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Abstract

The number of patients surviving with congenital heart disease (CHD) has soared over the last 

three decades. Adults constitute the fastest growing segment of the CHD population, now 

outnumbering children. Research to date on the heart-brain intersection in this population has 

largely been focused on neurodevelopmental outcomes in childhood and adolescence. Mutations 

in genes that are highly expressed in heart and brain may cause cerebral dysgenesis. Together with 

altered cerebral perfusion in utero, these factors are associated with abnormalities of brain 

structure and brain immaturity in a significant portion of neonates with critical CHD even before 

they undergo cardiac surgery. In infancy and childhood, the brain may be affected by risk factors 

related to heart disease itself or to its interventional treatments. As children with CHD become 

adults, they increasingly develop heart failure, atrial fibrillation, hypertension, diabetes and 

coronary disease. These acquired cardiovascular comorbidities can be expected to have effects 

similar to those in the general population on cerebral blood flow, brain volumes, and dementia. In 

both children and adults, cardiovascular disease may have adverse effects on achievement, 

executive function, memory, language, social interactions, and quality of life. In summary, against 

the backdrop of shifting demographics, risk factors for brain injury in the CHD population are 

cumulative and synergistic. As neurodevelopmental sequelae in children with CHD evolve to 
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cognitive decline or dementia during adulthood, a growing population of CHD can be expected to 

require support services. We highlight evidence gaps and future research directions.
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Introduction

With advances in diagnostic technologies, surgical management, and postoperative care, 

more than 90% of children with critical congenital heart disease (CHD) are expected to 

survive to adulthood in the current era. Congenital heart disease is now considered a lifelong 

condition. Figure 1 illustrates the prevalence of CHD in infants, children, adults and in 

geriatric subjects in the same population using the Quebec Congenital Heart Disease 

Database.1–3 From 2000 to 2010, the prevalence of CHD rose by 11% in children compared 

to 57% in adults. Thus by 2010, two-thirds of the CHD population with severe and other 

forms of CHD were adults. We estimated that by 2010, 2.4 million people were living with 

CHD in the US: 1.4 million adults and 1 million children.

In children with CHD, this notable success has exposed a heightened risk of brain injury and 

developmental disorders or disabilities.4 Children with complex CHD have been recognized 

to have a distinct neurobehavioral signature, including mild reduction in cognitive 

performance, difficulties with social interaction, worse pragmatic language, inattention, 

impulsive behaviour, and impaired executive function.4 Despite a rich literature on 

neurodevelopment in children with CHD, few studies have addressed the translation of these 

findings to neurocognitive function in the adult congenital heart disease population. 

Evidence in the general adult population suggests that chronic cardiovascular disease (CVD) 

leads to cerebrovascular injury and dementia.5–7 The aging of the CHD population provides 

the impetus for this review on the continuum of neurocognitive injury across the lifespan.

A paradigm shift is needed to account for these emerging observations. In Figure 2, we 

propose a model that sequentially links CHD-related cardiovascular disease across the 

lifespan to abnormalities in the perinatal, childhood and adult brain. As life expectancy 

continues to increase, the window of opportunity for repeated injury continues to lengthen. 

Thus in a lifespan model, neurodevelopmental sequelae in children with CHD evolve during 

adulthood to cognitive decline or dementia. This review will synthesize and integrate data on 

the brain structure and function, including neurocognitive and psychosocial sequelae, in 

congenital heart patients from fetal life to adulthood.
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Risk Factors for Adverse Neurologic and Developmental Outcomes in 

Children

Risk factors for adverse neurocognitive outcomes are multifactorial, interrelated, cumulative, 

and likely synergistic over time. Neurodevelopmental (ND) and behavioural morbidity in 

children can derive from genetic & epigenetic factors, patient factors other than genetic 

disorders (e.g., low birth weight or gestational age), aberrant fetal cerebral perfusion and 

oxygenation, sequelae of heart disease itself (severe cyanosis, cardiac arrests), and its 

medical and surgical management (e.g., perioperative hypoxic ischemic injury, stroke, 

factors associated with prolonged postoperative course). Twenty years ago, the impact of 

circulatory arrest in infants with CHD undergoing cardiac surgery ushered in an era of 

clinical trials to assess the effects of intraoperative conduct on neurologic and developmental 

outcomes (Figure 3).8 Recent data suggest that patient and preoperative risk factors, such as 

low birth weight or gestational age and social class, as well as cumulative postoperative 

morbidity, contribute a greater proportion of variability in outcomes after infant heart 

surgery than intraoperative support techniques.9

Genetic disorders are present in about one-third of individuals with congenital heart disease. 

