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ABSTRACT
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work
on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of
nuclear structure in the early 1900s, including the discovery of the “accessory body” later renamed “Cajal
body” (CB). This important nuclear structure has emerged as a center for the assembly of
ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The
modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold
protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we
have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic
changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons,
where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear
organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for
splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature
neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and
loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as
motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of
transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

Abbreviations: ADH, antidiuretic hormone; AIDA-1, AID associated protein 1d; ALS, amyotrophic lateral sclerosis; CB,
Cajal body; DRPLA, dentorubral-palidolusyan atrophy; pcd, Purkinje Cell Degeneration; NMDA, N-methyl-D-aspar-
tate; SMA, spinal muscular atrophy; SMN, survival motor neuron; snRNPs, small nuclear ribonucleoproteins;
snoRNPs, small nucleolar ribonucleoproteins; SUMO1, small ubiquitin-like modifier 1; UBF, upstream binding factor
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Historical background

In 1906, Santiago Ram�on y Cajal (1852–1934) and Camillo
Golgi (1843–1926) shared the Nobel Prize in Physiology or
Medicine in recognition of their seminal work on the structure
of the nervous system. Curiously, their scientific conceptions
concerning the organization of the nervous system were funda-
mentally opposed to each other, creating the “storm center of
histological controversy.“1 In 1873, Golgi discovered a new
chromoargentic staining method, “la reazione nera” (black
reaction), which allowed him to demonstrate dendrites and
axons. From his observations, Golgi embraced the most preva-
lent view among the scientific community, Gerlach’s “reticular
theory.” It stated that neuronal processes physically fuse with
each other as a diffuse protoplasmic network. On the other
hand, in 1888, Cajal obtained fascinating results with a modifi-
cation of the Golgi stain that proved that dendrites and axons
definitely ended freely, and formulated the “neuron theory,”
which interpreted neurons as morphological and functional
units. Three years later, Cajal proposed the “law of dynamic
polarity,” which established that neurons are polarized cells:
dendrites and neuronal bodies are involved in the reception of
the nerve impulse, whereas the axon is the response element

that propagates the nerve impulse. On the basis of the neuron
theory and the law of dynamic polarity, Cajal provided us with
the basic fundamentals for neuronal circuitry, proposing the
conduction pathways of the nerve impulse in the nervous cen-
ters. Therefore, Cajal is recognized as the father of modern
neuroscience.2,3

While the Golgi stain was a fundamental tool in characteriz-
ing neuronal populations and their connections in nervous cen-
ters, little progress had been achieved in the characterization of
neuronal intracellular structures by the end of the 19th century.
Dissatisfied with the available staining techniques, in 1903 Cajal
developed a simple and reliable procedure for demonstrating
diverse cellular structures, the “reduced silver staining method.“4

This is essentially a 2-step method. After fixation, tissue samples
are impregnated with an aqueous silver nitrate solution to bind
silver ions (AgC) to the target tissue molecules, mainly proteins
and ribonucleoproteins (RNPs). In a second step, a reducing
agent (hydroquinone or pyrogallic acid) is used to reduce the
silver ions to metallic silver (Ag) particles, which are insoluble
and visible. The initial deposition of metallic silver promotes
further deposition in an autocatalytic process which is necessary
for microscopic detection. The new silver staining procedure
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enabled Cajal to characterize intracellular structures in great
detail, essentially nuclear and cytoskeletal (neurofibrils) compo-
nents, based on their distinct silver affinities. Interestingly, this
technical work also included the discovery of a new important
nuclear structure, the “accessory body” later renamed the Cajal
Body (CB), as discussed later.4 Currently, the CB is considered
to be a nuclear center of snRNA processing, snRNP assembly
and snRNP surveillance.5-8

Having at hand the reduced silver staining method, in 1910
Cajal published an extensive monograph on the nuclear organi-
zation of the pyramidal neurons of the cerebral cortex, which
represents a masterpiece of nuclear structure at light micros-
copy level.3,9 In the early 1900s, knowledge of the neuronal
nucleus was essentially based mainly on the use of acid and
basic aniline dyes which revealed the basophilic framework of

“Flemming’s chromatin.”9 Other nuclear structures revealed
with aniline dyes at that time were the “nucleolus” —the site of
rRNA synthesis, rRNA processing and preribosomal particle
assembly10,11— and the “Levi basophilic grume,” a nucleolus-
attached clump of centromeric heterochromatin.12 However,
Cajal preferred to use the silver staining technique because of
its reproducibility and ability to demonstrate a variety of new
nuclear structures. Cajal provided a precise structural and cyto-
chemical characterization of what he called “argyrophilic nucle-
olar spherules,” “accessory body,” “hyaline grumes,”
“neutrophilic granules” and “nuclear membrane” (Fig. 1).3,9

Fig. 1A shows Cajal’s original drawing of these nuclear struc-
tures and recent parallel images of the neuronal nucleus proc-
essed with modern specific molecular markers of nuclear
compartments.

