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Specific genomic cues regulate Cajal body assembly
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ABSTRACT
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important
for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates
spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that
regulate CB assembly and structural maintenance. These include the importance of transcription at
nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell
cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB
formation and RNA splicing levels in neurons and cancer. The timing and location of these specific
molecular events is critical to CB assembly and its contribution to genome function. However, further work
is required to explore the emerging biophysical characteristics of CB assembly and the impact upon
subsequent genome reorganization.
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Introduction

It is evident that gene expression is controlled by the functional
interplay between spatial genome organization, nuclear archi-
tecture and metabolic demand. To achieve optimal regulation
of gene expression and RNA processing, the cell nucleus is
non-randomly organized into a number of structurally-distinct
regions, including chromosome territories, the nuclear lamina
and a number of nuclear domains or microenvironments
known as nuclear bodies (NBs).1-3 These domains are fre-
quently associated with specific gene loci, the activities of which
appear to contribute to their biogenesis. However, as the
nuclear interior lacks defining membranes, NBs behave like
liquid-phase droplets and are excluded from the surrounding
nucleoplasm by concentration-dependent phase separation.4

As a result, these regions are enriched in key but frequently lim-
ited factors and enzymes essential to expediting specific molec-
ular events. These processes would be energetically unfavorable
to perform without temporal and spatial compartmentalization
in a defined space within the nucleus.1,5-7 Recent evidence has
indicated that these structures are functionally diverse but
indispensable for cell viability and proliferation, although some
NBs appear to be more essential than others.6 The nucleus is a
highly dynamic and cooperative network and these structurally
defined domains are not completely functionally independent.
Thus, there are numerous regulatory feedback loops and physi-
ological influences that trigger the nucleation of specific NBs
and control their function.

Established NBs include the nucleolus, Cajal body (CB), his-
tone locus body (HLB), PML nuclear body, nuclear speckle and
paraspeckle and our knowledge of the specific functions of
these domains is continuously improving.1,3,8 Additionally,

a number of “orphan” NBs have been recognized that require
further characterization of their resident proteins, RNAs and
specific functions.9 However, the role of the CB is relatively
well established. Assembly of the CB is an important contribut-
ing factor to efficient pre-mRNA processing (RNA splicing) by
the multi-megadalton ribonucleoprotein complex known as the
spliceosome.10 The enzymatic core of the spliceosome consists
of small nuclear ribonucleoproteins (snRNPs), which are
RNA-protein complexes, as well as a large number of accessory
proteins that regulate their function.10,11 Briefly, RNA splicing
involves the 50 and 30 definition of introns in target pre-mRNAs
by U1 and U2 snRNPs, respectively, followed by binding of the
U4/U6.U5 tri-snRNP to an intronic region known as the
branchpoint sequence.11 The intron is removed by lariat forma-
tion and is targeted for degradation, or further processed to
generate intron-encoded small nuclear and nucleolar RNAs
(sn/snoRNAs), while the adjacent exons are joined together.12

Following the completion of each round of splicing, the snRNP
components are individually liberated from the target pre-
mRNA. U4/U6 di-snRNP and U4/U6.U5 tri-snRNP must then
be reassembled and recycled to form competent splicing units
for another round of RNA processing.

Spliceosomal snRNA and sn/snoRNP enrichment in CBs
was first observed in the 1990s13-18 but splicing itself takes place
predominantly in the space between the nuclear speckle periph-
ery and adjacent chromatin domains.19 The CB augments spli-
ceosomal U snRNA, intron-encoded snoRNA, and small
CB-specific RNA (scaRNA) gene expression20,21 and the
co-transcriptional processing of their 30 extended end.22 Other
CB-related processes include RNA base modifications,
(site-specific pseudouridinylation and 20-O-methylation guided
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by scaRNAs)23 snRNP assembly and maturation,24-26 as well as
telomere maintenance.27 CB disassembly, or relocalization of sev-
eral key CB components, has also been linked to the cellular
response to DNA damage.28-31 Furthermore, the CB influences
the stepwise assembly of U4/U6.U5 tri-snRNPs before and after
each round of RNA splicing.32 These CB-enriched sn/snoRNAs
also regulate RNA splicing,33 as well as pre-rRNA processing,34

