6)

The total variance in Ci (or Yi) can be calculated using the “law of total variance”:

(7)

Using the notation of the hierarchical model described above, and dropping the subscripts 

for expectation because they are clear by context, we have, for any i,

(8)

(9)

With this notation equation (7) becomes

(10)

This means that the marginal (unconditional) distributions of Ci and Yi are identical:

where the marginal distribution F′ may or may not be the same as the conditional 

distribution F.

In the next sections, we will derive the estimators for extrinsic and intrinsic noise, and 

examine the bias and MSE of each estimator. Specifically, for any estimator S, the MSE of S 
with respect to the true parameter τ is calculated as follows:
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where E[S] − τ is the bias of S.

3 Extrinsic noise

To examine estimators for extrinsic noise, we start with the law of total variance, noting that 

the within-cell variability Var[E[Ci|Zi]] can be written as:

(11)

This connection between the extrinsic noise, the law of total variance and the covariance of 

Ci and Yi was noted in Hilfinger and Paulsson (2011).

Formula (11) leads to the following unbiased estimator for the extrinsic noise, as it is an 

unbiased estimator estimator for the covariance:

We note that the ELSS estimator (2) uses the scalar 1/n, which unlike the case of the 

intrinsic noise estimator (1) leads to a biased estimator in this case.

In order to find the estimator that minimizes the MSE, we consider the following general 

estimator:

We assume that Mi is normal and that μ = 0 and ε = 0. The MSE of Sext is
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which is minimized when

(12)

The last step in (12) is due to Equations (9), (10) and (11):

(13)

It is interesting to note that (12) comprises two parts: the first,  converges to n 

− 1 as n → ∞, while the second,  is equal to  where ρ is the correlation 

between the two reporter expression vectors C and Y. See Appendices A and B for more 

details.

4 Intrinsic noise

Also starting with the law of total variance, the within-cell variability E[Var[Ci|Zi]] for cell i 
can be written as:

(14)
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This leads to the following unbiased estimator for the intrinsic noise:

To find the estimator that minimizes the MSE, we consider estimators of the following 

general form

(15)

Assuming normality of the distribution G (i.e. cell-specific means Mi follow a normal 

distribution), as well as μ = 0 and ε = 0, the MSE is given by

The value of a that minimizes this expression is

See Appendices A and C for the complete derivation.

The analysis above can be simplified with an additional assumption, namely that C̄ = Ȳ. In 

some experiments this may be a natural assumption to make, whereas in others the condition 

is likely to be violated; we comment on this in more detail in the discussion. Here we 

proceed to note that assuming that C̄ = Ȳ, the estimator (15) simplifies to

The unbiased estimator with this form is easily derived by observing that
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Thus, in order for S̃
int to be unbiased the parameter a must be equal to n. The resulting 

formula is the ELSS formula in (1). This makes clear that the assumption C̄ = Ȳ underlies 

the derivation of the ELSS intrinsic noise estimator.

In order to study the mean squared error and derive an estimator that minimizes it, we again 

assume normality of G. The MSE of Sint is then given by

Assuming again that μ = 0 and ε = 0, the MSE simplifies to

which is minimized when a = n + 2 (see Appendices A and D for the complete derivation).

5 Geometric interpretation

Figure 3A of Elowitz et al. (2002) shows a scatterplot of data (ci, yi) for an experiment and 

suggests thinking of intrinsic and extrinsic noise geometrically in terms of projection of the 

points onto a pair of orthogonal lines. While this geometric interpretation of noise agrees 

exactly with the ELSS intrinsic noise formula, the interpretation of extrinsic noise is more 

subtle. Here we complete the picture.

To understand the intuition behind Figure 3A in Elowitz et al. (2002), we have redrawn it in 

a format that highlights the math (Figure 1). The projection of a point (ci, yi) onto the line y 

= c is the point , shown as the red point in Figure 1. Assuming 

equal means (c̄ = ȳ), the intrinsic noise, as estimated by the unbiased estimator (1), is then 

the mean squared distance of the points from the line y = c.