These include chromosomal disorders (e.g., Trisomy 21), microdeletions (e.g., 22q11 

microdeletion), or mutations (e.g., Noonan syndrome). However, known risk factors only 

explain approximately 30% of observed variation in ND outcome after cardiac surgery in 

infancy,10–12 suggesting that as yet unknown genetic and epigenetic factors may play an 

important role. Microdeletions causing CHDs may be associated with specific patterns of 

neurodevelopmental morbidity. For example, adults with 22q11 deletion have specific 

deficits in visual-spatial skills, executive functions (problem solving, organization, 

planning), abstract social thinking, and attentiveness.13 Pathogenic copy number variants, 

i.e., regions of DNA gains or losses, were reported to be present in 13.9% of infants with 

single ventricle heart disease, compared to 4.4% of controls, and were associated with 

inferior neurocognitive and somatic growth.14 Epigenetic factors, the study of protein 

changes that affect gene regulation without altering core DNA sequence, may also have a 

role in determining neurocognitive outcome. 15, 16 Finally, genetic polymorphisms affecting 

host susceptibility and resiliency, such as the apolipoprotein E genotype, may affect the 

response of the brain to stresses associated with CHD, including cardiopulmonary bypass 

and perioperative events.17 With a burgeoning population of CHD survivors reaching 

reproductive age, research on the genetic underpinnings of neurodevelopemental disorders 

assumes increasing importance.

The Fetal and Perinatal Brain: Injury and Dysmaturation

In response to hypoxia-ischemia, the developing brain acquires characteristic patterns of 

injury that reflect the “selective vulnerability” of specific cell populations that are maturing 

at the time of the injury.18 For example, during the early third trimester of gestation, early 

lineage oligodendrocytes predominate in the brain’s white matter and are vulnerable to 

insults to which mature myelinating oligodendrocytes are resilient. Given this, neonates born 
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preterm most commonly acquire white matter injury, while term neonates respond to 

hypoxia-ischemia with a preponderance of injury to grey matter or neuronal structures.18

Recent experimental and clinical data in preterm neonates indicate that the primary issue in 

white matter injury is cellular maturation arrest rather than cell loss. As such, the primary 

mechanism of myelination failure in the preterm neonate is a failure of oligodendrocyte 

progenitor cells to differentiate into myelin forming oligodendrocytes (i.e. dysmaturation) 

rather than a predominance of necrotic lesions.19, 20 In preterm neonates, white matter 

dysmaturation is related to modifiable aspects of clinical illness including postnatal 

infections and procedural pain.21, 22 Of particular clinical relevance are the observations that 

brain dysmaturation is an important antecedent of adverse developmental outcomes.20, 22, 23

Contrary to what is expected in term neonates, white matter injury is the characteristic 

pattern in neonates with CHD, and resembles that characteristic of preterm 

newborns.22, 24, 25 Other focal injuries such as stroke and microhemorrhage are also 

prevalent. Stroke is also increasingly recognized before and after surgery for CHD, and 

related in some studies to therapeutic catheterization procedures or regional cerebral 

perfusion bypass strategies.24 Subtle hemorrhagic brain injury is also commonly seen on 

MRI after open heart surgery in infancy; these microhemorrhages have been associated with 

longer total support time and greater number of cardiac catheterizations, and also with worse 

developmental outcome.11, 26 Importantly, the range of neurodevelopmental sequelae in 

children with CHD are not fully explained by these focal brain injuries identified before and 

after cardiac surgery.24 Therefore, the patterns of brain injury seen on diagnostic imaging of 

neonates with CHD are only the “tip of the iceberg”.

As in the preterm neonate, brain vulnerability in newborns with CHD is primarily a problem 

of dysmaturation. Converging evidence supports that newborns with CHD have diffuse 

impairments in the progression and rate of early brain maturation.24, 27–30 Compared to 

normal term newborns, those with CHD have an immature pattern of brain microstructure 

and metabolism,27 less mature morphologic scoring,28 and smaller brain volumes.30 These 

findings likely explain why they are more vulnerable to white matter injury than the 

conventional “term” patterns of injury. Impaired brain maturation is also an important 

substrate for postnatal injury, and those with pre-operative brain injury have less robust brain 

maturation from the pre- to the post-operative scan.24, 31, 32 Consistent with observations in 

the preterm neonate, neurodevelopmental outcomes at 2 years of age in children born with 

severe CHD were more strongly related to brain maturity than to brain injury.33 As in the 

preterm neonate, these data highlight the potential for promoting optimal brain development 

to improve functional outcomes in neonates with CHD.