and guide the base modification of RNA transcripts.35 However,
despite the dependency of certain cell types on CBs for function,
CBs have only been observed in a limited number of cells,36

including most neuronal cells, embryonic and fetal tissue,37 stem
cells,38 and a large variety of aneuploid transformed cells. Thus,
the CB is an important nuclear microenvironment that is likely
to be a prototypical model example of the influence of synergistic
cellular pathways in regulating nuclear structure assembly.

So what molecular events must occur for a CB to materialize
in the nucleus? In plain language, the assembly of CBs appears
to correlate with a “perfect storm” of high local threshold con-
centrations of key nucleation and scaffolding factors associated
with specific gene regions of high transcriptional activity. Other
regulators of this process include biochemical modifications of
key CB structural components, cell cycle progression and meta-
bolic demand.5 In the following sections we examine the
reported details of CB nucleation, assembly steps and structural
maintenance, and comment on some of the mysteries of CB
formation that have yet to be resolved.

Temporal and spatial regulation of Cajal body assembly

Many, if not all, NBs assemble at specific genomic loci or chro-
mosomal regions during defined cell cycle stages and times of
specific metabolic need, stimuli or stress.3 It is important to
note that the CB is likely the most canonical NB to assemble
through heterogeneous nucleation, which requires an initial
nucleation step using a seeding scaffold followed by stochastic
CB self-assembly.39 CBs do not form through homogenous
nucleation, which would be represented by the spontaneous
formation of randomly positioned CBs in the nucleoplasm. In
particular, the CB has long been known to be frequently associ-
ated with specific genomic loci enriched with U snRNA and
intron-encoded snoRNA, scaRNA and histone gene loci.15,20,40-
45 However, it has not been fully explored and genomically
mapped whether the initiation of CB formation is restricted to
a limited number of prominent primary nucleation sites (such
as the highly expressed and prominent RNU1 and RNU2 gene
arrays46 or histone gene clusters) or other highly expressed
individual gene loci or repeats. It is unknown whether these
must be positioned either in cis configurations on the same
chromosome or in trans on different chromosomes to trigger
CB formation.20 Also, there may not be a one-to-one relation-
ship between a specific gene locus and the CB, as several of
these transcriptionally active regions have been observed to be
attracted to the CB periphery by simultaneous repositioning or
at least in a semi-coordinated fashion.20,47 The CB exists and
maintains a close relationship with the genome, as it arises at
particular gene loci after mitosis in late G1 phase when wide-
spread transcription is fully established, and CB number dou-
bles during genome duplication in S phase.

The assembly and disassembly of all NBs is functionally linked
to their inheritance during cell division. Some NBs, including CBs,
persist though mitosis in the form of mitotic bodies that contain
essential components in an inactive state.48 These mitotic NBs are
equally distributed between daughter cells after cell division of the
mother cell.49,50 Efficient NB reassembly at the end of mitosis
ensures the full functionality of newly formed daughter cells. CBs
remain intact through interphase and at the onset of mitosis. How-
ever, after the nuclear envelope breaks down they scatter through-
out the cytoplasm and are physically separate from condensed
chromosomes. The number of mitotic CBs remains the same from
metaphase to telophase and functionally they are likely to be in an
arrested state or at least contain high levels of retained intermedi-
ates. Indeed, these mitotic CBs contain spliceosomal snRNPs but
target gene transcription and splicing is abolished during this stage
of the cell cycle. Accordingly, the composition of these mitotic CBs
is different from interphase CBs, as the essential CB component
TCAB1/WRAP53 is absent from the domain51 but a thorough
characterization of mitotic CB composition is necessary. Interest-
ingly, as TCAB1/WRAP53 has been proposed to be the key ele-
ment that targets sn/snoRNAs and scaRNAs to the CB,52 this may
coincide with a redistribution of these small RNAs through the
nucleoplasm. During mitosis, the key structural component of
CBs, coilin,53 undergoes a change in phosphorylation status, which
regulates its stability and leads to CB reassembly after mitosis.54-56

Once the nuclear envelope is reformed in daughter nuclei in early
telophase, mitotic CBs rapidly disintegrate and coilin rapidly dif-
fuses through the nuclear interior. Newly re-assembled post-
mitotic CBs are formed later in G1 phase when global transcription
is fully restored.