Figure 1. Cajal’s original drawing of the neuronal nucleus. (A) The scheme shows the nuclear structures identified in pyramidal neurons from the cerebral cortex (“Original
drawing at the Cajal Institute, C.S.I.C., Madrid”). Panels B-I illustrate the equivalent nuclear components identified at the present time in mammalian neurons. (B) Nucleo-
lus-attached heterochromatin (“Levi basophilic grume, c”). (C) nucleolus and CB (“argyrophilic nucleolar spherules,” a;” “ground substance, b” “accessory body, d”). (D)
Fibrillar centers of the nucleolus (“argyrophilic nucleolar spherules, a”). (E) Nuclear speckles (“hyaline grumes, e”). (F) Nuclear microfoci of active chromatin immunolabeled
for the acetylated histone H4 (“neutrophil grains, f”). (G) Nuclear foci of 50-fluorouridine (50-FU) incorporation into nascent RNA (“neutrophil grains, f”). (H) Ultrastructural
characterization of nuclear foci of 50-FU incorporation (I) Fine structure of interchromatin granule clusters in a neuron (“hyaline grumes e”). Note that Cajal’s drawing
shows the nucleus enclosed by 2 parallel lines. (C and E from Lafarga et al., Chromosoma 2009; G from Casafont et al., Acta Neuropathol 2011, reproduced with permission
from © Springer).3,99

RNA BIOLOGY 713



Cajal described the neuronal nucleolus as composed of small
closely packed “argyrophilic nucleolar spherules” (from 0.25 to
0.30 mm in diameter), which clearly correspond to the “fibrillar
centers” of the nucleolus. They are nucleolar sites that concen-
trate components of the RNA polymerase I transcription
machinery, such as the upstream binding factor (UBF) and
RNA polymerase I, involved in rRNA gene transcription
(Fig. 1A, C–D and Fig. 2).10,11 Interestingly, Cajal noted that
the number of “argyrophilic nucleolar spherules” correlated
with neuronal size and that they tended to disappear in some
neurological disorders, suggesting an important role of these
nucleolar spherules in neuronal biology.

In addition to the discovery of the “accessory body,” which
will be addressed in a separate section, Cajal was the first to
characterize rounded nuclear areas (6–11 in pyramidal neu-
rons) of homogeneous texture that he termed “hyaline grumes,”
today known as “nuclear speckles” or “interchromatin granule
clusters” (Fig. 1A, E, I and Fig. 2). They are DNA-poor nuclear

domains enriched in snRNPs and other non-snRNP protein
splicing factors.13 Nuclear speckles play an important role in
coordinating the supply and recycling of pre-mRNA splicing
factors to transcription sites.14

According to Cajal, the “neutrophil granules” appeared as
numerous sharply defined nuclear spots located throughout the
nucleus excluding the nucleolus and “hyaline grumes”
(Fig. 1A). We propose that they are remodeling foci of active
chromatin immunolabeled for detecting both the acetylated
histone H4 and the active phosphorylated form (Ser2) of RNA
polymerase II (Fig. 1F).3,15 Moreover, the nuclear pattern of
“neutrophil granules” is similar to the nuclear foci observed in
neurons after a short pulse of 50-fluorouiridine incorporation
into nascent RNA, which also are excluded from “hyaline
grumes/nuclear speckles” (Fig. 1G, H). In this vein, the prefer-
ential silver staining of “neutrophil granules” may reflect the
local accumulation of nascent RNA and phosphoproteins with
high affinity for silver.

Figure 2. Schematic diagram showing the association of CBs with the nucleolus and nuclear speckles or interchromatin granule clusters (IGC). The nucleolus shows its
main components: fibrillar centers (FC), dense fibrillar component (DFC), containing active rRNA genes, and the granular component (GC), the site of preribosomal particle
assembly.
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Finally, it is noteworthy that Cajal, in his articles and semi-
nal book Histology of the Nervous System of Man and Verte-
brates,16 always depicted the neuronal nucleus enclosed in 2
parallel lines which resemble the appearance of the double
nuclear membrane when viewed by electron microscopy
(Fig. 1A). It is possible that the dilation of the perinuclear space
produced by some fixative agents allowed Cajal to reveal the
existence of a double membrane, even though this falls below
of the resolution power of the light microscope.

The accessory body of cajal (“cajal body”)

Using the reduced silver nitrate method, Cajal discovered, in
many neuronal types from several mammalian species, a round
and sharply defined argyrophilic nuclear structure, approxi-
mately 0.5 mm in diameter, which he called “the accessory
body” of the nucleolus (cuerpo accesorio, in Spanish) (Figs. 1A,
C, 2, 3A-C).4,9 He found the accessory body in most neuronal
types and also pointed out variations in number (1 to 3) and
size depending on the neuronal type. Cajal obtained the best

staining of the accessory body by fixation of nervous tissue
samples with pyridine or formalin-ammoniacal alcohol, which
reduced the silver affinity of the nucleolus and other nuclear
structures, thus highlighting visualization of the accessory body
(Fig. 3C). Although the function of the accessory body was
unknown at that time, Cajal concluded that this nuclear body is
a distinct entity which is clearly distinguished by its morphol-
ogy, size and silver staining properties from other nuclear com-
ponents such as the “Levi basophilic grume,” “argyrophilic
nucleolar spherules,”micronucleoli and “neutrophil granules.“9

