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Abstract

Genome-scale metabolic reconstructions have proven to be valuable resources in enhanc-

ing our understanding of metabolic networks as they encapsulate all known metabolic capa-

bilities of the organisms from genes to proteins to their functions. However the complexity of

these large metabolic networks often hinders their utility in various practical applications.

Although reduced models are commonly used for modeling and in integrating experimental

data, they are often inconsistent across different studies and laboratories due to different cri-

teria and detail, which can compromise transferability of the findings and also integration of

experimental data from different groups. In this study, we have developed a systematic

semi-automatic approach to reduce genome-scale models into core models in a consistent

and logical manner focusing on the central metabolism or subsystems of interest. The

method minimizes the loss of information using an approach that combines graph-based

search and optimization methods. The resulting core models are shown to be able to cap-

ture key properties of the genome-scale models and preserve consistency in terms of bio-

mass and by-product yields, flux and concentration variability and gene essentiality. The

development of these “consistently-reduced” models will help to clarify and facilitate integra-

tion of different experimental data to draw new understanding that can be directly extend-

able to genome-scale models.

Author summary

Reduced models are used commonly to understand the metabolism of organisms and to

integrate experimental data for many different studies such as physiology, fluxomics and

metabolomics. Without consistent or clear criteria on how these reduced models are actu-

ally developed, it is difficult to ensure that they reflect the detailed knowledge that is kept

in genome scale metabolic network models (GEMs). The redGEM algorithm presented

here allows us to systematically develop consistently reduced metabolic models from their

genome-scale counterparts. We applied redGEM for the construction of a core model for
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E. coli central carbon metabolism. We constructed the core model irJO1366 based on the

latest genome-scale E. coli metabolic reconstruction (iJO1366). irJO1366 contains the cen-

tral carbon pathways and other immediate pathways that must be connected to them for

consistency with the iJO1366. irJO1366 can be used to understand metabolism of the organ-

ism and also to provide guidance for metabolic engineering purposes. The algorithm is also

designed to be modular so that heterologous reactions or pathways can be appended to the

core model akin to a “plug-and-play”, synthetic biology approach. The algorithm is applica-

ble to any compartmentalized or non-compartmentalized GEM.

Introduction

Stoichiometric models have been used to study the physiology of organisms since 1980s [1–3],

and with the accumulation of knowledge, and progressing techniques for genome annotation,

these models have evolved into Genome Scale Metabolic Reconstructions (GEMs), which

encapsulate all known biochemistry that takes place in the organisms by gene to protein to

reaction (GPRs) associations [4]. Since the first Genome Scale models developed [5,6], the

number of annotated genomes and the corresponding genome scale metabolic reconstruction

has increased tremendously [7–9].

With increasing popularity of GEMs, different techniques to analyse these networks have

been proposed [10,11]. Flux Balance Analysis (FBA), a constraint-based method (CBM)

enables many forms of analysis based solely on knowledge of network stoichiometry and

incorporation of various constraints, such as environmental, physicochemical constraints [12].

FBA has been further expanded by other methods such as Thermodynamics-based Flux Analy-

sis (TFA) [13–16] and others [17,18] for the integration of available thermodynamics data

with GEMs. TFA utilizes information about the properties of reaction thermodynamics and

integrates them into FBA. Such properties now can be estimated by Group Contribution

Method [19–21] and high-level Quantum Chemical Calculations[22]. Metabolic networks are

valuable scaffolds that can also be used to integrate other types of data such as metabolic

[23,24], regulatory and signalling [25–27], that can elucidate the actual state of the metabolic

network in vivo. However, both FBA, TFA and other steady-state approaches cannot capture

the dynamic response of metabolic networks, which requires integration of detailed enzyme

kinetics and regulations [28]. Hatzimanikatis and colleagues have developed a framework that

utilizes FBA, TFA and generates kinetic models without sacrificing stoichiometric, thermody-

namic and physiological constraints [29–31]. Recently, another approach has been proposed

to integrate kinetics into large-scale metabolic networks[32].

As the quality and the size of the models increase with better annotation, the complexity of

the mathematical representations of the models also increases. Hatzimanikatis and colleagues

[33] observed that majority of the studies and applications using metabolic models have still

revolved around the central metabolism and around “reduced” models instead of genome-

scale models, indicating that the full potential of GEMs remains largely untapped [34–38].

These reduced models have the advantage of having small sizes as they are built with a top-

down manner, but they lack the quality of bottom-up built models since they have been

reduced ad hoc, with different criteria and aims, which have not been consistently and explic-

itly justified [39–41]. An algorithmic approach called NetworkReducer [42] has been recently

proposed following a top-down reduction procedure. The main purpose of this approach is to

preserve selected so-called “protected” metabolites and reactions, while iteratively deleting the

reactions that do not prevent the activity of the selected reactions. This algorithm has been
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further extended [43] to compute the minimum size of subnetworks that still preserve the

selected reactions.

In this study, we have developed redGEM, a systematic model reduction framework for

constructing core metabolic models from GEMs. Herewith, we propose an approach that

focuses on selected metabolic subsystems and yet retains the linkages and knowledge captured

in genome-scale reconstructions. redGEM follows a bottom-up approach that allows us to

handle the complexity and to yield comprehensive insights in connecting the metabolic model

to actual cellular physiology. redGEM can be tailored to generate minimal models with con-

served functions. However, our approach is not strictly focused only on the reduction of the

stoichiometry for the generation of highly condensed network, but aims also to preserve the

constitutive characteristics of metabolic networks.

In redGEM, we use as inputs: (i) a GEM, (ii) metabolic subsystems that are of interest for a

physiology under study; (iii) information about utilized substrates and medium components;

and (iv) available physiological data (Fig 1). After a series of computational procedures, we

Fig 1. redGEM uses as inputs a GEM and the part of the metabolism of interest, along with the defined medium. With a 3

steps procedure that uses a set of methods, it generates core models for different purposes, such as FBA, TFA, kinetic modelling

and metabolic flux analysis (MFA).

https://doi.org/10.1371/journal.pcbi.1005444.g001
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generate a reduced model that is consistent with the original GEM in terms of flux profiles,

essential genes and reactions, thermodynamically feasible ranges of metabolites and ranges of

Gibbs free energy of reactions. We applied redGEM on the latest GEM of E. coli iJO1366 [44]

under both aerobic and anaerobic conditions with glucose and other possible carbon sources

and generated a family of reduced E. coli iJO1366 models.