Brain maturation slows in fetuses with CHD during the 3rd trimester of pregnancy, when the 

main brain development events include axon path finding, synapse formation, and refining 

cortical networks.25, 30 Over this period of dramatic increases in neuronal connectivity and 

activity, blood flow to the fetal brain is approximately one quarter of the combined 

ventricular output,34 and fetal cerebral oxygen consumption is almost half of all fetal oxygen 

consumption.34, 35 In fetuses with CHD studied with phase contrast MRI and T2 mapping 

based MR oximetry, disrupted streaming of oxygenated blood from the placenta to the brain, 
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and reduced umbilical blood flow and placental oxygen exchange are observed.36 Compared 

with normal controls, those with some forms of critical CHD have a 10% reduction in the 

oxygen saturation of blood in the ascending aorta; without a compensatory increase in 

cerebral blood flow or oxygen extraction, there is an associated one standard deviation 

reduction in fetal brain volume.36 These in utero cardiovascular disturbances are especially 

relevant to the issues of brain dysmaturation outlined above given recent observations 

linking oligodendrocyte precursor cells to postnatal white matter angiogenesis and the early 

events of myelination through hypoxia-inducible factor.37 Why the fetus with CHD does not 

compensate for in utero hypoxia with “brain sparing” physiology remains a critical question 

for future research.

Brain maturation, including the refinement of brain networks and myelination, continues 

through childhood, providing a significant window for recovery and highlighting the need 

for a life-span approach to optimizing the outcome trajectory for patients with CHD.38 Fetal 

interventions to optimize cerebral oxygen delivery at the earliest phase of the lifespan are 

now on the horizon with the ultimate goal of preventing the onset of brain dysmaturation. As 

in the preterm neonate, abnormalities in brain maturation evident as early as the third 

trimester persist through childhood in those with CHD and predict adverse functional 

outcomes.29, 39, 40 Thus, a lifespan approach to improving neurocognitive outcomes in 

children with CHD must begin in utero.

The Brain in Children and Adolescents (Figures 3 and 4)

By school age, children with critical CHD, on average, have lower scores on tests of 

intelligence and achievement, worse fine motor and gross motor function, and higher 

likelihood of learning disabilities, use of special services, and abnormalities of speech, 

language, and behaviour.4, 10 Adverse neurodevelopmental and behavioural outcomes are 

more likely after repair of complex cardiac lesions, with the greatest neurodevelopmental 

morbidity in children with single ventricle heart disease, such as hypoplastic left heart 

syndrome.41 As these children reach adulthood, ND disabilities can limit educational 

achievements, employability, insurability, and quality of life.42

Brain imaging studies using magnetic resonance imaging (MRI) in school age children and 

adolescents with CHD suggest that altered white matter microstructure, and resulting 

differences in network processes (i.e., the connectome), may underlie their cognitive 

impairment. 32 In addition to diffuse abnormalities (e.g., white matter abnormalities, 

abnormal T2 hyperintensities, ventriculomegaly), focal or multi-focal abnormalities can 

occur secondary to thromboembolic events.10 The highest incidence of focal infarction 

occurs in individuals with cyanotic congenital heart disease; indeed, strokes can be detected 

by brain MRI in nearly half of cyanotic adults.43 Taken together, brain MRI studies in 

children and adolescents who underwent infant heart surgery highlight the challenges of 

discriminating neurocognitive deficits that result from genetic abnormalities, deficient 

cerebral substrate delivery in fetal life, and postnatal injury.

Neurodevelopmental disabilities can adversely affect learning and the attainment of 

academic, social, and vocational skills, with greater need for remedial services, including 
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tutoring and special education, as well as physical, occupational, and speech therapy.4 In the 

CHD population without genetic syndromes or catastrophic events, intelligence quotient is 

relatively well preserved but specific areas of weakness include motor skills, higher order 

language (the ability to make up a coherent story when presented with pictures), visual 

spatial skills, and vigilance and sustained attention. Impairment in visual-spatial ability and 

planning are well illustrated by the difficulties that school age children and adolescents have 

shown in completing the Rey Osterreith complex figure, a complicated line drawing which a 

child is asked to copy (recognition) and then draw from memory (recall).44 This task, which 

involves perception of shapes within shapes, requires integration of many different areas of 

the brain. In a population of complex CHD, attention deficit and hyperactivity disorder was 

reported to be 3–4 times higher than in the general population.45 Indeed, the “lifetime 

prevalence” of ADHD in adolescents with d-TGA was 19%.10 Impairments in executive 

functions are a typical feature of the neurobehavioral signature of CHD patients and are 

associated with behavioural dysregulation and attention problems, lower working memory, 

and problems with organization and planning abilities. 46, 47 Taken together, these findings 

explain the high rate of remedial services needed in the critical CHD population. Nearly half 

of 5 –10 year old children in a mixed population of critical CHD were receiving remedial 

services.45 By adolescence, 65% of patients with simple d-transposition of the great arteries 

(d-TGA)10 and 82% with tetralogy of Fallot11 had received remedial academic or 

behavioural services, such as tutoring, early intervention, occupational therapy, or special 

education.