The ELSS estimate for the extrinsic noise is the sample covariance. Intuitively, it indicates 

how the measurements of one reporter track that of the other across cells. The geometric 

meaning of the sample covariance in Figure 1 is based on an alternative formulation of 

sample covariance (Hayes, 2011):
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(16)

This formulation of the sample covariance has the interpretation of being an average of the 

signed area of triangles associated to pairs of points. Figure 1 illustrates these signed 

triangles using a randomly selected point (the blue point). This formulation is very different 

from what might be considered at first glance an appropriate analogy to intrinsic noise, 

namely the sample variance along the line y = c.

An alternative estimate for the extrinsic noise based on the sample variance of the projected 

points along the line y = c (using the projected centroid as the mean, which is shown as the 

green point in Figure 1) turns out to be biased by an amount equal to the total noise. This 

sample variance averages the squared distances of the data points from the centroid (green 

point) after projection onto the line y = c; see the distance between the red and green points 

in Figure 1. Since

the bias is

which is the true total noise.

The above calculation also shows that if the intrinsic and extrinsic noise are both estimated 

as variances along the projections to the lines y = −c and y = c respectively, then the total 

noise will be overestimated by a factor of two.

In summary, the caption to Figure 3A in Elowitz et al. (2002) is completely accurate in 

stating that “Spread of points perpendicular to the diagonal line on which CFP and YFP 

intensities are equal corresponds to intrinsic noise, whereas spread parallel to this line is 

increased by extrinsic noise.” However the geometric interpretation of covariance makes it 

precise how an increase in extrinsic noise relates to the spread of points in the direction of 

the line y = c.
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6 Practical considerations

6.1 Optimal estimators for intrinsic and extrinsic noise

We have derived the estimators that are optimal for minimizing bias or the MSE 

(summarized in Table 1). The ELSS estimator in (1) is in fact a special case of the general 

estimator under the assumption that C̄ = Ȳ, and is appropriate for data that are normalized to 

have the same sample mean (i.e. c̄ = ȳ). In Elowitz et al. (2002), the intensities of the two 

reporters were normalized to have mean 1. In the case where the assumption of equal 

reporter means does not hold, the general estimator is more suitable.

Similar to the estimators for the intrinsic noise, we derived two estimators for extrinsic 

noise, optimized for bias and for MSE respectively (Table 1).

The sample size n is the leading term in the denominator of all the optimal (in either the bias 

or MSE sense) intrinsic and extrinsic noise estimators. As a result, the unbiased estimator 

has the same form as the min-MSE estimator for large n (Table 1). For extrinsic noise, the 

general estimators converge to the ELSS estimate (Table 1). The mean and variance of the 

estimators are summarized in Table 6 in Appendix E. For intrinsic noise, assuming c̄ = ȳ, 

the ELSS estimator is optimal for bias and MSE at large n and optimal for bias at small n. 

Indeed, in Elowitz et al. (2002), typical values for n are greater than 100, making the ELSS 

formulas suitable for the analyses performed (with the assumption of equal mean satisfied). 

However, our derivations indicate that the two types of noise can be estimated using fewer 

cells.

As a general rule we recommend computing the inverse squared correlation between the ci 

and yi values and applying the min-MSE estimators when the sample size is small (e.g. 

much less than 50).

It is worth pointing out that the correction factor 1/a in the min-MSE estimators tends to be 

smaller than that in the unbiased estimators (1/(n − 1)) and the asymptotic estimators (1/n; 

Table 1). This smaller correction 1/a makes the min-MSE estimators “shrinkage” estimators, 

such that they achieve better MSE despite being biased, just like the Jame-Stein estimator 

(James and Stein, 1961). Our simulation results confirm this point (Table 2). However, using 

the sample correlation, instead of the true one, in our min-MSE estimators leads to increased 

MSE, although the estimates with the sample correlation do not differ much on average from 

that with the true correlation.