Following its characterization by Cajal, the accessory body
attracted little attention until the 1950s, when Barr’s laboratory,
at the University of Western Ontario, focused its interest on
the organization of the sex chromatin (“the inactive X chromo-
some”) in female neuronal nuclei. Barr’s team confirmed
Cajal’s observations in feline neurons and, with the cytochemi-
cal method of Feulgen, they demonstrated that the accessory
body, unlike the sex chromatin, is relatively DNA poor.17-19

It was not until 1969 that the first observation of the acces-
sory body was made in non-neuronal tissue. By electron

Figure 3. Cajal body (“Cajal’s cuerpo accesorio”) (A) Original drawing by Cajal showing 2 pyramidal neurons from the human cerebral cortex. The accessory body (a), the
nucleolus (b) and nuclear speckles (c) are identified in the nucleus. The cytoplasm contains neurofibrils (“Original drawing at the Cajal Institute, C.S.I.C., Madrid”). (B) Neu-
ron stained with Cajal’s reduced silver nitrate method. The nucleolus, accessory body/CB and neurofibrils appear stained (courtesy of Dr. J.M. L�opez-Cepero). (C) Semithin
section (1 mm thick) of a sensory ganglion neuron stained with Cajal’s method showing sharply defined argyrophilic nucleolar spherules and a nucleolus-attached acces-
sory body/CB. (D) Electron micrograph of a neuronal accessory body/CB. (E) Fine structure of a silver-stained accessory body/CB from a Purkinje neuron. Silver precipitates
specifically decorate the coiled threads of the CB. (F) Immunogold electron microscopy localization of coilin on the coiled threads of an accessory body/CB from a neuron.
(B and E from Lafarga et al., Chromosoma (2009) reproduced with permission from © Springer; C from Lafarga el al. J Neurosci Meth (1986) reproduced with permission
from © Elsevier).3,100
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microscopy, Monneron and Bernhard (1969) reported a
nuclear structure composed of dense coiled threads in hepato-
cytes and gave it the name of “coiled body” (Fig. 3D).20 They
demonstrated the presence of RNA in the coiled body using the
regressive EDTA staining for ribonucleoproteins. Curiously, in
the same year, Hardin and co-workers (1969), who knew
Cajal’s work on the neuronal nucleus, reported a similar struc-
ture by electron microscopy in sensory ganglion neurons, but
retained the name of “accessory body.“21 Using a modification
of Cajal’s silver nitrate method for electron microscopy, our
laboratory definitively established that Cajal’s accessory body
and Monneron and Bernhard’s coiled body are the same
nuclear structure (Fig. 3D, E).22,23 However, it was not until the
EMBO Workshop on “Functional Organization of the Cell
Nucleus” held in Prague in 1999 that Gall proposed linking
Cajal’s name to the nuclear structure that he discovered in
1903.5,24 The same year saw the publication of the first 2 articles
that introduced “Cajal body” (CB) nomenclature.25,26

The modern era of CB research started in the 1990s with the
publication of 2 articles27,28 from Tan’s team at the Scripps
Research Institute in La Jolla. The authors identified human
autoimmune sera that specifically labeled coiled bodies in cul-
tured cells. The protein responsible for the immunostaining was
purified and a cDNA clone encoding a coiled body-specific pro-
tein was isolated. The protein was named p80-coilin and since
then it has become a molecular marker of CBs (Figs. 3F, 4A).
Soon afterwards, an ortholog of human coilin was discovered in
Xenopus laevis and localized to sphere organelles, which are
homologous with somatic cell CBs, within the germinal vesicles
of oocytes.5,29 In the 1990s, the introduction of new antibodies
for nuclear proteins and specific probes for snRNAs allowed the
identification of other essential CB components, such as snRNPs,
snoRNPs, fibrillarin, Nopp140, SMN and several Gemin pro-
teins.6,7,30 As expected, the presence of these key components
has been confirmed in neurons with specific antibodies to CB
proteins and the tri-methylguanosine cap on snRNAs, and
human autoimmune sera against the Sm proteins of spliceosomal
snRNPs (Fig. 4C-E).26,31-33

Organization of cajal bodies in mammalian neurons

In this section, we focus on nuclear architecture and its rela-
tionship to the CB organization in post-mitotic differentiated
neurons. We also discuss the composition and molecular het-
erogeneity of CBs, as well as the functional importance of the
relationship between CB number and neuronal size. Finally, we
address the dynamic behavior of neuronal CBs in response to
changes in transcriptional activity, as well as the structural and
functional link between CBs and nucleoli.