In the social and emotional sphere, children and adolescents with CHD often have deficits in 

social cognition, i.e., the ability to process social information, especially its encoding, 

storage, retrieval, and interpretation of social situations and relationships.44, 48 Decreased 

social cognition results in difficulty in “reading” other people, inferring their internal states, 

and interpreting their actions appropriately. Studies on psychiatric disorders in youth with 

CHD are limited. In structured psychiatric interviews, adolescents with d-TGA, compared to 

an optimal control group without known risk factors for brain disorders, had worse clinician-

rated global psychosocial functioning, as well as more self-, parent- and clinician-rated 

symptoms of depression, anxiety, and disruptive behaviours.49 Worse global psychosocial 

function was associated with lower cognitive function and greater parent stress.

Executive functions include higher-order neurocognitive abilities that facilitate the 

coordination and organization of actions towards a goal, allowing the individual to adapt to 

new or complex situations.50 Mediated by the maturation of prefrontal structures, as well as 

fronto-parietal and sub-cortical networks,51, 52 executive functions depend upon the integrity 

of white matter pathways that may be disrupted by dysmaturation or postnatal hemodynamic 

stress. Executive dysfunction in adolescents with critical CHD is associated with worse 

psychosocial health status and quality of life, 53 suggesting that executive impairments are 

associated with reduced functioning in everyday life. It is likely that executive dysfunction 

impairs the ability of patients to adhere to medical recommendations and follow-up.54

Health-related quality of life (HRQOL) is a multidimensional concept which is all the more 

complex in pediatric populations where patient, family and sibling experience are 

interrelated making measurement challenging. HRQOL contains elements of both 
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psychosocial and physical health status. Using the Pediatric Cardiac Quality of Life 

Inventory Testing Study and its corollary studies HRQOL in children, adolescents and their 

parent-proxy reporters was assessed.55, 56 In 1,605 patient-parent pairs in the US55 and 771 

patient-parent pairs in the United Kingdom,56 findings related to impaired HRQOL were 

consistent. Lower patient- and parent-reported HRQOL scores resulted in greater health care 

utilization, including a greater number of cardiac surgeries, hospital admissions, and 

provider visits over a 12-month period. Lower HRQOL scores were also associated with 

decreased competency (Achenbach Youth Self-Report and Child Behaviour Checklist Total 

Competency score); impaired self-perception (Global Self-Worth and Self Perception Profile 

for Children and Adolescents); and increased behavioural and emotional problems 

(Achenbach Internalizing Problems Summary Scale score and DSM-IV Oriented Scale 

scores for affective, anxiety, somatic and attention deficit disorders).55 In these populations 

of patients with pediatric heart disease, the majority of whom had CHD, HRQOL scores 

remained abnormal across all age categories and respondent types.

Compliance with surveillance recommendations can be impacted by disability in 

neurodevelopment, in social and emotional domains, in executive function and HRQOL. 

Patients with CHD are lost to follow-up during the transition to adult healthcare,57 mediated 

at least in part by diminished working memory and self-organization. Resulting lapses in 

care affect health care utilization with resulting economic impact. Two thirds of CHD 

patients fall out of care by the time they reach age 18 with more than half falling out of care 

during transition years.58, 59 Whereas between the ages of 12 and 30 most emergency room 

visit rates decrease, CHD patients have higher admission rates via the emergency room.60 

Moreover, lapses in care are associated with inappropriate medication regimens and higher 

rates of urgent cardiac interventions.61 In a cross-sectional multicenter study that examined 

reasons for lapses in care in over 900 young adult CHD patients found that powerful 

predictors of care gaps included misinformation related to the perception of the need for 

care.62 This is likely multifactorial related both to the patient’s capacity and willingness to 

receive information and health care providers’ ability to deliver it. Improved compliance 

with follow-up requires improved processes of care delivery particularly during transition of 

care where gaps are common.58, 59, 63 There is a growing literature on the benefits of health 

information technology platforms to improve access to multiple elements of care both in the 

elderly with chronic disease and in youth with life-long conditions.64 A systematic review of 

17 internet-delivered health behaviour change interventions for adolescents or young adults 

revealed the importance of tailored communication including reminders and incentives. 65 

These findings underscore the need for targeted interventions leveraging on-line tools to 

improve care pathways. These strategies seem particularly important in the CHD population, 

with its high prevalence of executive dysfunction.