6.2 Data normalization

Our hierarchical model, as well as the ANOVA interpretation, is consistent with the model in 

Elowitz et al. (2002); both models assume that within each cell there are two distributions 

for the expression of the two reporter genes and that they have the same true mean and true 

variance. With the normality assumption, this means that the two reporters have identical 

distributions. Elowitz et al. measured the single-color distributions of strains that contained 

lac-repressible promoter pairs, which verified that this was a reasonable assumption in the 

case of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) in their 

experiment. We also performed simulations under the hierarchical model, with and without 
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identical distribution for the two reporters, and summarized the results in Table 3. Estimates 

of intrinsic and extrinsic noise are the same as the truth when the identical distribution 

assumption applies. When this assumption is not satisfied, the theory breaks down and it is 

unclear what the estimates mean.

Other studies have adapted this system and used other reporter combinations that may have 

markedly different distributions. For example, Yang et al. (2014) used CFP and mCherry 

with vastly different ranges of intensity values: whereas CFP varied from 0 to 6000 

(arbitrary units; i.e. a.u.), mCherry could vary from 0 to 9000 (a.u.); see Figure 3A from 

their paper. In contrast, Schmiedel et al. (2015) normalized the two reporters used in their 

experiment (ZsGreen and mCherry) to have the same mean. However, the variances, or more 

generally, the two distributions, also need to be the same. Since the decomposition of the 

total noise depends on the assumption that both reporters in the same cellular environment 

have similar variance (see equations 4 and 5), we recommend that in general a quantile 

normalization which normalizes the reporter measurements to identical distributions be 

performed before the calculations of noise components. Such a normalization procedure is 

standard in many settings requiring similar assumptions.

6.3 Assessing the ratio of extrinsic to intrinsic noise from sample correlation

We have seen from (13) that the proportion of the between-cell variability to total variability 

is the correlation ρ(C, Y). This leads to a simple approach for estimating the relative 

magnitude of the two types of noise: one can compute the sample correlation of the 

expression of the two reporters, ρ(c,y), and the ratio of extrinsic to intrinsic noise is then 

estimated by ρ(c, y)/[1 − ρ(c,y)].

7 Re-analysis of published two-reporter experiment data

Michael Elowitz and Peter Swain have kindly shared with us their data published in Elowitz 

et al. (2002). Here we focus on the data in Figure 3A of their paper, which contain the 

unnormalized fluorescence intensities of CFP and YFP in the E. coli. strain D22 and in 

strain M22. We normalized the data as follows such that the resulting scatterplots are close 

to Figure 3A:

where  and  are the unnormalized intensity of the CFP and YFP, respectively, in the ith 

cell,  the sample mean, and  the sample standard deviation. The normalized intensities 

are close to normal distributions, and all four distributions have mean 1. At a sample size of 

over 200, the different estimators in Table 4 give essentially the same result. Additionally, 

the ratio of the estimated extrinsic and total noise is close to the sample correlation, 

verifying our theoretical result.
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Nam Ki Lee and Sora Yang have also kindly shared with us their data published in Yang et 

al. (2014). Here we analyze the data in Figure 3A of their paper, which are the expression 

levels (intensities) of two reporters, CFP and mCherry (also see Sec. 6.2). The shared, 

unnormalized intensities have very different sample means (Table 4). Application of the 

estimators in Table 1 to these data gives two different estimates of the intrinsic noise, with 

the ELSS estimate being nearly three times the estimates under the equal mean assumption. 

To normalize the data, we removed the few negative values, log2 transformed the data, and 

quantile normalized between the two reporters (see summary statistics in Table 4). Applying 

our estimators to the normalized data, all estimates are consistent with one another. This 

analysis illustrates the importance of the equal mean assumption: when this assumption is 

not satisfied, the ELSS estimator leads to overestimation of the intrinsic noise.