The architecture of the neuronal nucleus in most mamma-
lian neurons is characterized by the predominance of relaxed
euchromatin. This open chromatin configuration facilitates the
access of transcription factors to active genes and is clearly
related to the high transcriptional activity of neurons required
to maintain their metabolic and bioelectrical activities.34-36 In
this chromatin landscape, 2 prominent structures stand out:
the nucleolus and the CB (Fig. 4A, B). Both compartments are
nuclear epicenters of the RNA world and their dysfunction
could have a profound impact on protein synthesis and on

information processing and storage by neurons, as reflected in
the recently discovered signaling pathway between neuronal
synapses and the nucleolus and CBs.37,38

Mammalian neurons provide an excellent model to study
CBs because their condition of post-mitotic (G0) cells with a
constant diploid amount of DNA rules out variations in CB
organization and function associated with cell-cycle stage and
ploidy. This is an important issue because some CBs may have
specific S-phase functions. These may include the biogenesis of
U7 snRNPs, required for histone mRNA 30end processing, and
the assembly of telomerase, an important mechanism for telo-
mere maintenance.39,40 Moreover, CBs disassemble during
mitosis when transcription is off and reassemble in early G1
when transcription resumes.41,42 Therefore, the behavior of
neuronal CBs may be strictly correlated to the global transcrip-
tional and splicing activity required to sustain neuronal size
and metabolic and bioelectrical activity.

Neuronal CBs concentrate coilin, fibrillarin, SMN and
components of the splicing machinery (Figs. 4C-E, 6A,
D),26,31,32,43,44 indicating that they are canonical CBs potentially
engaged in the assembly and maturation of spliceosomal
snRNPs. Since the 1960s, electron microscopy studies have
found that neuronal CBs have well-defined coiled electron-
dense strands embedded in an amorphous matrix (Figs. 3D-
F).21,23,35,45 While key molecular components of CBs, such as
silver staining proteins, coilin, fibrillarin, SMN and snRNPs,
are specifically localized on the dense coiled threads (Fig. 3E,
F), no molecular constituents have been characterized in the
amorphous matrix.28,31,43,45

It is noteworthy that coilin is essential for the correct forma-
tion and/or maintenance of neuronal CBs, as illustrated by loss
of silver-stained nuclear bodies in coilin knockout mice
(Fig. 5).33 Similarly, coilin depletion in zebrafish embryos leads
to CB dispersion and deficient snRNP biogenesis.42 Thus, coilin
plays an essential role in promoting macromolecular assembly
of snRNPs in CBs.46 However, an important puzzle concerning
CBs has emerged from observations in Drosophila melanogaster
that small CB-specific RNAs (scaRNAs), which guide the modi-
fication of spliceosomal snRNAs (methylation and pseudouri-
dylation), function in coilin-null flies that lack CBs. This
indicates that concentration of snRNAs and scaRNA in CBs is
not essential in flies.47

It is also important to note the existence of a molecular het-
erogeneity in some neuronal CBs. Coilin-positive CBs free of
SMN-complex proteins and snRNPs occasionally appear under
physiological conditions (Fig. 4D). They are presumably imma-
ture CBs not involved in the maturation of snRNPs. Indeed, in
cultured non-neuronal cell lines, upon nuclear import, snRNPs
concentrate in CBs that contain coilin and SMN but not in
bodies that contain coilin but lack SMN.48 During neuronal
recovery after osmotic stress, which induces early disruption of
CBs followed by their reformation, a subset of CBs transiently
accumulates active SUMO1, suggesting that the sumoylation of
some CB proteins is involved in the reformation of these
nuclear bodies.49 Moreover, it has been reported in some cell
lines that a subset of CBs contains the Ubc9 conjugating
enzyme and the SUMO isopeptidase USPL1.49,50 These find-
ings, together with the recent identification of SMN as a new
SUMO1 substrate, support the hypothesis that sumoylation/
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desumoylation events may participate in the molecular dynam-
ics of CBs.51

In the 1990s, a partner for CBs was reported and called
Gem, for Gemini of CBs, in a HeLa cell line (PV).52 Gems were
characterized by immunofluorescence as coilin-free nuclear
bodies that concentrate SMN and Gemin2 and Gemin3.53,54

Later studies showed the presence of Gemins2,3,4,6,7 which are
shared with CBs.7 Gemin proteins are integral components of
the SMN complex involved in snRNP biogenesis.7 According
to the original description, Gems are frequently associated with
CBs, but do not colocalize with them and sometimes appear as

separate structures free in the nucleoplasm.52 However, in sev-
eral cell lines and differentiated cells, especially neurons, SMN
and Gemin 2 commonly colocalize with coilin and snRNPs in
the CBs (Fig. 4D).26,31,32,55 Although Gems have been reported
in fetal motor neurons,56 our group has not found Gems in
mature mammalian neurons. The function of Gems remains
unknown. Their absence in mature neurons suggests that under
physiological conditions differentiated cells accommodate
nuclear concentrations of SMN complex proteins (SMN and
Gemins) to the functional requirements for CB assembly and
maintenance.