Manifestations of Neurodevelopmental Abnormalities in Adults with CHD

Adults with CHD have an increased risk of anxiety, depression, pragmatic language 

impairment and social cognition issues, worse educational attainment, and 

underemployment, and delayed progression into independent adulthood.66–69 The 

prevalence of comorbid psychiatric disorders is 3 to 4 times higher among adults with 

neurocognitive impairment than in the general population.66, 67 These may result in parental 
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overprotection and impact self-management. 66, 67, 70 Attention deficit, executive 

dysfunction, mood, language and social cognition issues may manifest themselves as 

inappropriate behaviour and may limit the ability to form healthy family, work/peer, and 

romantic relationships. The overall QOL for adults with CHD is reduced compared with the 

general population.71

There are few quantitative analyses measuring the impact of pediatric and adolescent ND 

and psychosocial impairments on adults with CHD. In non-CHD populations who have been 

tracked from childhood through adolescence to adulthood, some relevant data exist on 

patients with childhood attention deficit disorder (ADHD) and hyperactivity disorder, a 

common disorder in CHD patients. Adults with ADHD, compared to non-ADHD subjects 

from the same birth cohort, were found to have higher standardized mortality rate ratios.72 A 

longitudinal study comprised of 551 subjects with ADHD followed for up to 35 years were 

found to be at higher risk for impaired mental health, work performance and financial stress 

scores compared to demographic controls.73 These observations provide the rationale for the 

growing recognition that wide-ranging neurodevelopmental and psychosocial dysfunction is 

expected to have significant implications for life success and societal costs as the CHD 

population continues to grow. In the Dutch CONCOR Study, with almost 1,500 patients at 

an average age of 39 years, only about two-thirds of patients were employed for more than 

12 hours a week. Compared to controls, patients under 40 years of age had significantly 

lower education, more unemployment and fewer relationships.74

The Aging Brain: Adding Insult to Injury (Figures 5 and 6)

The dynamic nature of cardiovascular morbidity in CHD underscores the challenge of 

investigating the intersection between heart and brain health in this population. We put forth 

the concept that impaired neurocognitive development becomes neurocognitive decline in 

adults with CHD. There is limited research on the long-term impact of CHD on cognitive 

functioning, structural or functional imaging outcomes, or dementia risk across the lifespan. 

In the absence of such evidence, we theorize potential connections between CHD and 

abnormal brain aging based on associations reported in the general population. As described 

above, brain lesions in infants with CHD are dynamic and associated with widespread 

impairments in brain maturation that persist, at least, through adolescence. Importantly, the 

cellular pathways most vulnerable to dysmaturation, are the same pathways that will 

maintain the brain’s vulnerability to insult including hypoxia-ischemia and inflammation.20 

This negative synergy is evident as early as the neonatal period where infants with greater 

“dysmaturation” are most vulnerable to acquiring brain injuries such as white matter 

injury. 24 This negative synergy has been conceptualized as “tertiary brain damage”, in that 

these brain changes predispose a patient to further injury, or prevent brain repair after an 

initial insult.75 Inflammation and epigenetic modifications may be key mediators of tertiary 

brain damage.75 Our hypothesis is congruent with increasing evidence in the general 

population that brain injury from cardiovascular disease precedes clinically evident cognitive 

decline and increases the risk of Alzheimer’s dementia in the elderly as we review below. 

Individuals with CHD lesions are expected to develop adult causes of neurocognitive decline 

earlier in life than the general population because the brain is “primed” for vulnerability to 

early onset of adult cardiovascular risk factors for brain injury that accompany common 
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forms of critical CHD. In sub-groups of CHD populations, early onset of adult 

cardiovascular risk factors for brain injury include intraatrial reentrant tachycardia and atrial 

fibrillation (e.g., in atrial switch procedures or Fontan operations), hypertension (e.g., in 

coarctation of the aorta), disordered glucose metabolism (e.g., in Fontan procedures and in 

obesity in adult CHD patients), and coronary artery disease (e.g., in arterial switch 

operations, Ross procedures and congenital coronary anomalies). This earlier acquisition of 

brain injury related to adult onset cardiovascular risk factors will be additive with 

neurocognitive sequelae of brain dysmaturation and acquired injury through childhood and 

adulthood. We have recently shown the additive burden of heart failure in CHD patients as 

powerful predictor of stroke.76 Thus, multiple common forms of prevalent cardiovascular 

disease known to affect older adults, including heart failure with low cardiac output, atrial 

fibrillation, cardiac arrest, coronary disease and acquired comorbidities in CHD, have been 

related to abnormal cognitive function and clinical dementia in elders without CHD are 

reviewed below.