However, the CB does not exist in isolation within the
nucleus. Frequent physical associations have been reported, pri-
marily with the HLB,57 nucleolus,58,59 and PML nuclear body.60

Additionally, the current total number of reported target
sn/snoRNA and scaRNA genes that are potentially targeted to,
processed or sequestered in the CB is close to 1700 loci,
although the exact number is under consideration.61 These
gene loci are located across the genome on all human chromo-
somes) and more are frequently being discovered and anno-
tated.62 We performed a simple but novel analysis by collecting
the known locations of CB target genes from publically-
accessible databases63,64 and plotting their enrichment across
the genome in discrete 1 Mbp bins (Fig. 1). Several chromo-
somes, including 1, 6 and 17, appear to display higher local and
total CB target gene density than other size-matched chromo-
somes (2, 7 and 18, respectively; Fig. 1a-b) and are reported to
be frequently proximal to CBs.20,64,65 This may contribute to
CB nucleation and their sub-nuclear positions. Given the
known genomic organizational properties of the CB and the
frequent but not universal presence of this sub-nuclear struc-
ture in most cell types, including a high variety of transformed
cancer cells, the CB represents a unique model system for the
study of the role in NB formation.

Seeding RNA by transcription to grow Cajal bodies

The CB is an excellent example of a dynamic but structurally
stable nuclear entity that forms at sites and times of target gene
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transcription or RNA processing. Inhibition of RNA Polymer-
ase II transcription initially results in redistribution of snRNPs
away from the CB,66 which is followed by CB structural disas-
sembly after several hours.58,67 Additionally, high levels of tran-
scription have been associated with increased CB numbers per
cell.68 Recent studies have indicated that several nuclear bodies,
including the CB, the nucleolus, HLBs, nuclear speckles, para-
speckles and nuclear stress bodies require a specific RNA scaf-
fold for an initial nucleation step.69,70 Therefore, it is likely that
transcription plays a critical role in regulating CB assembly.

However, CB-positioning does not coincide with transcrip-
tional activity at random gene loci. Long-established sites of CB
association include the major and minor replication-dependent
histone gene clusters on chromosomes 6 and 1, respectively
(HIST1 and HIST2),42 as well as major (U1, U2, U4, U5, U6)
and minor (U4atac, U6atac, U11, U12) spliceosomal U snRNA
genes.40,41,43,71-73 These are all RNA polymerase II-transcribed
genes, except RNU6, which is transcribed by RNA polymerase
III, and several are situated in large clusters (RNU1 and RNU2).
These possess independent and structurally unique promoters
that are activated by specific transcription factors, including the
pentameric snRNA-activating protein complex (SNAPc).74,75

Furthermore, transcription of snRNA genes requires the Little
Elongation Complex, whose components are present in both
the nucleoplasm and CB,76 for initiation and elongation.77 The
Integrator complex is responsible for co-transcriptional cleav-
age of the unique 30-end of pre-U snRNA transcripts78 but only
one subunit is currently known to be present in CBs.79

A number of intron-encoded sn/snoRNA and scaRNA genes
have also been identified as frequent CB-interacting regions.20

These genomic regions are targeted to the CB periphery in an
active repositioning process.47 This occurs after formation of
the structure and their RNA products are sequestered and mat-
urated in the CB microenvironment.62 However, it is unclear
how many of these specific gene loci represent primary CB
nucleation hubs, or if all CB target gene loci are capable of
nucleating the structure to some degree. Regardless, the nucle-
ation of the CB can be summarized into 3 main steps:
i) Transcription and nucleation, ii) Phase separation, and iii)
Genome clustering (summarized in Fig. 2).