Results and discussion

We performed the redGEM algorithm on the latest GEM of E. coli, iJO1366 to generate a

reduced model consistent with its parent GEM model. Firstly, we selected 6 central carbon

metabolism subsystems (glycolysis, pentose phosphate pathway, citric acid cycle, glyoxylate

cycle, pyruvate metabolism, and oxidative phosphorylation), as they are defined in original

E. coli GEM. In addition, we have included all the reactions that use quinone/quinol pool

metabolites (Ubiquinone/ubiquinol, menaquinone/menaquinol, 2- dimethyl menaqui-

none/2- dimethyl menaquinol for E. coli) in oxidative phosphorylation subsystem to cap-

ture the coupling between the core carbon metabolism and energy/redox metabolism.

Some of those reactions had different subsystem definition in original GEM. These subsys-

tems include a total of 185 reactions and 126 metabolites. We next redefined the content of

each starting subsystem by performing an intra-expansion analysis to identify the RT (See

Material and Methods for definitions) reactions. We include a reaction in RT when it only

interconverts metabolites that are already included in one subsystem, and these reactions

belong to a different subsystem in original GEM. This analysis established that there are

many reactions in GEM whose reactants and products belong to a specific subsystem but

are assigned to a different subsystem in the original GEM (Table 1). Some of the reactions

defined in RT are common between subsystems, since the subsystems share many metabo-

lites, especially cofactor pairs such as ATP/ADP, NAD+/NADH etc.

After the intra-expansion, the network expansion by directed graph search finds metabo-

lites and reactions between subsystems in a pairwise manner for non-common metabolites

(postulate 3 in Material and Methods) with respect to the degree of connection D. D is the dis-

tance between a subsystem pair and can be either equal to the inherent minimum distance

between each pair, or imposed by the user for all subsystem pairs. Depending on the network

topology, the inherent minimum distance can be equal to the input D imposed by the user

(postulate 5 in Material and Methods). redGEM also performs pairwise connections between

the metabolites of the same subsystem. The algorithm calculates MS, MD
ij and MD

ii (all pairs i, j),
RSi , RD

ij , R
D
ii (all pairs i, j), which overall define the core network CND with respect to selected

degree of connection parameter D (Table 2). The additional reactions for every degree of con-

nection D are specific for the corresponding D (postulate 2 in Material and Methods). As a

final step, redGEM performs an additional intra-expansion, and scans through every reaction

Table 1. Statistics on starting subsystems with intra-expansion reactions, RT.

Subsystems Metabolites Reactions Intra-Expansion Reactions

Citric Acid Cycle 24 10 6

Pentose Phosphate Pathway 21 12 2

Glycolysis/Gluconeogenesis 35 22 17

Pyruvate Metabolism 22 10 3

Glyoxylate Metabolism 13 4 3

Oxidative Phosphorylation 72 70 24

Media Composition 11 11 -

https://doi.org/10.1371/journal.pcbi.1005444.t001
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in GEM to identify the reactions RT, which are not captured by RSi , RD
ij , R

D
ii (all pairs i, j) but

include only MS, MD
ij and MD

ii (postulate 4 in Material and Methods). This procedure finalizes

the steps that define the final core network for further analysis for redGEM. We performed

redGEM on E. coli iJO1366 and we generated all core networks with degree of connection up

to D = 6.

At D = 1, redGEM captured many connecting reactions that are part of many ad hoc built

models, such as malic enzymes 1–2 between glycolysis and TCA cycle that connect L-malate to

pyruvate, phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase that

connect oxaloacetate and phosphoenolpyruvate. Moreover, it captures many other reactions,

such as 2 types of L-aspartate oxidases, which are using quinone/quinol cofactor pairs and

labeled as electron transport chains reactions. There are two more L-aspartate oxidase reac-

tions that are added to the D = 1 core network by redGEM (S1 Table). One uses O2/H2O2 and

the other one is using fumarate/succinate as cofactor pairs. These reactions are captured by RD
ii

and RT simultaneously. Finally redGEM added 10 reactions whose reactants and products are

only cofactors and small metabolites belonging to D = 1 core network in their stoichiometry,

such as NAD+ kinase, NADP phosphatase, adenylate kinase, nucleoside-triphosphatase etc. as

a part of RT. Along these reactions, the non-growth associated ATP maintenance (ATPM)

reaction is explicitly included in the reduced model, and its corresponding minimum require-

ment of the GEM is preserved for further analysis in this study.

When we analyze the pairwise connections between subsystems with respect to different

connection parameter D, we observe that there is no D = 1 connection between certain pairs,

such as pentose phosphate pathway (PPP) and glyoxylate metabolism (GLX) (Fig 2). However,

zero connection between two subsystems by D = 1 does not necessarily mean that these sub-

systems are far from each other, as we observe that there are 5 and 15 reactions that are con-

necting PPP and GLX in 2 and 3 steps, respectively. As another extreme, tricarboxylic acid

(TCA) cycle and electron transport chains (ETC) have 15 different reactions that connect each

other with 1 reaction, demonstrating the strong connection between TCA cycle and redox

metabolism.

Following the analysis for reactions, we identified the metabolites that connect the subsys-

tems in a pairwise manner. There are no such intermediate metabolites between subsystems

connected by D = 1, since this degree of connection only captures reactions between the

unshared metabolites of a subsystem pair (Table 3). When the subsystems are connected pair-

wise with D = 2, there are 21 metabolites that become intermediates between all subsystem

pairs. This number increases to 51 when degree of connection is increased to 3. By definition,

Table 2. The statistics of different Core Networks CND.

Degree of Connection # of Metabolites # of Reactions

D = 0 126 185

D = 1 156 243

D = 2 197 286

D = 3 212 307

D = 4 227 324

D = 5 357 507

D = 6 461 653

The reported values for metabolites are compartmentalized, i.e. pyruvate cytoplasmic and pyruvate

periplasmic are reported as different metabolites.

https://doi.org/10.1371/journal.pcbi.1005444.t002
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a metabolite that connects a subsystem pair in 2 steps can also connect them in 3 steps through

different reactions.