Figure 4. Cajal bodies in neurons. (A) Dissociated neuronal bodies from a sensory ganglion co-stained for nucleic acids with propidium iodide (PI) and for coilin clearly
revealed the distribution of CBs free in the nucleoplasm and associated with the nucleolus. (B) Electron micrograph of a typical neuronal nucleus illustrating a typical
nucleolus with numerous fibrillar centers and a CB free in the nucleoplasm. (C-E) Confocal images of double immunostained for coilin in combination with SMN (C),
Gemin2 (D) and TMG-cap of spliceosomal snRNPs (E) in mammalian neurons demonstrate the colocalization of these molecular constituents in the CB. (F) Dissociated neu-
rons from the supraoptic nucleus silver stained with Cajal’s procedure showing the specific staining of nucleoli and CBs. (G) Immunogold electron microscopy detection of
50-FU incorporation sites in the nucleolus (No) and euchromatin domains after a 30-min pulse of of 50-FU. Gold particles are absent from the inner side of the CB. (H) In situ
hybridization for the c-fos intron I pre-mRNA (red) in combination with coilin immunolabeling (green) revealed the spatial association of a CB with a gene loci of c-fos fol-
lowing a osmotic stress in supraoptic neurons.
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The number, size and spatial organization of CBs and
nucleoli have been carefully analyzed using preparations of dis-
sociated neuronal bodies immunostained for coilin and coun-
terstained with propidium iodide (Fig. 4A).31,32,57,58 The size of
neuronal CBs ranges from approximately 0.5 to 1.5 mm in
diameter. Whereas nucleoli exhibit size scaling in sensory
ganglion neurons, a linear relationship between CB size and
neuronal size has not been demonstrated in this neuronal
population.31,32 Several studies have shown that CB number
correlates with neuronal size and global transcriptional activ-
ity.31,57,59,60 For example, sensory ganglion neurons include 3
cell-size categories related to their different transcriptional and
bioelectrical activities: small, medium and large neurons. In
rats, the mean CB number increases from 1.1 per cell in small
neurons, to 1.8 and 2.9 in medium and large neurons, respec-
tively, indicating a close relationship between cell body size, a
parameter directly related to global transcriptional and transla-
tional activity of the neuron,61 and CB formation.31 This rela-
tionship is consistent with mathematical prediction models
suggesting that nuclei with higher CBs support greater rates of
snRNP assembly, due to the increased likelihood of molecular
interactions between CB components.42,62 Intriguingly, a
remarkably higher number of CBs occurs in human ganglion
neurons, with a mean value of 2.8 and 13.4 in small and large-
size neurons, respectively, as compared with rat neurons.32

Although human ganglion neurons are moderately larger than
their counterparts in rats, other unknown factors, including dif-
ferences between species in genome organization, could be
determinants of the great abundance of CBs in human neurons.

The first experimental evidence that CBs are transcription-
dependent organelles in neurons came from our study in
osmotically-stimulated supraoptic neurons, neurosecretory
cells that produce the antidiuretic hormone (ADH). Using
Cajal’s silver staining procedure (Fig. 4F), we observed that the
metabolic activation of ADH synthesis and secretion by dehy-
dration in animals induced a 3-fold increase in the mean num-
ber of CBs per neuron, which rapidly returned to control
values once the osmotic stimulation ceased by rehydration.57 In
contrast, osmotic cellular stress, which causes a severe inhibi-
tion of global transcription in supraoptic neurons, led to a dra-
matic decrease in CB number within the first 2 hours after
stress induction.59 Collectively, these observations support the
notion that the formation of CBs depends on ongoing
transcription.

In electron microscopy studies, in situ transcription assays
in neurons have demonstrated that the incorporation sites of
50-fluorouridine into nascent RNA occur at the nucleolus and
euchromatin domains, and may also appear closely associated
with CBs.36 However, this incorporation does not occur within
the CB (Fig. 4G).36,58 Moreover, using in situ hybridization

Figure 5. Loss of CBs in coilin knockout neurons. (A, B) Sensory ganglion neurons from wild-type and coilin knockout mice were silver stained with Cajal’s procedure. Note
the staining of the nucleolus and CBs in the wild-type neuron and the absence of CBs in the knockout cell. (C, D) Coilin immunostaining in wild-type and knockout sensory
ganglion neurons shows typical CBs in the wild-type neurons and the lack of coilin staining in the knockout cells.
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with a probe for the c-fos intron-1 pre-mRNA in osmotically
stimulated supraoptic neurons, our group has found spatial
associations of CBs with the nascent transcripts accumulated at
c-fos gene loci (Fig. 4H). These observations are consistent with
the emerging evidence of a dynamic association between CBs
and genomic loci, indicating that CBs may be nucleated at par-
ticular active transcription sites.63-65 In this vein, Dundr’s team
has recently demonstrated that CBs are linked to genome

conformation, orchestrating genome-wide clustering of highly
expressed spliceosomal sn/snoRNA and histone genes.66

Neuronal CBs frequently associate with 2 nuclear compart-
ments, the nucleolus and nuclear speckles (Figs. 2, 3C, 4A,
6).21,23,32,43,57 For example, approximately 30% of CBs appear
attached to the nucleolus in human sensory ganglia32; we have
even found CBs physically connecting 2 adjacent nucleoli
(Fig. 6C). In cultured hippocampal neurons, the association