(i) (a) Transcription and Nucleation – sn/snoRNA genes.
The major U1 snRNA (RNU1) gene cluster, which spans 0.5
Mbp on the 50 end of the chromosome 1 p-arm, appears to pos-
sess a unique relationship with CB formation as it displays the
highest association frequency with the CB in HeLa cell colocali-
zation studies.20 We hypothesize that once U1 snRNA gene
expression at this array reaches a critical local threshold con-
centration, the CB begins to nucleate. This attracts and accu-
mulates key CB components, including the structural
multivalent CB component coilin, which has the capability to
interact with numerous CB components and form homo- and
hetero-oligomers.80,81 Coilin accumulation enhances NB
assembly and stabilizes transient interactions among other CB
components. However, only approximately 40% of CBs are
closely associated with the U1 snRNA gene array on chromo-
some 1 (60% of all CBs were associated with chromosome 1) in
HeLa cells.20 Therefore, it is likely that other genomic loci
located on other chromosomes also contribute to global CB
nucleation. Based upon sn/snoRNA gene density (Fig. 1a-c)
and expression levels it is highly likely that the U2 and

Figure 1. Cajal bodies nucleate at chromatin regions with high target gene density. (a) CB target gene density for human chromosomes containing major sn/snoRNA
gene arrays and size-matched chromosomes. Genes were binned into 106 base pair (1 Mbp) windows. The positions of potential major CB nucleation sites and other
notable intron-encoded small RNAs are indicated with pointers. List of U sn/snoRNA genes were acquired from publically-accessible databases and potentially includes
pseudogenes and other intron-encoded sn/sno/scaRNAs that are neither expressed nor sensitive to CB disassembly by knockdown of essential CB components by siRNA.
CB target gene loci include spliceosomal U snRNA, SNORD, SNORA, SCARNA and histone genes. (b) CB target gene density and (c) total gene density for all human
chromosomes, normalized per 106 base pairs indicates that CB target gene density is independent of total gene density (Pearson coefficient = 0.49).
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SNORD3A (U3) sn/snoRNA gene arrays on chromosome 17
are also essential CB-nucleating regions. Indeed, chromosome
17 is the second most frequently CB-associated region identi-
fied in HeLa cells, followed by chromosomes 15 and 6, the latter
of which contains the major histone gene cluster (HIST1).20

(i) (b) Transcription and Nucleation – Histone genes. As
mentioned above, CBs are frequently physically associated with
HLBs. Approximately 42% of HeLa cells and 88% of MCF10A
cells, which are spontaneously immortalized human breast epi-
thelial cells, possess CBs and HLBs in physical contact to one
another (Fig. 3a-d).57 In support of this observation, tethering
of unprocessed human histone pre-mRNAs on an engineered
genomic locus82 resulted in de novo formation of a CB with a

physically associated HLB.70 These data indicate that a high
local concentration of unprocessed histone pre-mRNA at a
gene locus is able to act as seeding scaffold to nucleate a de
novo CB. It is tempting to speculate upon which components
are shared between these 2 NBs and might be responsible for
bring CB and HLB to physical association. We hypothesize that
this frequent CB-HLB associations arises due to 5 members of
the heptameric Sm ring that are shared by both the CB-
enriched major spliceosomal U snRNPs and the HLB-enriched
histone-specific U7 snRNP. These Sm proteins display the
highest de novo CB nucleation efficiency in HeLa cells tethering
experiments.83 Thus, through physical association, HLBs can
benefit from the ability of the CB to topologically reshape geno-
mic regions and target specific CB-associated gene loci, includ-
ing HLB-regulated replication-dependent histone gene
clusters,84 to highly transcriptionally active regions located out-
side of chromosome territories.