Additionally, we subsampled from these data sets and assessed the performance of the 

estimators as the sample size decreased. At each sample size, we repeated the subsampling 

1000 times and computed the mean and standard deviation of the noise estimates (Table 5). 

Whereas the means of the estimates do not differ from those obtained using the entire data 

sets, the variation (measured by the standard deviation) increases quickly with decreasing 

sample sizes. For the Elowitz et al. data, the standard deviation in the estimates roughly 

doubles for both types of noise as the sample size halves. Comparing the standard deviation 

to the mean suggests that 200 is indeed a reasonable sample size for estimates with small 

variation (compare with their actual sample sizes of 284 and 250 for the two strains). For the 

Yang et al. data, the increase in the standard deviation is much less drastic, and 200 also 

appears a decent sample size for reasonably small variation in the estimates.

8 Conclusions and discussion

Our hierarchical model for Elowitz et al. (2002) provides statistically interpretable 

parameters representing intrinsic and extrinsic noise, and allows for the derivation of 

estimators with optimality guarantees. Furthermore, the model highlights experimental 

assumptions that need to be satisfied for the estimators to be valid, specifically that the two 

reporters need to have the same distribution (within a cell) and hence normalization may be 

necessary. Whereas similar hierarchical models have been proposed before to study 

heterogeneity among single cells (see, e.g. Finkenstädt et al., 2013, and Koeppl et al., 2012), 

our hierarchical model explicitly parameterize the two types of noise, and reveals their 

equivalence to other quantities, as indicated by (11) and (14), which enable derivation of 

closed-form estimators of these parameters (summarized in Table 1). We use bias and MSE 

to explicitly evaluate the performance of different estimators, and recognize the asymptotic 

equivalence of multiple estimators.

Other experiments have been set up to explore and assess intrinsic and extrinsic noise, and 

some of our results may be useful in those settings. For example, Volfson et al. (2006) used a 

single reporter but two Saccharomyces cerevisiae strains, with one strain containing only 

one copy of the reporter, and the other strain two copies. Assuming no strain effect, which 

may be thought of as batch effect, the authors applied the following estimators for (unscaled) 

intrinsic and extrinsic noise (consistent with their notation, and without the denominator of 

C̄Ȳ as used in the ELSS estimators in Table 1):
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(17)

(18)

where V1 and V2 are the variance in the 1-copy and 2-copy strains, respectively, and Vi and 

Ve are intrinsic and extrinsic noise, respectively. These estimators are in fact consistent with 

(11) and (14) under our hierarchical model:

(19)

(20)

Together, (19) and (20) give rise to (17) and (18). Note that (19) and (20) imply that the 

extrinsic noise is also the covariance here, except that the covariance is between the 1-copy 

and 2-copy strains with the same reporter; this is also pointed out by Sherman et al. (2015). 

Additionally, the total (marginal) noise of the reporter is the sum of intrinsic and extrinsic 

noise (19). However, consistent with our analysis of the assumptions of the hierarchical 

model, these estimators hold only when the variance for each single copy in the 2-copy 

strain is identical to that in the 1-copy strain. This is equivalent to assuming no strain (batch) 

effect, which can be a rather strong assumption.

We note that during the preparation of this manuscript, Erik van Nimwegen independently 

examined the Elowitz et al. (2002) paper form a Bayesian point of view (van Nimwegen, 

2016).
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Appendix

A Moments of Mi and Ci under normality

Assuming that , we have
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We can compute the third and fourth moments of Mi as follows:

which gives

which gives

For the random variable Ci, since , such that

we have
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Further assuming that μ = 0, i.e. the means are all 0, and that ε = 0, which means that the 

variability is the same across cells, we have

and

B Calculating Var[Sext]

B.1 Calculating 

where
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and

Therefore,

B.2 Calculating Var[n C̄ Ȳ]