Figure 6. Association of the CB with the neuronal nucleolus. (A) Double immunostaining for coilin and fibrillarin illustrates the close association of CBs with nucleoli in a
sensory ganglion neuron. (B) Electron micrograph of a nucleolus (No) attached CB. Note the association of the CB with the dense fibrillar component of the nucleolus. (C)
Electron micrograph of 2 nucleoli physically linked with a CB. (inset) Similar confocal picture co-stained for fibrillarin and coilin. (D) Double immunogold electron micros-
copy labeling for coilin and SMN (arrowheads) of a nucleolus-attached CB. (E) Electron micrograph of a CB immunogold labeled for coilin connecting the nucleolus (No)
with an interchromatin granule cluster (IGC). Note the presence of an amorphous material associated with the CB (asterisk). (F) Confocal picture of a neuronal nucleus
illustrating the distribution of nuclear speckles, immunostained for the TMG-cap, and their association with CBs immunolabeled for coilin. (G) Electron micrograph show-
ing the association of an interchromatin granule cluster (IGC) with a CB. (H) High voltage electron micrograph from a resinless preparation of neuronal nucleus illustrates
the spatial association of an interchromatin granule cluster (IGC) with a CB. (E from Lafarga et al., J. Neurocytol 1998, reproduced with permission from © Springer).59

RNA BIOLOGY 719



with the nucleolus increased at the final stage of neuronal dif-
ferentiation with the formation of a perinucleolar “rosette” of
CBs.67 The authors suggest that rosette formation correlates
with full neuronal polarization and represents a novel marker
for the final stage of differentiation.

Physically, CBs specifically associate with the dense fibrillar
component of the nucleolus (Fig. 6B, D),21,23,31,43 the site of
synthesis and early processing of pre-rRNAs.10 Interestingly,
CBs and the dense fibrillar component share several macromo-
lecules, such as fibrillarin, Nopp140, NAP57 and snoRNPs,
which provide a molecular link for a nucleolus-CB interac-
tion.68 A dynamic interaction between these 2 nuclear struc-
tures is also supported by the observation of CBs moving to
and from nucleoli in living HeLa cells.69 CB-nucleolar associa-
tion may facilitate the delivery of snoRNPs or other factors
involved in pre-rRNA processing to the nucleolus, a particu-
larly important mechanism in neurons that have high require-
ments for ribosome biogenesis. In fact, a recent study from
Neugebauer’s group shows that all classes of snoRNAs concen-
trate in CBs and the authors speculate that CBs are the sites of
specific steps in snoRNP assembly.70 The functional coupling
between CBs and nucleoli is also supported by the observation
in primary cultures that neuronal stimulation by activation of
NMDA (“N-methyl-D-aspartate”) receptors significantly
increases nucleolar number, CB-nucleolar association and pro-
tein synthesis compared to control neurons.37 This neuronal
response is mediated by a new protein of the postsynaptic
region identified as AIDA-1d (“AID associated protein 1d”),
which harbors nuclear localization sequences. Following neuro-
nal stimulation, AIDA-1d is translocated to the nucleus, where
it is targeted to CBs and the nucleolus, coinciding with CB-
nucleolar association. Because AIDA-1 interacts with coilin,71

it may link CBs with nucleoli by binding to an unknown factor
in the nucleolus.37 It seems likely that this synaptic signaling to
CBs and the nucleolus regulates ribosome biogenesis and per-
haps RNA dynamics.37,38

Nuclear speckles or their ultrastructural counterpart, inter-
chromatin granule clusters,13 are very often located in close
proximity to CBs in neurons (Figs. 2, 4E, 6F, G). The spatial
association of interchromatin granule clusters with CBs is par-
ticularly visible in thick resinless preparations of neuronal
nuclei processed with critical point drying and examined with
high voltage electron microscopy (Fig. 6H). Moreover, as is
illustrated in Fig. 6E, the coilin-positive coiled threads of a
nucleolus-attached CB can establish direct contact with inter-
chromatin granule clusters. Collectively, the frequent spatial
associations of CBs with both the nucleolus and nuclear speck-
les observed in neurons provides the structural basis for effi-
cient transfer of snoRNPs and snRNPs from CBs to their
respective target compartments of the neuronal nucleus.

Cajal bodies in neuropathological disorders

There is little current literature on the contribution of CBs to
the molecular pathophysiology of neurodegenerative disorders.
In the following section, we focus on the behavior of CBs in
CAG repeat disorders, ataxias and 2 motor neuron diseases,
amyotrophic lateral sclererosis (ALS) and spinal muscular atro-
phy (SMA).

Expansion of a CAG repeat encoding a polyglutamine tract
causes at least 8 neurodegenerative disorders characterized by
the formation of intranuclear neuronal inclusions containing the
mutant protein.72 In 2 of these human diseases, dentorubral-pali-
dolusyan atrophy (DRPLA) and Machado-Joseph disease,
Yamada and coworkers have shown that CBs frequently appear
physically associated with nuclear inclusions.73 The authors con-
firmed this association in the DRPLA transgenic mouse brain
and suggested that CBs are trapped at the nuclear inclusion sur-
face, which may prevent their mobility69 and functions associated
with snRNP biogenesis.6,30,74 More recently, Hebert’s group has
demonstrated that the expression in Hela cells of the mutant
ataxin 3, which is mutated in Machado-Joseph disease, not only
reproduces the attachment of CBs to nuclear inclusions found in
patient neurons, but also disrupts the splicing of an artificial
reporter.75 The authors conclude that the spatial association of
CBs with ataxin 3 nuclear inclusions correlates with a dysfunc-
tion of pre-mRNA splicing, possibly as a consequence of altered
CB activity in snRNP biogenesis.