Heart failure and low cardiac output have been increasingly recognized as a complication of 

CHD.77 The chronic mismatch between ventricular preload and afterload resulting from 

abnormalities of cardiac anatomy in CHD patients result in sub-clinical heart failure.78 

Progressive heart failure accounts for approximately one third of deaths in CHD patients.79 

In non-CHD older adults, heart failure has been linked to impairment in global cognition, 

language, attention, executive functioning, and episodic memory,80 as well as structural 

imaging changes seen with magnetic resonance imaging.81 Epidemiological data suggest 

that heart failure is associated with an increased risk of dementia of the Alzheimer’s type 

over a 9-year follow-up period.82 The well-established association between heart failure and 

corresponding reductions in cerebral blood flow83 is likely due to poor left ventricular 

ejection fraction and reduced cardiac output.84 In older patients lower cardiac output was 

associated with worse executive functioning skills85 and increased white matter 

hyperintensities seen on brain magnetic resonance imaging.86 Epidemiological data from the 

Framingham Heart Study showed that, among more than 1000 adults age 40–89 years, lower 

ejection fraction was associated with worse visuospatial episodic memory and object 

recognition performances, even when excluding participants with prevalent cardiovascular 

disease.87 Data from the same epidemiological cohort suggested that, among 1504 adults 

age 34–84 years, lower cardiac output was associated with smaller total brain volume, even 

after adjustment for vascular risk factors.5 More recently, a correlation between reduced 

cardiac output and smaller brain volume has been independently replicated in an Icelandic 

cohort of older adults.88 Moreover, among adults age 60 and older in the Framingham 

Offspring Study, lower cardiac output was associated with a two-fold increase in dementia 

over a median follow-up period of nearly 8 years.7 Similar associations have been reported 

in an independent cohort of older adults in whom lower cardiac output was associated not 

only with a greater risk of dementia but also with its precursor, mild cognitive impairment.88

Atrial fibrillation is perhaps one of the best examples of the abnormal offsetting of 

biological and pathological cardiac age in CHD populations. The lifetime risk of atrial 

fibrillation in a 20 year old with CHD is equivalent to that of a 55 year old without CHD, 

with more than 50% of patients with severe CHD developing atrial arrhythmias by age 65 

years.89 The presence of atrial fibrillation is associated with abnormal brain aging. Data 
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from the population-based Rotterdam Study of adults aged 55 to 106 years suggest that atrial 

fibrillation confers an increased risk for cognitive impairment and incident dementia 

(OR=2.3) compared to peers without atrial fibrillation.90 Meta-analyses of data comprising 

more than 46,000 participants suggest that individuals with atrial fibrillation have a two-fold 

higher risk of dementia that further increases in the presence of recent stroke.91

Traditional vascular risk factors including high blood pressure, diabetes and coronary 

disease further exacerbate the growing burden of systemic complications as individuals with 

CHD age. In a population-based ACHD cohort consisting of 3,239 patients surviving to age 

65 and followed for up to 15 years, predictors of mortality included dementia, diabetes and 

myocardial infarction.2 Although risk factors are in part driven by age, and hypertension 

may occur in the context of specific CHD disorders such as coarctation of the aorta,92 

atherosclerotic disease is observed in younger cohorts with CHD. Billet et al.93 found that 

adults with ACHD were more likely to have hypertension, stroke, and chronic kidney 

disease (a coronary artery disease risk equivalent) than age-matched controls without 

ACHD. Moons et al. reported that at least 80% of adults with ACHD had at least one 

coronary artery disease risk factor, with the rates of hypertension and obesity being higher 

than in the general population.70 The mean age in both of these studies was only 26 to 28 

years, suggesting that ACHD patients may not only harbour risk factors for many years but 

may also have a higher risk burden over their lifetime.