(i) (c) Transcription and Nucleation – Summary. Compar-
ison of the linear genomic clustering of CB target genes, includ-
ing sn/snoRNA and histone gene arrays, as well intron-encoded
small RNAs, revealed that the density of these CB-interacting
regions is far higher on chromosomes 1, 6 and 17 compared to
size-matched pairs (chromosomes 2, 7, and 18, Fig. 1a-b). We
hypothesize that, similar to the proposed nucleation of Poly-
comb bodies,85 the linear clustering of transcriptionally active
target CB genes in close genomic proximity may be important
for initial CB assembly. However, it should be noted that inter-
esting small RNA genes are also found on less CB target gene-
dense chromosomes (which is independent of total gene den-
sity, Pearson correlation coefficient = 0.49 between total and
snRNA somatic chromosome gene densities, Fig. 1b-c). In sum-
mary, CB formation is most likely to occur at the prominent
sites of target gene expression with high gene density and/or
transcription levels, including the U1, U2 and SNORD3A (U3)
sn/snoRNA gene arrays and the histone gene clusters.

ii) Phase Separation. Following transcription, the CB con-
denses from the surrounding nucleoplasm by concentration-
dependent phase separation. Briefly, phase separation describes
the process by which a single-phase system (e.g. nucleoplasm)
transitions to a system containing multiple coexisting liquid
phases (e.g., nucleoplasm + CB). Modeling of NB nucleation
and growth in vivo under different experimental conditions has
confirmed that NBs are indeed phase separated droplet organ-
elles.86,87 As a result, NB domains are compositionally distinct,
but not impermeable,88 to the surrounding interchromatin
space leading to optimized regulation of their specific molecu-
lar functions. This sub-nuclear phase transition may be depen-
dent upon coilin’s ability to act as a molecular hub and interact
with numerous CB components via hetero-oligomerization,
which stabilizes the developing structure.81,89 Nucleation of
similar RNP-based droplets occurs via phase separation and is
dependent upon both RNA and a rapid local accumulation of
RNA binding proteins, supporting this hypothesis.90 When
these CB components reach a local threshold concentration,
liquid phase separation occurs and forms the microenviron-
ment.4,91 This coincides with further concentration of specific
essential and frequently limited factors that boost CB-depen-
dent transcription of spliceosomal snRNA genes, the processing
of their 30 extended end and maturation of snRNPs by

Figure 2. The stages of Cajal body assembly. Canonical Cajal bodies do not form at
inactive genes, or spontaneously at random gene loci in the nucleoplasm. Instead,
CB components are attracted to specific gene loci, such as the U1 snRNA gene
array on chromosome 1, upon transcriptional activation by RNA polymerase II
(RNA pol II) and the Integrator complex during G1 phase of the cell cycle. This
involves a large number of homo- and hetero-association steps between multiva-
lent hub proteins and other components that are modulated by post-translational
modifications (PTMs). The CB becomes phase separated from the surrounding
nucleoplasm, enriching specific CB factors within the microenvironment. As the CB
grows, other active target gene loci are attracted to the periphery of the domain,
which create gene clusters in both cis and trans configurations. Mature snRNPs
produced by the CB are exported to the nuclear speckle for spliceosome assembly
and mRNA processing prior to recycling in the CB.
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macromolecular crowding.6,92 Intriguingly, the frequent associ-
ation between CBs and chromatin may further enhance phase
separation and body formation.93 Thus, the CB potentially
becomes a more efficient processing microenvironment, which
substantially contributes to the elevated levels of RNA splicing
in highly proliferative cells and histones needed for packing
newly replicated DNA into nucleosomes. It is unknown at what
stage (and to what extent) snRNA processing and snRNP mat-
uration is accelerated during CB assembly. However, in theory,
as soon as there is an increased local concentration of CB fac-
tors (compared to the surrounding nucleoplasm) this should be
sufficient to ensure that snRNA and snRNP processing is
augmented.