A useful model for analyzing the dysfunction of the nucleolus
and CB that occur in neurodegeneration is the pcd (“Purkinje cell
degeneration”) mouse. The phenotype of this mouse is caused by
mutation in the Nna 1 gene—encodes a cytosolic carboxypepti-
dase— which produces the degeneration and death of Purkinje
cells/neurons during postnatal life, resulting in a severe cerebellar
ataxia (gross lack of coordination of movement).76 A cellular hall-
mark of the disease is the progressive accumulation of DNA dam-
age associated with a defective DNA repair, resulting in a severe
inhibition of transcription of both ribosomal and protein-coding
genes.60 Gene silencing in Purkinje cells clearly correlates with pro-
gressive disruption of both nucleoli and CBs.60 Interestingly, in
addition to a severe loss of CBs, coilin was redistributed as a thin
shell around the nucleolus (Fig. 7A, B, F), and even located inside
the nucleolus (Fig. 7C). Moreover, immunoelectron microscopy
detection of coilin revealed the loosening and fragmentation of the
electron-dense coiled threads of CBs, reflecting a possible process
of disassembly of these bodies (Fig. 7D, E).60 Given the importance
of CBs for the assembly of snRNPs and snoRNPs, required for pre-
mRNA and pre-rRNA processing, repectively,5,7,77 the CB deple-
tion in Purkinje cells of the pcd mouse may reflect a reduced
demand of RNA processing under conditions of DNA damage-
induced transcriptional repression.60

An important point is the contribution of CB dysfunction to
the molecular pathophysiology of 2 motor neuron diseases:
SMA and ALS. The former is the most common genetic cause
of infant mortality. SMA pathological hallmarks are lower
motor neuron degeneration and muscular atrophy with paraly-
sis. This disease is caused by deletion or mutation of the sur-
vival motor neuron 1 (SMN1) gene, resulting in reduced levels
of SMN with diminished snRNP activity and the disruption of
CBs (Fig. 7G-I).51,78-81

ALS is the most common adult-onset neurodegenerative dis-
ease affecting upper and lower motor neurons. Mutations in the
RNA binding proteins FUS and TDP-43, involved in transcrip-
tion and mRNA splicing and transport, are responsible for a
subset of ALS cases.82 Interestingly, the number of Gems
—identified with a single immunostaining for SMN—
decreased in fibroblasts and mouse motor neurons depleted of
FUS or TDP-43, suggesting a possible role of these bodies in
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ALS pathophysiology.83-85 In the spinal cord of ALS mouse
models, uridylate-rich (U) snRNAs belonging to minor spliceo-
some, which carries out U12-dependent splicing, are markedly
reduced, as occurs in SMA.78,86 Moreover, reduced SMN pro-
tein levels have been found in murine models of ALS.44,87

Therefore, SMA and ALS are related motor neuron diseases

that share a dysfunction of mRNA metabolism. In this vein,
FUS has been reported to interact with TDP-43 and to associate
with the SMN complex, a process mediated by U1-snRNP and
by direct interaction between FUS and the SMN Tudor
domain.84,88 ALS-causative mutations in FUS deregulate SMN
functions with a loss of Gems and reduced splicing activity.84,88

Figure 7. Reorganization of Cajal bodies in Purkinje cells of the pcd mice and motor neurons from SMA. (A-C) Confocal microscopy images from squash preparations of
Purkinje cells from wild type (A) and pcd mice (B, C) co-stained for fibrillarin and coilin (A, B) or single immunostained for coilin (C). (A) Fibrillarin and coilin colocalize in a
CB from a control Purkinje cell. (B, C) At advanced stages of Purkinje cell degeneration, with nucleolar segregation and fragmentation, coilin appears redistributed as a
thin ring surrounding the segregated masses of fibrillarin or inside the nucleolus (No). (D) In wild type Purkinje cells, CBs show the typical morphology of coiled threads
immunogold labeled for coilin. (E) CB with an irregular morphology and loosely arranged threads in a degenerating Purkinje cell. (F) Gold particles of coilin immunoreac-
tivity are also observed surrounding an electrondense mass presumably corresponding to a segregated portion of the dense fibrillar component of the nucleolus. (G-I)
Double immunostained for coilin and SMN on dissociated motor neurons from control and SMA samples. (G) In a control neuron coilin concentrates in several large CBs
and numerous mini-CBs where it colocalizes with SMN (inset). (H) This motor neuron from an SMA patient shows a large CB immunolabeled for coilin and SMN and
numerous coilin-positive and SMN-negative mini-CBs (inset). (I) SMA motor neuron with an eccentric nucleus, intranucleolar accumulation of coilin and numerous coilin
microfoci free of SMN. (inset) Detail of a coilin microfocus with immunogold electron microscopy. (J-L) Motor neurons from a wild type mouse (J) and an SMA mouse
model (K and L). (J, K) Co-staining for coilin and propidium iodide (PtdIns) illustrates the typical organization of CBs in the control neuron (J) and the redistribution of coi-
lin as perinucleolar caps in the SMA motor neuron (K). (L) Intranucleolar localization of coilin (No) in an SMA motor neuron. (A; B, D-F, from Baltanas et al., Brain Pathol
2011, reproduced with permission from © John Wiley and Sons; G-I from Tapia et al. Histochem Cell Biol 2012, reproduced with permission from © Springer.60,96
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Collectively, these findings suggest the existence of converging
pathogenic mechanisms in SMA and ALS, including the dys-
function of SMN and the depletion of Gems or CBs.