There are metabolites, such as pyruvate and succinate, that already participate in D = 0

reactions (in the initial starting subsystems), and they appear later to connect at least one sub-

system pair with D = 3 connection. This indicates that there is no path in GEM with length

less than 3 that can connect any starting subsystem pair using these intermediates, excluding

the reactions that already belong to this subsystem pair.

Methylglyoxal is known to be a hub metabolite, since it can connect dihydroxyacetone

phosphate to lactate in 2 reactions. Lactate is a metabolite that belongs to different starting

D = 0 subsystems such as oxidative phosphorylation and pyruvate metabolism. Moreover, it

can be converted to pyruvate by lactate dehydrogenase, and pyruvate is already known as a

hub metabolite that can connect different subsystems. As another example, L and D tartrate

connect pentose phosphate pathway and citrate cycle in 3 steps through the following path:

With an antiporter, cytosolic succinate transports L and D forms of tartrate to cytosol. Then, L

and D-tartrate dehydratase enzymes convert these two forms of tartrate to oxaloacetate and

water. Following this biotransformation, oxaloacetate can be converted to pyruvate by many

enzymes. As we observed in methylglyoxal case, pyruvate is part of many different starting

D = 0 subsystems (glycolysis/gluconeogenesis, oxidative phosphorylation, citrate cycle, pyru-

vate metabolism and extracellular subsystem), and L and D tartrate appear as intermediates

that connect 7 pairs of subsystems in D = 3.

Another layer of information that we can extract through this analysis is the subsystems

that connect the selected starting subsystems, thus demonstrating the proximity of these sub-

systems to the defined starting core carbon ones. By starting from 7 subsystems (including

extracellular metabolites as extracellular subsystem), the network expansion procedure results

in capturing reactions as core from 32 different subsystems for D = 6 (Table 4). In GEM, there

are 37 subsystems, which signifies that only 6 steps expansion captures reactions from ~90% of

all subsystems defined in GEM, thus showing the tight connections between metabolites/sub-

systems in the network. For 2 subsystems defined in GEM, anaplerotic reactions and methyl-

glyoxal metabolism, more than half of the all reactions within these subsystems are captured

by network expansion procedure with connection parameter D being up to 3 (Table 5). An

Fig 2. Pairwise connections between 6 intracellular starting subsystems. i/j/k represents the number of connecting reactions with

respect to degree of connections D = 1, D = 2 and D = 3 respectively. The numbers are not cumulative, and represent the unique reactions

for degree of connection. GLY: Glycolysis/ Gluconeogenesis, PPP: Pentose phosphate pathway, PYR: Pyruvate metabolism, ETC: Electron

transport chain/Oxidative Phosphorylation, GLX: Glyoxylate metabolism, TCA: Tricarboxylic acid cycle.

https://doi.org/10.1371/journal.pcbi.1005444.g002
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Table 3. Metabolites that connect subsystems and the number of pairwise connections they achieve with different degrees of connection parame-

ter D. (According to postulate 1, see Material and Methods).

Name of the connecting metabolite D = 1 D = 2 D = 3

D-tartrate 0 3 7

L-tartrate 0 3 7

Methylglyoxal 0 5 6

L-Malate 0 5 5

(R)-S-Lactoylglutathione 0 0 5

2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate 0 4 4

Citrate 0 1 4

N6-(1,2-Dicarboxyethyl)-AMP 0 1 4

(S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate 0 1 3

CMP 0 1 3

D-Fructose 0 1 3

Glycerol 0 1 3

L-Aspartate 0 1 3

N(omega)-(L-Arginino)succinate 0 1 3

Oxaloacetate 0 1 3

5-O-(1-Carboxyvinyl)-3-phosphoshikimate 0 0 3

Chorismate 0 0 3

D-Glycerate 2-phosphate 0 0 3

Glyoxylate 0 0 3

Phosphoenolpyruvate 0 0 3

Formate 0 2 2

3-Phospho-D-glyceroyl phosphate 0 1 2

alpha,alpha-Trehalose 6-phosphate 0 1 2

D-Gluconate 0 1 2

alpha-D-Ribose 5-phosphate 0 0 2

D-Xylulose 5-phosphate 0 0 2

Hydroxypyruvate 0 0 2

L-Lactaldehyde 0 0 2

N-Carbamoyl-L-aspartate 0 0 2

D-Fructose 1,6-bisphosphate 0 1 1

D-Glucose 0 1 1

Dihydroxyacetone 0 1 1

2-Hydroxy-3-oxopropanoate 0 0 1

Adenosine 3,5-bisphosphate 0 0 1

AMP 0 0 1

Citrate 0 0 1

D-Erythrose 4-phosphate 0 0 1

D-Gluconate 0 0 1

D-Lactate 0 0 1

D-Ribulose 5-phosphate 0 0 1

Glyceraldehyde 3-phosphate 0 0 1

Glycerol 3-phosphate 0 0 1

Maltoheptaose 0 0 1

Maltohexaose 0 0 1

Maltopentaose 0 0 1

Pyruvate 0 0 1

(Continued )
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important observation is that components of the same subsystems can be parts of the connec-

tion of more than 1 subsystem pairs, since different subsystems can share the same

metabolites.

Generation of lumped reactions for biomass building blocks from core

carbon network

The wild-type biomass reaction of the iJO1366 model contains 102 biomass building blocks

(BBBs). The size and the complexity of the composition makes it necessary to develop tech-

niques to keep the information stored in GEM for the biosynthesis, but yet reduce the size of

the network significantly. Methods, such as graph-search algorithms can be used for identifica-

tion of biosynthetic routes between two metabolites in metabolic networks [45,46]. However,

these graph theory based approaches cannot be used for our purposes due to two main issues

and limitations: i) they do not make use nor obey mass conservation; hence the pathways they
generate are not guaranteed to be able to carry flux in metabolic network or to be elementally bal-
anced, ii) and they cannot manage pathways that are not linear, such as branched pathways. To

overcome these limitations, we used lumpGEM [47], an in-built tool, which identifies subnet-

works that can produce biomass building blocks starting from precursor metabolites. These

precursors are provided by redGEM through the systematically generated core network based

on degree of connection parameter, D. Each subnetwork is then transformed into a lumped

reaction and inserted in the reduced model. lumpGEM forces mass conservation constraints

Table 3. (Continued)

Name of the connecting metabolite D = 1 D = 2 D = 3

R-Glycerate 0 0 1

Sedoheptulose 1,7-bisphosphate 0 0 1

Sedoheptulose 7-phosphate 0 0 1

Succinate 0 0 1

Trehalose 0 0 1

https://doi.org/10.1371/journal.pcbi.1005444.t003

Table 4. The subsystems that can be reached from starting subsystems in 6 steps.