iii) Genomic Clustering. Finally, the growing CB attracts
other target genes in cis and trans configurations to its physical
proximity.20,44,71 It is unclear whether these target gene loci
may possess their own smaller CBs (that are sub-microscopic)
prior to amalgamation into a larger structure,94 or if there are
only moderate local concentrations of coilin and the various
sn/snoRNA transcriptional and processing complexes. Never-
theless, the CB induces a topological rearrangement of the
genome and is seen to frequently associate with several target
gene loci simultaneously, while pushing away nearby
non-target genomic regions.20,44 The biological consequences
of this cluster formation around the CB is not apparent and
further work is required to describe the stability and benefit of

these higher-order gene association events. Several studies have
indicated that CBs are capable of both fusion and fission, but it
is unknown with which genomic loci these CBs are associ-
ated.47,95-98 Following fusion, CBs were observed to increase in
volume but this process appears to be limited by a size critical-
ity in most cell lines as theoretically-possible CBs of more than
1.5 mm are not reported in the literature.8 This potentially indi-
cates that the size of the CB is a reflection of the number of
simultaneous gene associations that form with targets across
the genome, global chromatin organization or the accumula-
tion of sn/snoRNA transcripts that are sequestered within the
domain. There are few reported exceptions to this rule, includ-
ing overexpression of SMN99 and snRNPs,100 which induces
small increases in human CB volume, as well as in plants where
overexpression of a coilin homolog resulted in substantially
larger CBs.101 However, using mouse embryonic fibroblast
(MEF) cells, we have observed CBs of an increased size
(2 mm diameter or more) without an increase in the number of
CBs following overexpression of WT untagged coilin alongside
co-expression of GFP-tagged CB components such as SMN
(Fig. 3e-f). This phenotype is not observed in cells overexpress-
ing coilin-GFP only.102 We believe that tagging of the N- or
C-terminal regions of coilin by GFP potentially inhibits the
enlargement of CBs in these embryonic cells, possibly by dis-
rupting coilin’s self-association ability. These data indicate that
attaching fluorescent tags to either the C- or N-termini of coilin

Figure 3. Cajal bodies are dynamic structures. (a-d) HeLa cells and human breast epithelial cell line MCF10A cultured for 3 d and fixed using 4% paraformaldehyde were
stained with antibodies to detect CBs (CB marker protein coilin, green) and HLBs (histone transcription factor NPAT, far red) and imaged using the Opera 5020 high-con-
tent automated confocal microscopy system (PerkinElmer, Waltham MA). Briefly, nuclear segmentation and automated spot detection was performed using proprietary
PerkinElmer Acapella software. CB-HLB distances were exported and a threshold (4 pixels between spot centers) was applied to quantify CB-HLB associations. N D 2,
approx. Five,000 cells. Associations were normalized on a per-CB and per-cell basis. (e) Maximal intensity projection image of mouse embryonic fibroblasts (MEFs) express-
ing endogenous WT coilin transfected with plasmids containing SMN-GFP. CB size was measured using Zeiss Zen 2 software. (f) Maximal intensity projection images of
MEFs transfected with plasmids containing WT (untagged) mouse coilin plus SMN-GFP, mouse coilin-GFP or fibrillarin-GFP (to co-stain both CBs and nucleoli). CB size was
measured using Zeiss Zen 2 software.
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inhibits full function in ectopic overexpression studies and that
the previously reported size criticality may not be universally
applicable across all mammalian cell types.

Pulling itself together: Oligomerization and Cajal body
assembly

An important dynamic property of NBs is their overall structural
stability, as the CB itself persists for up to 10 hours.47 This is
maintained by the continuous flux of components into and out
of the domain.88 The typical residence time of components
within a CB is in the range of seconds to a few minutes,
although coilin and survival motor neuron (SMN) protein
appear to exchange between the CB and the surrounding nucleo-
plasm at slower rates than other CB components.8,103-105 It has
been established that the assembly and structural maintenance of
NBs is predominantly influenced by several prominent architec-
tural proteins that are able to self-associate to form homo- and
hetero-oligomers.80,87 Many CB proteins have been identified as
structurally essential for CB integrity, but little is known about
the biochemical properties and regulation of each factor. The
majority of our knowledge regarding the proteins essential for
CB assembly regards coilin and SMN, which are the classical CB
marker proteins, as well as a limited number of other proteins.