Assuming normality on Mi and assuming that μ = 0 and ε = 0 (constant variance across 

cells), we have

Also,
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Under the assumptions made above, we have

If i = k,

Similarly, we can derive that the covariance is 0 for other cases where j = l or where i ≠ k 
and j ≠ l. Hence,

Additionally, under the normality assumption and with μ = 0 and ε = 0,

Therefore,
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B.3 Calculating 

Putting the terms above together, we have

C MSE of the general intrinsic noise estimator

The general form of the estimator for intrinsic noise is

C.1 Calculating Var[S]

Thus

Below we will assume normality, as well as μ = 0 and ε = 0, to facilitate the derivation. Note 

that Var [Σ(Ci − Yi)2] is derived in Appendix D.

C.1.1 Calculating Var[(C̄ − Ȳ)2]—First, we note that

Fu and Pachter Page 18

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This is because

Additionally, from Appendix B, we have

Fu and Pachter Page 19

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For , since

and

we have

For Cov [Σi≠j CiCj, ΣClYl], since

and

we have

Additionally,
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Therefore,

Furthermore,

In the expression above,
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Then we have

Putting the terms together, we have

C.1.2 Calculating Cov [Σ(Ci − Yi)2, (C̄ − Ȳ)2]—Next, we note that

where

and
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Additionally,

Therefore,

So we have
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The variance of the estimator is then

C.2 Calculating E[S]

The expectation of the estimator is

where

and

Hence,
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C.3 Calculating the MSE

The MSE of the estimator is then

The value of a that minimizes this MSE is

D Calculating Var[S ̃
int]

The individual terms can be computed as follows:
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Assuming normality, we have

Assuming additionally that μ = 0 and ε = 0, we have

Since Ci and Yi are symmetrically defined, we have

Next, from Appendix B,

Assuming normality, we have
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Assuming additionally that μ = 0 and ε = 0, we have

The covariance terms are computed as follows:

Assuming normality, we have

Assuming additionally that μ = 0 and ε = 0, we have

Finally, since Ci and Yi are symmetrically defined, we have

where

Fu and Pachter Page 28

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assuming normality, we have

and therefore,

Assuming additionally that μ = 0 and ε = 0, we have
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Putting the terms together, we derive the variance as follows, assuming that Mi follows a 

normal distribution,

Assuming additionally that μ = 0 and ε = 0, we have

E Summary of mean and variance of the estimators

We summarize the mean and variance of the estimators in Table 6.
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Figure 1. 
Geometric interpretation of intrinsic and extrinsic noise. The intrinsic noise, or the within-

cell variability, is the variance of the points projected to the line y = −c, which is 

perpendicular to y = c. In other words, it is the average of the squared lengths . 

The red point is the projection of point (ci, yi) onto the line y = c. The green point is the 

centroid (c̄, ȳ) (or ( ) after projection) under the assumption that the two means 

are equal. See the main text for detail. The extrinsic noise, or the between-cell variability, is 

the sample covariance between ci and yi. The colored triangles around the blue point (a 

randomly selected data point) illustrate the geometric interpretation of the sample 

covariance: it is the average (signed) area of triangles formed by pairs of data points: green 

triangles in Q1 and Q3 (some not shown) represent a positive contribution to the covariance, 
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whereas the magenta triangles in Q2 and Q4 a negative contribution. Since most data points 

lie in the 1st (Q1) and 3rd (Q3) quadrants relative to the blue point, most of the contribution 

involving the blue point is positive. Similarly, since most pairs of data points can be 

connected by a positively signed line, their positive contribution will result in a positive 

covariance. In Elowitz et al. (2002) the direction along the line y = c is labeled extrinsic, 

which makes sense in terms of the intuition for positive sample covariance. However we 

have placed that label “extrinsic” in quotes because the extrinsic noise estimator 

corresponding directly to the sample variance for points projected onto the line y = c (in 

analogy with intrinsic noise) is heavily biased and not usable in practice.
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Table 2

Estimates of extrinsic noise in simulated data. Data were simulated under the hierarchical model, where the 

conditional distributions of the two reporters are identical. Two min-MSE estimators are applied, one using the 

true correlation, and the other the sample correlation. Mean estimates (standard deviation in parentheses) of 

intrinsic and extrinsic noise are summarized. Note that in order to compare the estimates with the true 

parameters, the estimates are unscaled (i.e. not divided by c̄ȳ).