SUBSYSTEMS REPRESENTED IN D = 6 CORE NETWORK

Alanine and Aspartate Metabolism Histidine Metabolism

Alternate Carbon Metabolism Inorganic Ion Transport and Metabolism

Anaplerotic Reactions Lipopolysaccharide Biosynthesis / Recycling

Arginine and Proline Metabolism Methionine Metabolism

Cell Envelope Biosynthesis Methylglyoxal Metabolism

Tricarboxylic acid cycle Murein Recycling

Cofactor and Prosthetic Group Biosynthesis Nucleotide Salvage Pathway

Cysteine Metabolism Pentose Phosphate Pathway

ETC Rxns–Oxidative Phosphorylation Purine and Pyrimidine Biosynthesis

Exchange Pyruvate Metabolism

Folate Metabolism Threonine and Lysine Metabolism

Glutamate Metabolism Transport, Inner Membrane

Glycerophospholipid Metabolism Transport, Outer Membrane Porin

Glycine and Serine Metabolism Tyrosine, Tryptophan, and Phenylalanine Metabolism

Glycolysis/Gluconeogenesis Unassigned–No subsystem association

Glyoxylate Metabolism Valine, Leucine, and Isoleucine Metabolism

https://doi.org/10.1371/journal.pcbi.1005444.t004
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during optimization to identify subnetworks, thus preventing the generation of lumped re-

actions, which cannot carry flux in the metabolic networks. As an example, for D = 1, by mi-

nimizing the number of non-core reactions In GEM, lumpGEM generated a 17 reactions

subnetwork to synthesize histidine from core carbon metabolites (Fig 3). Histidine is synthe-

sized from ribose-5-phosphate, a precursor from pentose phosphate pathway. The linear path-

way from this core metabolite to histidine is composed of 10 steps. However, due to the mass

balance constraint, two metabolites, 1-(5-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

and L-Glutamine cannot be balanced in a network that is composed of core reactions and the

linear pathway from ribose-5-phophate to histidine. These metabolites are balanced in the net-

work by other non-core reactions. Hence, the generated sets of reactions are not linear routes

from precursor metabolites to biomass building blocks, but branched, balanced subnetworks
(for formulation of lumpGEM, see Material and Methods).

Using lumpGEM, we replicated all the biosynthetic pathways in databases such as EcoCyc

[48], either as a part of subnetworks or the exact pathway. In addition, we identified subnet-

works that can qualify as alternative biosynthetic pathways. E. coli is well-known to be robust

against deletions by having many duplicate genes and alternate pathways[49]. Some of these

routes may not be active due to energetics or regulatory constraints but using lumpGEM we

can map these possible alternate pathways completely and also derive different biosynthetic

lumped reactions. The introduction of such lumped biosynthetic reactions simplifies the core

models considerably and allows the use of these models in important computational analysis

Table 5. The subsystems that are connecting 6 starting subsystems.

TCA

PPP

TCA

GLY

TCA

PYR

TCA

GLX

TCA

ETC

PPP

GLY

PPP

PYR

PPP

GLX

PPP

ETC

GLY

PYR

GLY

GLX

GLY

ETC

PYR

GLX

PYR

ETC

GLX

ETC

Total

Alanine and Aspartate Metabolism 0/0/1 0/0/2 0/2/2 0/0/0 2/2/2 0/0/0 0/0/0 0/0/0 0/1/2 0/0/0 0/0/0 0/1/2 0/0/0 1/2/2 0/0/1 2/2/2

(%22/%22/%22)

Alternate Carbon Metabolism 0/0/3 0/0/3 2/4/3 0/0/1 1/3/3 2/7/

21

0/0/0 0/0/0 1/3/

10

0/0/1 0/1/4 2/5/

13

0/0/0 2/4/3 0/1/4 6/17/29 (%3/%9/%

15)

Anaplerotic Reactions 2/2/4 4/4/6 2/2/4 2/2/6 4/4/4 0/1/3 0/2/0 0/3/3 2/3/3 2/4/4 0/3/4 4/5/5 0/3/5 2/3/3 1/3/5 6/6/6 (%75/%75/%

75)

Arginine and Proline Metabolism 0/0/0 0/0/0 0/0/2 0/0/0 0/2/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/2 0/0/0 0/2/2

(%0/%5/%5)

Cofactor and Prosthetic Group

Biosynthesis

0/2/4 0/2/4 0/3/4 0/0/2 2/5/5 0/0/1 1/1/1 0/0/0 0/1/4 0/0/2 0/0/0 0/0/4 0/0/0 0/2/2 0/0/2 3/6/8

(%1/%3/%4)

Cysteine Metabolism 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/1

(%0/%0/%8)

Glycerophospholipid Metabolism 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/7 0/0/0 0/0/0 0/7/7 0/0/0 0/0/0 0/0/7 0/0/0 0/0/0 0/0/0 0/7/7

(%0/%3/%3)

Glycine and Serine Metabolism 0/0/0 0/0/0 0/0/0 0/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/1/1 0/0/1 0/0/1 0/0/0 0/0/1 1/1/1

(%7/%7/%7)

Methylglyoxal Metabolism 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/2 0/2/4 0/0/0 0/2/5 0/2/4 0/0/0 0/2/5 0/0/0 0/2/4 0/0/0 0/2/5

(%0/%22/%56)

Nucleotide Salvage Pathway 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/1 0/0/0 0/0/0 0/1/2 0/0/0 0/0/0 0/0/1 0/0/0 0/0/0 0/0/0 0/1/2