Coilin is the most well-characterized obligate multivalent
protein factor in the CB assembly process.81 The protein is
densely phosphorylated and contains a self-interaction domain
on its N-terminus. Coilin is capable of forming homo-oligom-
ers through these N-terminal domains that are predicted to be
one of the early events CB assembly and a major stabilization
factor. However, it seems that this self-association is influenced
by strict regulation of phosphorylation events on residues
located on the C-terminus domain. In human primary cells,
which typically lack CBs, coilin is hyperphosphorylated on
C-terminal phosphoserine residues and this is proposed to
reduce its ability to self-interact.102 By contrast, in transformed
cells, which typically have a high number of CBs, coilin is hypo-
phosphorylated at these sites and able to pull the body together.
To date, 18 distinct human coilin phosphorylation residues
have been reported, with several known regulators of their
modification, including the phosphatase PPM1G.106 Cell cycle-
dependent phosphorylation, potentially by the Serine-Threo-
nine kinase VRK1,55,107 has also been linked to structural integ-
rity of the CB. Differential coilin phosphorylation may
mislocalize CBs to the intra-nucleolar space, potentially result-
ing in aberrant snRNP processing.108,109 Furthermore, PRMT5-
dependent symmetrical arginine dimethylation (sDMA) in the
coilin arginine/glycine (RG) box mediates coilin’s association
with SMN.110 Ablation of sDMA modification induces the
physical separation of coilin-positive residual CBs and SMN-
positive foci (Gems).88,111 Interestingly, it has been suggested
that coilin shares many similarities with other organelle form-
ing proteins, including an enrichment of intrinsically disor-
dered domains112 which may be crucial for nucleating the
CB phase transition.113 Also, coilin is predicted to bind DNA
and RNA, which may influence protein oligomerization. In
particular, binding of U1 and U2 snRNA to coilin are reported
to change the protein conformation. This may enhance self-
association, but a defined binding region within coilin has not

been identified114 (although the C-terminal Tudor domain is
predicted to bind nucleic acids115). Thus, many aspects of CB
biology are regulated by coilin oligomerization and post-
translational modifications.

The SMN protein is another major CB component and
forms the oligomeric core of a multiprotein complex that is
involved in the biogenesis of spliceosomal snRNPs.116 SMN
forms stable dimers,117 which in turn self-associate to form tet-
ramers and octamers. Nearly half of the missense mutations
found in Spinal Muscular Atrophy (SMA) (a genetic disorder
in infants whose phenotype includes abnormal CB formation,
caused by deletions or mutations in the SMN1 gene) patients
are located in the C-terminal region of SMN within a highly
conserved oligomerization domain termed the YG box.118

Some SMA patient YG box mutations have been shown to
result in a decrease in the ability of SMN to self-oligomerize
and associate with other interactive partners. As an enriched
protein within the CB, it is predicted that these SMN self-oligo-
merization events help to drive CB nucleation and growth,
resulting in enrichment of spliceosomal snRNPs within the CB.

The function of several other proteins have also been sug-
gested to regulate CB integrity. Depletion of TCAB1/
WRAP53,119 USPL176 or hCINAP120 (among others,121-124

summarized in Table 1) results in CB disassembly and disrup-
tion of CB target processes. Of note, TCAB1/WRAP53 appears
to mediate the formation of functional CBs by bridging 2 large
and mostly independent protein-based complexes that are cen-
tered on multivalent proteins, coilin and SMN, respec-
tively.125,126 However, the functional role of other proteins in
CB formation and maintenance is unclear. These proteins may
regulate coilin and SMN self-association, or another aspect of
CB assembly. Further work is required to categorize these pro-
teins as essential assembly or maintenance factors and describe
their explicit CB-based functions. Finally, full characterization
of other, non-phosphorylation, coilin and SMN post-transla-
tional modifications that are reported to influence CB stability
is required.127,128

Cajal bodies and a cellular game of “Hide-and-go-seek”

A long-unanswered problem within the CB field is why CBs are
present within specific cell types but not others, leading

Table 1. List of selected proteins reported to be required for CB structural mainte-
nance. For simplification, disruption was determined based upon localization of
the universally used CB marker protein coilin (or SMN following coilin depletion).