Hypertension and diabetes have both been linked to abnormal brain health. Hypertension 

alters the cerebral vasculature, predisposing to infarction of both gray and white matter.94 

Even in the absence of hypertension, subclinical elevations in blood pressure are related to 

worse cognitive function. A recent meta-analysis of up to 4000 participants free of clinical 

dementia or stroke yielded evidence that elevated systolic blood pressure was associated 

with impairment of global cognition and episodic memory even after adjustment for vascular 

comorbidities.95 Diabetes has been linked to an increased risk of clinical dementia possibly 

mediated by impaired insulin signalling in the brain and inflammatory or oxidative 

processes.96, 97.

Coronary disease may occur in the context of specific CHD lesions. Of 400 patients who had 

undergone the arterial switch operation for d-transposition of the great arteries and were 

followed for an average of 25 years from birth, 5% had obstructive coronary disease.98 In 

patients with coarctation of the aorta, coronary disease was found to be independently 

associated with poor risk factor control.92 Coronary artery disease, especially 

atherosclerosis, has been linked to abnormal brain aging in multiple studies. In men 

participating in the Honolulu-Asia Aging Study, coronary heart disease was associated with 

an increased risk for vascular dementia (OR=2.5).99 Cross-sectional population-based data 

from more than 2000 Rotterdam Study participants suggested that atherosclerosis was 

associated with dementia (OR=1.3 to 1.9), including both Alzheimer’s disease (OR=1.3 to 

1.8) and vascular dementia (OR=1.9 to 3.2).100 Longitudinal follow-up over 9 years for this 

population-based cohort suggested an increase in the risk of dementia.101 Associations 

between vascular risk factors and compromises in cognitive health appear to begin as early 

as mid-life or earlier.102 Blood pressure elevations appear to exert effects on late-life 

cognitive health and dementia risk beginning as early as mid-life.103 Mid-life diabetes (vs. 
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no diabetes) is associated with greater cognitive decline over a 20 year follow-up period, and 

individuals with poorly controlled diabetes have worse cognitive decline than individuals 

with well-controlled diabetes.104 Recent data suggest the exposure window may be even 

earlier than mid-life. Longitudinal exposure to higher systolic and diastolic blood pressures 

and higher fasting blood glucose starting in early-life corresponded to worse episodic 

memory, information processing speed, and executive function performances approximately 

25 years later in mid-life.102 In light of post-mortem evidence that the pathogenesis of 

Alzheimer’s disease begins decades before clinical symptoms manifest in late-life, it is 

plausible that vascular risk exposure may affect brain health much earlier than previously 

appreciated.6

Competing Gradients of Neurological Injury (Figure 6)

We began with Figure 1 to demonstrate how cumulative cardiovascular injury in CHD 

impacts the brain sequentially across the age continuum. In Figure 6, we illustrate two 

gradients of neurovascular injury.105 As the cardiovascular disease burden shifts from factors 

associated with CHD to acquired cardiovascular disease, the decreasing gradient of 

neurodevelopmental abnormalities is replaced by an increasing gradient of neurovascular 

disease. This figure highlights the concept that there comes a point when the brain is no 

longer developing and thus the gradient of abnormal neurocognitive development wanes to 

be replaced by the increasing burden of neurological injury or even decline. Together these 

gradients magnify the potential for expression of neurological injury in the CHD patient 

across the lifespan. Thus, abnormal neurodevelopment in infants, children, and adolescents 

may become neurocognitive decline as patients with CHD age. We have already shown that 

young patients with CHD have aging hearts.89 The question now is do these same patients 

have brains that show evidence of premature aging.

Conclusions

Dramatic advances have occurred in the survival of patients with CHD. At the present time, 

9 in 10 children survive until adulthood, a minimum of 1 in 150 Americans has a congenital 

heart defect, and today there are more adults than children with CHD. In this first review of 

the relationship between heart health and brain health in CHD patients across the lifespan, 

we illustrate the link between cardiovascular and neurovascular diseases as patients age. In 

the absence of data on the impact of cardiovascular disease on neurovascular disease in CHD 

populations, we show the importance of acquired cardiovascular complications in CHD 

patients on cerebral blood flow, brain volumes and dementia. We put forth the idea that 

impaired neurocognitive development becomes neurocognitive decline in adults with CHD. 