(%0/%1/%1)

Purine and Pyrimidine Biosynthesis 0/0/1 0/0/1 0/0/5 0/0/1 1/5/7 0/0/0 0/0/0 0/0/0 0/0/3 0/0/0 0/0/0 0/0/1 0/0/0 0/0/7 0/0/1 1/5/7

(%4/%22/%30)

Transport, Inner Membrane 0/1/6 0/1/6 0/5/6 0/1/3 4/6/

10

1/3/4 0/0/0 0/0/0 1/6/

11

0/0/0 0/0/0 3/5/9 0/0/0 2/6/7 0/1/3 9/11/14

(%3/%3/%4)

Tyrosine, Tryptophan, and

Phenylalanine Metabolism

0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/3 0/0/0 0/0/0 0/0/0 0/0/3 0/0/0 0/0/3 0/0/0 0/0/0 0/0/0 0/0/3

(%0/%0/%13)

i/j/k represents the number of reactions that belong to the new subsystem, which connect a starting subsystem pair with respect to degree of connection

parameter D = 1, D = 2 and D = 3, respectively. Percentage refers to the percentage of the total number of reactions connecting all 6 pairs over the total

number of reactions in GEM labeled with the corresponding subsystem.

https://doi.org/10.1371/journal.pcbi.1005444.t005
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methods such as dynamic FBA [50] extreme pathway analysis [51,52] and elementary flux

modes [53,54], as well as for TFA formulations and kinetic modeling.

For D = 1 core network, lumpGEM generated 1216 subnetworks and 254 unique lumped

reactions for 79 biomass building blocks in total for aerobic and anaerobic case. The remaining

BBBs of the total 102 can be produced within the D = 1 core network. For some biomass build-

ing blocks, it is possible that all the alternatives for Smin (the minimal subnetwork size) subnet-

works generated under aerobic conditions are using molecular oxygen, thus cannot carry flux

under anaerobic conditions. This necessitates the generation of lumped reactions without any

oxygen in the media. For Smin, lumpGEM generated only 4 new lumped reactions for anaero-

bic case, for 3 metabolites, namely, heme O, lipoate (protein bound) and protoheme. All the

other lumped reactions generated for anaerobic case are a subset of the 250 lumped reactions

(S2 Table) for aerobic conditions. In the subsequent studies, we used all lumped reactions in

order to allow for studies under different oxygen limitations without changing the model

structure. The core model can be found in the supplementary material (S1 File).

Validation

Maximum biomass under different carbon sources. One of the most important criteria

for the reduced GEM (rGEM) validation is the maximum biomass production. We performed

biomass maximization with FBA and TFA. With all 254 lumped reactions, maximum specific

growth rate of the rGEM is the same as GEM’s μmax, 0.99 hr-1 with 10 mmol/gDWhr glucose

uptake rate under aerobic conditions both with FBA and TFA. The anaerobic specific growth

rate of GEM with the same carbon source for FBA is ~0.67/hr and with thermodynamic

Fig 3. The synthesis of histidine from core carbon network. Histidine synthesis starts from ribose-

5-phosphate (R5P) from Pentose Phosphate Pathway, and consists of 10 reaction steps. Not all reactions of

core network are shown. Orange reactions form the linear pathways for histidine as defined in databases.

Metabolites colored with green are core metabolites, whereas orange and purple metabolites are non-core.

The non-core metabolites along the linear pathway for histidine synthesis are balanced by the purple

reactions.

https://doi.org/10.1371/journal.pcbi.1005444.g003
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constraints (TFA) it drops to 0.27/hr. rGEM grows with 0.27/hr specific growth rate both with

FBA and TFA. When we analyzed the discrepancy between the FBA and TFA growth rates for

GEM, we saw that the difference is emerging from reactions that use molecular oxygen in

GEM. These oxygen-using reactions do not belong to oxidative phosphorylation or ETC reac-

tions, and are not a part of rGEM network. Moreover, the standard Gibbs free energy of those

reactions range from 19kcal/mol to 294 kcal/mol in the oxygen producing direction[21] and

are thermodynamically infeasible, except for 5 reactions which are mainly degradation of

hydrogen peroxide and superoxide anion. These 5 reactions have no effect on growth rate.

To incorporate experimental fluxomics data to validate the model, we included 13C-MFA

data from Haverkorn et al. [55]. In this study, the authors estimated the fluxes for core carbon

metabolism, the uptake and secretion of the cell, and the corresponding specific growth. By

incorporating 22 fluxes, along with the specific uptake rate of glucose, both the GEM and the

reduced model predicted the specific growth rate as 0.65/hr, which is very close to the observed

value as 0.61/hr. This overestimation from the GEM was expected, mainly because the 13C-

MFA data is not enough to constrain the model to the experimentally observed physiology.

However our objective in this study is to preserve the consistency between rGEM and GEM,

and this consistency is still kept with the additional experimental data.

The core networks generated by redGEM are the same for different possible carbon sources,

since they are incorporated in the core network as extracellular subsystem. Thus, the only dif-

ference that can emerge for the reduced models growing on different substrates will be the

generated lumped reactions. Before rerunning the lumpGEM algorithm under different envi-

ronmental conditions, we tested specific growth rate of the reduced model generated under

glucose for different carbon sources (Table 6). The theoretical optimum yield is the same for

different possible carbon sources between rGEM and GEM except formate. GEM can grow on

formate very slowly (0.034/hr), whereas rGEM does not grow on formate at all, with the

lumped reactions generated under glucose. Thus, to generate a reduced model growing on for-

mate, the lumping procedure should be repeated.

To compare the subnetworks and lumped reactions under different carbon sources and

environmental conditions, we generated a reduced model of E. coli iJO1366 growing under

glycerol anaerobically. The growth rates of rGEM and GEM under these conditions with TFA

are the same, 0.113/hr. The number of generated Smin subnetworks under glycerol is 910, com-

pared to 1212 generated under aerobically grown E. coli with glucose as sole carbon source.

There are 237 unique lumped reactions for growth under glycerol, whereas there are 250

unique lumped reactions for glucose case. Among these 237 lumped reactions for glycerol,

Table 6. The specific growth rates (/hr) with 10 mmol/gDWhr uptake for each carbon source.

