Table 1. Comparison of ARGO to benchmark models across countries and evaluation metrics.
RMSE | MAE | RMSPE | MAPE | CORR | |
---|---|---|---|---|---|
Brazil | |||||
ARGO | 0.394 | 0.369 | 0.397 | 0.389 | 0.971 |
GDT | 0.666 | 0.633 | 0.984 | 0.817 | 0.916 |
GT | 0.902 | 0.829 | 0.877 | 0.838 | 0.861 |
SAR | 0.660 | 0.563 | 0.664 | 0.583 | 0.917 |
SAR+GDT | 0.629 | 0.587 | 0.564 | 0.560 | 0.938 |
naive | 1 (30560.436) | 1 (21677.634) | 1 (0.703) | 1 (0.546) | 0.812 |
Mexico | |||||
ARGO | 0.680 | 0.651 | 0.558 | 0.678 | 0.924 |
GDT | 0.944 | 0.961 | 1.270 | 1.311 | 0.863 |
GT | 0.950 | 0.927 | 1.097 | 1.100 | 0.861 |
SAR | 0.790 | 0.737 | 0.776 | 0.815 | 0.911 |
SAR+GDT | 1.249 | 0.986 | 0.779 | 0.854 | 0.891 |
naive | 1 (3570.105) | 1 (2161.018) | 1 (0.816) | 1 (0.492) | 0.833 |
Thailand | |||||
ARGO | 0.715 | 0.715 | 0.708 | 0.706 | 0.928 |
GDT | 0.880 | 0.868 | 1.494 | 1.284 | 0.884 |
GT | 1.364 | 1.224 | 1.510 | 1.368 | 0.833 |
SAR | 0.774 | 0.836 | 0.906 | 0.898 | 0.917 |
SAR+GDT | 1.157 | 0.983 | 0.923 | 0.936 | 0.903 |
naive | 1 (2058.891) | 1 (1276.068) | 1 (0.426) | 1 (0.326) | 0.852 |
Singapore | |||||
ARGO | 0.893 | 0.889 | 0.931 | 0.917 | 0.903 |
GDT | 1.182 | 1.285 | 1.427 | 1.439 | 0.821 |
GT | 1.287 | 1.165 | 1.287 | 1.254 | 0.796 |
SAR | 1.153 | 1.104 | 1.166 | 1.087 | 0.847 |
SAR+GDT | 2.452 | 1.297 | 1.185 | 1.009 | 0.775 |
naive | 1 (329.318) | 1 (202.651) | 1 (0.283) | 1 (0.230) | 0.878 |
Taiwan | |||||
ARGO | 2.180 | 1.264 | 0.233 | 0.359 | 0.834 |
GT | 12.211 | 4.904 | 1.069 | 0.898 | 0.724 |
SAR | 1.852 | 1.397 | 0.247 | 0.408 | 0.878 |
naive | 1 (2422.559) | 1 (1063.597) | 1 (3.248) | 1 (1.601) | 0.734 |