Simulation parameters

Sample size (n) 50

Intrinsic noise (σ2) 0.7

Extrinsic noise 

0.8

Distribution of means (G) N(1, 0.8)

Distribution of vars (H)

Constant: 

Distribution of Ci|Zi N(Mi, 0.7)

Distribution of Yi|Zi N(Mi, 0.7)

No. of data sets 500

Extrinsic noise estimate

Unbiased 0.80 (0.25; 0.0604)

minMSE (true corr) 0.73 (0.23; 0.0552)

minMSE (sample corr) 0.73 (0.24; 0.0634)

Asymptotic/ELSS 0.78 (0.06; 0.0582)

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 July 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fu and Pachter Page 36

Table 3

Estimates of intrinsic and extrinsic noise in simulated data. Data were simulated under two schemes. The first 

scheme is consistent with the hierarchical model, where the conditional distributions of the two reporters are 

identical. Under the second scheme, the conditional distributions are different. Intrinsic and extrinsic noise are 

in fact not defined under the second scheme. Mean estimates (standard deviation in parentheses) of intrinsic 

and extrinsic noise are summarized. Note that in order to compare the estimates with the true parameters, the 

estimates are unscaled (i.e. not divided by c̄ȳ).

Identical distribution Different distributions

Simulation parameters

Sample size (n) 1000 1000

Intrinsic noise (σ2) 0.7 0.7

Extrinsic noise 

0.8 0.8

Distribution of means (G) N(1, 0.8) N(1, 0.8)

Distribution of vars (H)

Constant: Constant: 

Distribution of Ci|Zi N(Mi, 0.7) N(Mi, 0.7)

Distribution of Yi|Zi N(Mi, 0.7) N(2Mi, 1.5 × 0.7)

No. of data sets 500 500

Sample correlation 0.53 (0.02) 0.60 (0.02)

Intrinsic noise 

General

  Unbiased 0.70 (0.03) 1.54 (0.07)

  minMSE 0.70 (0.03) 1.54 (0.07)

  Asymptotic 0.70 (0.03) 1.54 (0.07)

Equal mean

  Unbiased/ELSS 0.70 (0.03) 2.04 (0.08)

  minMSE 0.70 (0.03) 2.04 (0.08)

  Asymptotic/ELSS 0.70 (0.03) 2.04 (0.08)

Extrinsic noise 

  Unbiased 0.80 (0.06) 1.60 (0.10)

  minMSE 0.80 (0.06) 1.59 (0.10)

  Asymptotic/ELSS 0.80 (0.06) 1.60 (0.10)

  General 0.53 0.51

  Equal mean 0.53 0.44
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Table 4

Re-analysis of published two-reporter experiment data. Summary statistics and estimates (×10−2) of intrinsic 

and extrinsic noise are listed, using the estimators from Table 1.

Elowitz et al. data Yang et al. data

D22 M22 Figure 3A Normalized on log2

Sample means CFP: 1 CFP: 1 CFP: 2660 CFP: 11

YFP: 1 YFP: 1 mCherry: 3986 mCherry: 11

Sample correlation 0.50 0.49 0.86 0.86

Intrinsic noise

General

  Unbiased 0.79 0.36 5.44 0.11

  minMSE 0.78 0.35 5.44 0.11

  Asymptotic 0.78 0.35 5.44 0.11

Equal mean

  Unbiased/ELSS 0.78 0.35 13.72 0.11

  minMSE 0.78 0.35 13.72 0.11

  Asymptotic/ELSS 0.78 0.35 13.72 0.11

Extrinsic noise

  Unbiased 0.78 0.34 30.29 0.68

  minMSE 0.76 0.33 30.29 0.68

  Asymptotic/ELSS 0.77 0.34 30.29 0.68

  General 0.50 0.49 0.85 0.86

  Equal mean 0.50 0.49 0.69 0.86
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Table 5

Noise estimates (×10−2) based on subsets of published data. Similar to Table 4, we used the estimators from 

Table 1.