Carbon Source GEM rGEM

Glucose 0.998 0.994

Succinate 0.506 0.505

Acetate 0.260 0.259

Ethanol 0.434 0.432

Glycerol 0.577 0.576

Lactate 0.441 0.439

Alpha-ketoglutarate 0.631 0.628

Formate 0.034 0.000

Pyruvate 0.372 0.371

Malate 0.496 0.494

https://doi.org/10.1371/journal.pcbi.1005444.t006
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there are only 8 different lumped reactions compared to glucose case for heme O, protoheme

and lipoate (protein bound).

Gene essentiality comparison between rGEM and GEM. One of the most common anal-

yses for genome-scale models is in silico gene deletion (knockout) experiments to i) identify
essential and nonessential genes, ii) study the gene deletion impact on the organism physiology,

iii) develop strategies for metabolic engineering [56]. Consistency of gene knockouts between

rGEM and GEM is another important corroboration for the reliability of the reduction proce-

dure. irJO1366, generated with D = 1, shares 307 genes with GEM, and among these 307 genes,

25 are essential. 22 of those genes are also essential in GEM. 2 out of 3 conflicting genes do not

have an effect on the maximum theoretical yield of E. coli under aerobic, minimal glucose

medium in the GEM. The first case is the gene transcribing thioredoxin reductase enzyme,

which interconverts NADPH to NADP by using oxidized thioredoxin and reduced thiore-

doxin as cofactor pairs. This reaction is not essential in GEM, however it is essential in rGEM,

since the cofactor pair oxidized thioredoxin and reduced thioredoxin participate in lumped

reactions, and due to flux coupling, the reaction that thioredoxin reductase catalyzes becomes

indispensible. We searched for alternative lumped reactions so that this gene will not be essen-

tial in rGEM. However, lumped reactions constructed from Smin do not make this gene non-

essential. The second discrepancy of the responses to gene deletion between rGEM and GEM

is the gene transcribing Glutamate dehydrogenease, which shows a different behaviour com-

pared to thioredoxin reductase enzyme. The reaction it catalyzes is the only reaction that syn-

thesizes glutamate in the rGEM, and knocking out this enzyme automatically results in no

specific growth rate. Deleting this enzyme in GEM results in a growth rate drop of 3.3%, and

alternative synthesis pathways for glutamate in GEM abolishes the essentiality. The deletion of

adenylate kinase (adk) is the third discrepancy between rGEM and GEM. Knocking out this

gene does not result in any drop in growth rate for GEM, however it prevents the cellular

growth in rGEM. The reason for this discrepancy is similar to the case of thioredoxin reduc-

tase, i.e. the loss of alternative reactions/pathways that can complement this deletion. Although

these reactions/pathways can be a part of the subnetworks, the corresponding lumped reac-

tions cannot add such flexibility in the rGEM network. Interestingly adk is reported as essen-

tial in literature[57], thus showing that the alternative pathways that compensate for the loss

adk gene in GEM are either not active or not catalytically efficient/favorable.

Flux and thermodynamic-based variability analysis–comparison between rGEM and

GEM. To further validate the model, we compared the physiologically allowable flux ranges

with flux variability analysis (FVA), allowable concentration ranges for metabolites and Gibbs

free energy of reactions by performing Thermodynamics-based Variability Analysis (TVA) for

the reactions and metabolites that are common between rGEM and GEM. Comparisons for

the allowable flux ranges revealed that most of the common intracellular reactions between

rGEM and GEM have consistent flux ranges, however, there are some reactions in the rGEM

with reduced flux variability as compared to GEM counterparts (Fig 4). The variability of the

reactions in the subsystems glycolysis/gluconeogenesis, pentose phosphate pathway, and citric

acid cycle of rGEM are close to variability in GEM, due to the nature of the construction of

rGEM, which is built by expansion of these subsystems and this expansion includes all the

close links that allow the flux variability of the reactions in these subsystems. Reactions that

belong to pyruvate metabolism and electron transport chains (ETC) show a higher variability

in GEM compared to rGEM, due to the alternative reactions that use metabolites from these

subsystems and are not a part of the reactions in the network expansion. Another main differ-

ence between rGEM and GEM emerges from the reaction directionalities, since rGEM is more

constrained, some reactions, such as LDH (Lactate Dehydrogenase) become unidirectional.
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Moreover, as we discussed in the case of essentiality studies, the integration of reactions into

lumped reactions reduces the flexibility of the flow in the network.

We next performed a Concentration Variability Analysis (CVA) (within TVA) on common

metabolites between rGEM and GEM (S1 Fig). Almost all metabolites have the same allowable

ranges with a few exceptions. Succinly-CoA and D-Ribulose 5-phosphate are two such cases,

where rGEM bounds are wider than GEM bounds. Succinly-CoA participates in reaction tet-

rahydrodipicolinate succinylase with CoA as cofactor pair in GEM, but not in rGEM. Suc-

cinly-CoA concentration is tightly constraint due to bioenergetics to synthesize N-Succinyl-

2-L-amino-6-oxoheptanedioate, which is an intermediate in L-lysine biosynthesis. The lumped

reactions for L-lysine subnetworks do not include this metabolite in the overall stoichiometry,

since it is an intermediate and hence, Succinly-CoA concentration is not constrained in the

rGEM. Showing the same behaviour, D-Ribulose 5-phosphate concentration is constrained in

arabinose-5-phosphate isomerase reaction in GEM, which is in Lipopolysaccharide biosynthe-

sis pathway and this reaction is involved in a lumped reaction in rGEM.