Accurate determination of the molecular composition of
nuclear bodies is crucial for their identification and for under-
standing their functions and pathological implications. Most
reports on nuclear alterations in SMA consider that the loss of
Gems —SMN-positive and coilin- and snRNP-negative nuclear
bodies52 —is a cellular hallmark of the disease.84,88,89 Similarly,
Gem depletion has been reported in murine models of
ALS.85,87,89,90 However, the identification of Gems in these SMA
and ALS studies is not surprising given that the authors com-
monly use a single SMN immunolabeling for counting nuclear
bodies,83-85,90,91 establishing by default that they are Gems
although the presence of the CB marker coilin is highly likely.

In the light of the experience of our group in mammalian
neuronal models under normal and pathological conditions,
we propose that canonical CBs, rather than Gems, are disrupted
in motor neurons in SMA and ALS. Several lines of evidence
support CB dysfunction in motor neuron diseases: i) in postna-
tal and mature mammalian neurons SMN and coilin co-localize
in typical canonical CBs (Figs. 4C, 6D, 7A), while Gems are not
detected;26,31 ii) in cell lines and mammalian nervous tissue, the
formation and integrity of CBs are dependent on ongoing tran-
scription and snRNP biogenesis,7,57,59,92,93 2 nuclear functions
altered in motor neuron diseases;81,86,94 iii) lack of CBs in cells
derived from SMA patients correlates with decreased U4/U6-
U5 tri-snRNP assembly, a maturation step of spliceosomal
snRNPs that is 10-fold faster in CBs than in nucleoplasm,62,95

and with splicing alterations of particular minor introns;78,80

iv) coilin protein, which is lacking in Gems, scaffolds CBs and
couples snRNP and snoRNP biogenesis, making CBs the center
of small non-coding RNA processing;7,33,42 and v) in motor
neurons of a 3-month-old SMA patient, we have observed that
lowered SMN levels induce severe depletion of canonical CBs,
whereas Gems were conspicuously absent in both SMA and
age-matched control neurons (Fig. 7G-I).96

Taken together, the depletion of canonical CBs seems to be a
hallmark feature of SMA motor neurons. Moreover, most of the
remaining coilin-positive CBs detected in SMA motor neurons
fail to recruit SMN and snRNPs96,97 and frequently appear as
unstructured mini CBs (Fig. 7H, I, inset), suggesting that they
are not involved in snRNP biogenesis. A shift of coilin from CBs
to perinucleolar caps lacking SMN and snRNP, or even inside
the nucleolus, is also observed in human and murine SMA
motor neurons (Fig. 7J-L).96 This coilin redistribution probably
reflects the impact of reduced SMN levels on transcription and
splicing in motor neurons, resulting in a deficient nucleation of
canonical CBs. This interpretation is consistent with experimen-
tal observations showing that CB disruption with transcriptional
inhibitors (actinomycin D or DRB) causes coilin to relocalize
and accumulate in perinucleolar caps.36,98

Concluding remarks

Neurons provide an excellent model to study CBs because their
condition of post-mitotic cells (G0) rules out variations in CB
function associated with cell-cycle progression. This is an impor-
tant point because CBs play an essential role in the assembly of

U7 snRNPs during the S phase of the cell cycle, and mitotic dis-
assembly/reassembly. Therefore, the behavior of neuronal CBs
may be related to the global transcriptional activity required to
sustain neuronal size and bioelectrical activity. Several lines of
evidence support the notion that neuronal CBs are transcription-
dependent nuclear compartments whose number dynamically
accommodates to the demand for snRNP and snoRNP assembly
required for pre-mRNA splicing and ribosome biogenesis. In
neuropathological disorders, particularly in motor neuron dis-
eases, depletion of CBs, rather than Gems, is a hallmark feature
associated with perturbations of transcription and splicing. This
reflects the crucial role of CB in the assembly of spliceosomal
snRNPs and also suggests the contribution of CB dysfunction to
the splicing pathology associated with several neurodegenerative
disorders. Although SMN deficiency is directly associated with
CB dysfunction in SMA, and probably in other motor neuron
diseases, further molecular studies are necessary to determine the
molecular interactions that govern the assembly/disassembly
cycle of CBs under normal and pathological conditions. This
particularly includes changes in coilin interactions with proteins
and RNAs, given that coilin is now known to scaffold the CB.
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