Elowitz et al. data Yang et al. data

D22 M22 Normalized on log2

Original sample size 284 250 40658

n = 200

Intrinsic noise

  General Unbiased 0.79 (0.06) 0.36 (0.02) 0.11 (0.02)

minMSE 0.78 (0.06) 0.35 (0.02) 0.11 (0.02)

Asymptotic 0.78 (0.06) 0.35 (0.02) 0.11 (0.02)

  Equal mean Unbiased/ELSS 0.78 (0.06) 0.35 (0.02) 0.11 (0.02)

minMSE 0.78 (0.06) 0.35 (0.02) 0.11 (0.02)

Asymptotic/ELSS 0.78 (0.06) 0.35 (0.02) 0.11 (0.02)

Extrinsic noise Unbiased 0.78 (0.07) 0.34 (0.02) 0.68 (0.09)

minMSE 0.76 (0.07) 0.33 (0.02) 0.67 (0.08)

Asymptotic/ELSS 0.78 (0.07) 0.34 (0.02) 0.68 (0.08)

n = 100

Intrinsic noise

  General Unbiased 0.79 (0.13) 0.36 (0.04) 0.11 (0.03)

minMSE 0.77 (0.12) 0.35 (0.04) 0.11 (0.03)

Asymptotic 0.78 (0.12) 0.35 (0.04) 0.11 (0.03)

  Equal mean Unbiased/ELSS 0.78 (0.12) 0.35 (0.04) 0.11 (0.03)

minMSE 0.77 (0.12) 0.35 (0.04) 0.11 (0.03)

Asymptotic/ELSS 0.78 (0.12) 0.35 (0.04) 0.11 (0.03)

Extrinsic noise Unbiased 0.77 (0.14) 0.34 (0.05) 0.69 (0.12)

minMSE 0.73 (0.14) 0.32 (0.05) 0.67 (0.12)

Asymptotic/ELSS 0.76 (0.14) 0.34 (0.05) 0.68 (0.12)

n = 50

Intrinsic noise

  General Unbiased 0.78 (0.21) 0.36 (0.07) 0.11 (0.04)

minMSE 0.75 (0.20) 0.35 (0.07) 0.11 (0.04)

Asymptotic 0.77 (0.20) 0.35 (0.07) 0.11 (0.04)

  Equal mean Unbiased/ELSS 0.78 (0.21) 0.36 (0.07) 0.11 (0.04)

minMSE 0.75 (0.20) 0.34 (0.07) 0.11 (0.04)

Asymptotic/ELSS 0.78 (0.21) 0.36 (0.07) 0.11 (0.04)

Extrinsic noise Unbiased 0.78 (0.24) 0.34 (0.09) 0.68 (0.16)
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Elowitz et al. data Yang et al. data

D22 M22 Normalized on log2

minMSE 0.70 (0.24) 0.30 (0.09) 0.65 (0.15)

Asymptotic/ELSS 0.76 (0.23) 0.33 (0.09) 0.66 (0.16)
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Table 6

Mean and variance of the estimators in Table 1. Note that only the numerators of the estimators in the general 

forms are considered here; that is, scalar a can take different values depending on which specific estimator is 

of interest. Values of a can be found in Table 1. As in the main text, we assume normality of all distributions, 

and that μ = 0 and ε = 0, when deriving the mean and variance.

Estimator Mean Variance

Intrinsic noise

General

Equal mean

Extrinsic noise
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