Fig 4. Flux variability of reactions in starting subsystems in D = 1 model compared to corresponding reactions

in GEM. The red lines represents FVA for redGEM, black lines represents FVA for GEM. There cannot be any reaction

in rGEM that has a wider range than corresponding GEM reaction. Thus, for the reactions that do not have the black line

have the same range for rGEM and GEM. Maximum flux bounds are between -60 to 60 mmol/gDWhr, since the uptake

of glucose is fixed to 10 mmol/gDWhr, and the maximum allowable flux in the network cannot exceed 10 mmol/gDWhr

times 6, which is the number of carbon in glucose.

https://doi.org/10.1371/journal.pcbi.1005444.g004
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Conclusion

Reduced models have been used to understand and investigate cellular physiology for many

years. Before the emergence of genome scale models (GEMs), different groups with different

aims built reduced models for their studies with a top-down approach. Conversely, GEMs pro-

vide the platform to understand all the metabolic capabilities of organisms, since GEMs encap-

sulate all the known biochemisty that occurs in cells. However the complexity of GEMs make

their use impractical for different applications, such as kinetic modeling or elementary flux

modes (EFMs). The need to focus on certain parts of these networks without sacrificing

detailed stoichiometric information stored in GEMs makes it crucial to develop representative

reduced models that can mimic the GEM characteristics. Within this scope, we developed red-

GEM, an algorithm that uses as inputs genome-scale metabolic model and defined metabolic

subsystems, and it derives a set of reduced core metabolic models. These family of core models

include all the fluxes across the subsystems of interest that are identified through network

expansion, thus capturing the detailed stocihiometric information stored in their bottom-up

built parent GEM model. Following the identification of the core, redGEM uses lumpGEM, an

algortihm that captures the minimal sized subnetworks that are capable of producing target

compounds from a set of defined core metabolites. lumpGEM expands these core networks to

the biomass building blocks through elementally balanced lumped reactions. Moreover, red-

GEM employs lumpGEM to include alternative lumped reactions for the synthesis of biomass

building blocks, thus accounting for alternative sytnhesis routes that can be active under differ-

ent physiological conditions.

redGEM builds reduced models rGEMs that are consistent with their parent GEM model

in terms of flux and concentration variability and essential genes/reactions. These reduced

models can be used in many different areas, such as kinetic modeling, MFA studies, Elemen-

tary Flux Modes (EFM) and FBA/TFA. redGEM algorithm is applicable on any compartmen-

talized or non-compartmentalized genome scale model, since its procedure does not depend

on any specific organism. As a demonstration, we have applied the redGEM algorithm on dif-

ferent organisms, namely P. putida, S. cerevisiae, Chinese Hamster Ovary cell (CHO) and

human metabolism. For instance, redGEM algorithm has generated core networks of sizes

between 168 metabolites/164 reactions to 360 metabolites/414 reactions for iMM904 [58]

GEM reconstucted for S. cerevsiae with degree of connection parameter D varied from 1 to 6.

The generated reduced model irMM904 with D = 1 has the same biomass yield with the parent

model GEM as 0.29/hr under 10 mmol/gDWhr glucose uptake. Similar to E. coli case, flux and

concentration variability, and gene essentiality characteristics of the rGEM are in agreement

with the GEM counterparts (Ataman et al., manuscript in preparation). Moreover, reduced

models are promising platforms for the comparison of central carbon (or any other) metabo-

lism of different species. This approach can help us to better investigate the metabolic capabili-

ties and limitations of organisms and to identify the sources of physiological differences across

different species.

Materials and methods

We applied redGEM algorithm on the latest genome scale model of E. coli iJO1366 [44], which

is composed of 2251 enzymatic reactions (including transporters), 1136 unique metabolites

across cytoplasm, periplasm and extracellular media. We used glucose as the sole carbon

source and constrained the model for aerobic conditions.

Preliminary definitions

In redGEM, we introduce and use the following definitions:
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Si: Core subsystem i that is selected/defined by the user.

MSi : Metabolites that belong to subsystems Si.

RSi : Reactions that belong to subsystems Si.

Degree of connection D: The path length between two subsystems. It corresponds to the num-

ber of reactions that link subsystems Si and Sj.

RDij : The reactions in all paths of length D between the subsystems Si and Sj; these reactions do

not belong to either RSi or RSj .

MD
ij : The metabolites that are intermediates in all paths of length D between the subsystems Si

and Sj; these metabolites do not belong to eitherMSi orMSj .

Postulate 1: Reactions that belong to RDij and metabolites that belong toMD
ij can belong to any

of the subsystems Sm with m 6¼ i and m 6¼ j.

Postulate 2: Some of the reactions in RDþnij can belong to RDij . Reactions in RD¼nij that do not

belong in any other RD¼1;2;::
ij ðwhere D 6¼ nÞ are called unique reactions for the degree of

connection D.

Postulate 3: RDij andMD
ij captures the connections between the non-common metabolites of Si

and Sj, however it cannot capture the intra-connections between the metabolites of the

same subsystem or the metabolites that are shared between Si and Sj.

RDii : The reactions in all paths of length D that intra-connects the metabolites of the subsystem

Si.

MD
ii : The intermediate metabolites in all paths of length D that intra-connects the metabolites

of the subsystem Si.

RT: Reactions where onlyMSi ,MD
ij andMD

ii , participate and do not belong to RSi , RDij and RDii .

Postulate 4: RT is composed of reactions that only cofactor pairs, small metabolites and inor-

ganics participate. All the other reactions that include other core metabolites (along with

cofactor pairs, small metabolites and inorganics) will be a part of RSi , RDij or RDii .

Core Network, CND: The core network for redGEM that is composed of metabolitesMSi ,MD
ij

andMD
ii , and of reactions RSi , RDij , RDii and RT.

rGEM: Consistently reduced model from its parent GEM.

We can also generate the core network from the chosen subsystems using the minimum

distance between the chosen subsystems and report the connecting reactions and metabolites.

In this case, the degree of connection D is the minimum distance between Si and Sj.

Lmin,ij: The length of the shortest path between the subsystems Si and Sj.

RLminþn;iji;j : The reactions that connect the subsystems Si and Sj with a path of length Lmin+n,ij in

where n is a user defined parameter.

MLminþn;ij
ij : The metabolites that do not belong to either Si or Sj and are intermediates of the path

of length Lmin+n,ij in between these two subsystems.
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Postulate 5: If Lmin,ij = 1 then RLmin;ijij ; MLmin;ij
ij becomes R1

ij; M1
ij , this also results in

RKij ;MK
ij ¼ R

LminþðK� 1Þ;ij
ij ;MLminþðK� 1Þ;ij

ij .

redGEM parameters

redGEM uses the following inputs and parameters:

1. A Genome-scale Metabolic model.

2. The starting subsystems or sets of reactions/metabolites defined by the user.

3. Media conditions (aerobic/anaerobic, nitrogen limited, etc.).

4. Possible carbon sources for the studied physiology.

5. Possible by-products or relevant extracellular metabolites. Together with possible carbon

sources, these metabolites form a new subsystem that redGEM names as Extracellular Sub-

system, this subsystem is treated as other subsystems defined in Step 1 above.