We provide two conceptual models: the first illustrating the cumulative burden of 

cardiovascular injury expected to impact the brain in CHD populations and the second 

illustrating how neurovascular disease is expected to replace neurodevelopmental disabilities 

as patients age and CHD persists across the lifespan. This review has for the first time 

synthesized and integrated existing data on the brain structure and function, including 

neurocognitive and psychosocial sequelae, in CHD patients from fetal life to adulthood.
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Future directions

This synthesis of available evidence has highlighted substantial knowledge gaps. Table 1 

summarizes translational research objectives that are likely to result in patient and family- 

centered outcomes. In lifelong conditions such as CHD, the ‘nature’ vs ‘nurture’ dialogue is 

becoming increasingly important. It is believed that a ‘nurturing’ model of resilience and 

mitigation for neurodevelopmental and neurovascular risk factors is becoming increasingly 

important to optimize cognitive health and psychosocial functioning. Research using 

longitudinal cohorts is needed to measure serial outcomes from fetal life and early infancy to 

adulthood. In young patients who are stable, cardiac dysfunction even when clinically silent 

should be minimized. In older CHD adults, we need to understand if acquired cardiovascular 

risk factors are effect modifiers of brain injury. Although we have proposed a link between 

neurodevelopmental disabilities in children and neurocognitive decline in adults, the 

differences need to be characterized, explored and leveraged for meaningful intervention and 

prevention. Avoidable pathways of injury and modifiable risk factors across the lifespan 

need to be identified. Successfully identifying these pathways will require consideration of 

the wide range of hemodynamic disturbances in various congenital lesions and their 

differing risks for brain damage, from stroke or white matter injury.27, 106 A better 

understanding of the lesion-specific alterations in fetal hemodynamics, and their impact on 

the brain, should open the window to new opportunities to promote optimal brain 

development from the earliest days.36 Moreover, a life-span perspective on neurocognitive 

function in patients with CHD is warranted to plan resource allocation and document the 

potential benefits of early intervention and prevention. Children are the adults of our future. 

Reducing the cumulative burden of brain injury and cognitive morbidity should be a priority 

for clinical care and research in the aging CHD population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prevalence of congenital heart disease across the lifespan.3 Reprinted with permission from 

Mazor Dray E, Marelli AJ. Adult Congenital Heart Disease: Scope of the Problem. Cardiol 
Clin. 2015;33(4):503–512.
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Figure 2. 
Neurocognitive impairment across the lifespan.
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Figure 3. 
Illustration of the inverse relation between circulatory arrest and psychomotor development 

index in infants at one-year post the neonatal arterial switch operation for complete 

transposition of the great arteries.8 Reprinted with permission from Bellinger DC, Jonas RA, 

Rappaport LA, Wypij D, Wernovsky G, Kuban KC, Barnes PD, Holmes GL, Hickey PR, 

Strand RD, Walsh AZ, Helmers SL, Constantinou JE, Carrazana EJ, Mayer JE, Hanley FL, 

Castaneda AR, Ware JH, Newburger JW. Developmental and neurologic status of children 

after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. 

The New England Journal of Medicine. 1995;332:549–555.
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Figure 4. 
Gradient between congenital heart disease severity and prevalence of neurodevelopmental 

impairment.4 Reprinted with permission from Wernovsky G. Current insights regarding 

neurological and developmental abnormalities in children and young adults with complex 

congenital cardiac disease. Cardiol Young 2006; 16 (Suppl 1): 92–104.
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Figure 5. 
Vascular risk factors and midlife cognition.6 Reprinted with permission from Jefferson AL. 

Vascular risk factors and midlife cognition: Rethinking the exposure window. Circulation. 

2014;129:1548–1550
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Figure 6. 
Unifying hypothesis for the continuum of neurocognitive disease in the lifespan of 

congenital heart disease patients.105 Inspired from Viswanathan A, Rocca WA, Tzourio C. 

Vascular risk factors and dementia: How to move forward? Neurology. 2009;72:368–374.
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Table 1

Future directions for translational research resulting in improved patient and family centered outcomes.

Understanding of the relative importance of the risk factors for neurocognitive disability in CHD

• Genetic and epigenetic abnormalities

• Fetal cerebral hemodynamics

• Cardiac sequelae of congenital lesions including heart failure, arrhythmia, and valve disease

• Complications of interventions to treat heart disease

• Cardiovascular risk factors in the aging CHD populations

Interventions to promote brain health:

• Cerebral oxygen and substrate delivery

• Cerebral emboli and microemboli

• Perioperative methods of monitoring brain health

• Risk factor modification for adult cardiovascular and associated neurovascular disease

Improvement of patient-centered and societal outcomes by:

• Educating patients, their families, and school systems about neurodevelopmental disabilities in children and adolescents with 
CHD

• Providing neurobehavioral interventions to improve outcomes in children and adolescents to improve educational attainment, 
vocational skills, social cognition, and employment

• Reduce adverse effects of CHD on mental health, including behavioural dysregulation, anxiety and depression

CHD= congenital heart disease
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