6. Organism specific cofactor pairs.

7. Degree of connection D defined by the user.

redGEM workflow

The central workflow of redGEM involves 4 steps:

1. Choose subsystems (or list of reactions and metabolites, such as synthesis pathway of a tar-

get molecule) based on the studied physiology and the part of the metabolism under

interest.

2. Derive a new stoichiometric matrix that excludes all cofactor pairs, small metabolites and

inorganics.

3. Identify RS, RDij ; RDii , R
T, and MS,MD

ij andMD
ii for all subsystem pairs except Extracellular

Subsystem.

� Perform a graph search on the new stoichiometric matrix.

� This will find all the links up to degree D between each subsystem pairs Si and Sj, and

will not find any reaction or metabolites between two subsystems if Lmin,ij > D.

4. To connect all Extracellular Subsystem metabolites to other subsystems, find all reactions

RLminþn;iji;j and all metabolitesMLminþn;ij
ij , with n as defined by the user.

� If the length of shortest path between a metabolite and Si is bigger than 1, then:

� number of RLminþn;ijij � number of Rnþ1
i;j

� number of of MLminþn;ij
ij � number of Mnþ1

ij

The core carbon network is defined as all the reactions and metabolites in MS, MD
ij and MD

ii

(all i, j pairs), RSi
; RD

ij ; RD
ii (all i, j pairs), RT (reactions that only cofactor pairs, small metabolites

and inorganics participate).
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Formulation of biosynthetic lumped reactions for biomass building blocks

We used the lumpGEM algorithm to generate pathways for all biomass building blocks (BBB)

as they are defined in GEM. lumpGEM identifies the smallest subnetwork (Smin) that are stoi-

chiometrically balanced and capable of synthesizing a biomass building block from defined

core metabolites. Moreover, it identifies alternative subnetworks for the synthesis of the same

biomass building block. Finally, lumpGEM generates overall lumped reactions, in where the

cost of core metabolites, cofactors, small metabolites and inorganics are determined for the

biosynthesis. redGEM defined the core network by the algorithm above, and then we gener-

ated all minimum sized subnetwork (Smin) for each BBB. Then lumpGEM calculated the

unique lumped reactions for all the BBBs, and we used these lumped reactions for further vali-

dation and other analysis. lumpGEM takes the following steps to build elementally balanced

lumped reactions for the biomass building blocks. In the workflow, lumpGEM

1. Decomposes the biomass composition of GEM to each of its components, such as alanine,

tyrosine, biotin, etc. In most available GEMs, such decomposition is available mainly in the

biomass equation.

2. Builds a new GEM model by allowing the individual production of each BBB.

3. Splits all the reactions in GEM in Step a. into forward Frxn,i and backward Brxn,i

components.

4. Creates binary variables zrxn,i for each reaction that is defined as non-core by redGEM.

Non-core reactions are denoted as RnC.

5. Generates a constraint for each non-core reaction that will control the flux through these

reactions as:

Frxn;i þ Brxn;i þ C � zrxn;i � C

where C is the number of carbon atoms that the cell uptakes from its surrounding. If this

quantity is not known, an arbitrary big number can substitute for C. When zrxn,i = 1, the

reaction is inactive.

6. Applies thermodynamics constraints on the model as defined in[14,16].

7. Builds the following MILP formulation for each BBB:

Maximize

X#of RnC

i

zrxn;i

such that:

S:v ¼ 0

vBBB;j � nj;GEM:mmax

where,

vBBB,j: The sink that is created in Step 1.a for BBBj for its biosynthesis.

μmax: Theoretical maximum specific growth rate for the given physiology in 1/hr units.
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nj,GEM: The stoichiometric coefficient for BBBj in mmol/gDW unit as defined in original GEM.

To identify alternative Smin subnetworks for a BBB, lumpGEM further constrains the GEM

with the following integer cuts constraint after generating each subnetwork with an iterative

manner[59]. The reactions that belong to each subnetwork are denoted as RSmin

X#of RSmin

k

zRSmin;k
> 0

Validation

We validate the consistency between rGEM and GEM performing the following consistency

checks by comparing:

1. Theoretical maximum biomass and other by-product of interest yield of rGEM and GEM

growing on same carbon source.

a. Under aerobic and anaerobic conditions for the organisms that can grow under both

conditions.

2. Essentiality of the common genes between rGEM and GEM.

a. Perform single deletions of the reactions/genes in the rGEM and compare them with

GEM.

i. Perform gene essentiality with FBA and with TFA.

3. Allowable flux ranges of the common reactions between rGEM and GEM.

i. Perform Flux Variability Analysis (FVA) and compare the ranges of values of the com-

mon reactions between rGEM and GEM.

4. Allowable metabolite and Gibbs free energy of reaction ranges for common metabolite and

reactions between rGEM and GEM using TVA.

i. Perform Thermodynamics-based Variability Analysis (TVA) and compare the ranges of

substrate/product concentrations and Gibbs free energy of the common reactions

between rGEM and GEM.

While these are the basic consistency tests, one could define additional checks, which can

be specific to the organism and problem under study. We recommend that in all cases one

should perform the checks using FBA and TFA, i.e. with and without thermodynamics

constraints.

The first release of the redGEM toolbox is available upon request to the corresponding
author.

Supporting information

S1 Fig. Concentration variability analysis on rGEM and GEM. The comparison of some

common metabolite concentration ranges between rGEM and GEM.

(EPS)

S1 Table. D = 1 Core network of E. coli iJO1366. The core network generated with connec-
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S2 Table. Lumped reactions generated for D = 1 core network. All the lumped reactions gen-

erated for the minimal sized subnetworks for E. coli iJO1366 with core network of D = 1.

There are multiple lumped reactions for many biomass building blocks.

(XLSX)
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