Protein Cajal body disruption*

AIDA1c Partial
Coilin Partial114

Fam118B Complete
hCINAP Complete
hTGS1 Partial
ICE1 Complete
INTS4 Complete
PHAX Partial
SMN Partial
TCAB1/WRAP53 Complete
TDP-43 Partial
TOE1 Complete
USPL1 Complete
VRK1 Complete
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researchers to hunt for the structure in many cell types and var-
ious physiological or experimental conditions.129 Indeed, for an
evolutionarily-conserved structure it is puzzling to observe CBs
within the brain and fetal tissue, as well as transformed cancer
cells, but few normal primary adult diploid cells. The presence
of CBs in neuronal cells, including terminally differentiated
neurons that are incapable of cell division, is potentially indica-
tive of a lineage-specific factor that positively or negatively reg-
ulates CB component oligomerization, such as neuronal
growth factor (NGF) or fibroblast growth factor (FGF).130,131

Alternatively the appearance of CBs in these cells is part of a
metabolic response. Specifically, the presence of CBs in brain
tissue could be a cellular response to high splicing demands, as
neuronal tissues have among the highest rates of alternative
splicing in humans.132 As previously shown, neuritogenesis
itself is a splicing-intensive process and requires high-levels of
U snRNPs and component recycling.133 Thus, higher levels of
snRNA transcription is required, as well as snRNP turnover
after each round of splicing, resulting in CB formation.

Much of our knowledge to date regarding CB biology has
been acquired using model cell lines, such as the widely used
aneuploid HeLa cervical carcinoma cells (as well as essential
work in model organisms, such as Xenopus,134 Drosophila135

and Zebrafish136). What makes mammalian aneuploid cancer
cells unique compared to diploid controls cells derived from
the same tissue of origin that renders them capable of assem-
bling CBs? A particularly appealing idea is that CBs form in
response to specific metabolic and processing demands. Like
neuronal cells, cancers exhibit high levels of alternative splic-
ing.137 Interestingly, activation of Ras, a known oncogene, is
associated with differential regulation of Serine-Arginine (SR)-
proteins, which are essential splicing factors.138 The CB has
been suggested as important for leukemogenesis through its
association with elongation factor for RNA polymerase II
(ELL), a component of the little elongation complex.139 This
hypothesis, in which CB formation correlates with splicing
demand, is consistent with recent studies in which specific
splicing events76 and genome-wide splicing fidelity20 were dis-
rupted following CB disassembly. More studies are required to
define the extent to which the CB is important during onco-
genic transformation.

Finally, it has been reported that CBs are able to form in
human primary diploid cells that previously lacked them fol-
lowing inhibition of U4.U6/U5 tri-snRNP assembly by SART3
siRNA knockdown, which is a U4/U6 di-snRNP recycling fac-
tor.140 These CBs may form as a stress response to incomplete
snRNP assembly and insufficient spliceosome formation as
they were enriched with snRNP assembly intermediate struc-
tures. It would be interesting to know if these intermediate CBs
primarily form at sites of histone gene and spliceosomal snRNA
gene transcription or if these CBs nucleate at other, still
uncharacterized, specific genomic locations. This would pro-
vide revealing information regarding any potential heterogene-
ity in CB assembly sites. Thus, the formation of the CB can be
presumed to be linked to supporting proper spliceosome for-
mation during stress. These primary data and studies suggest
that CB formation is a metabolic response to increased and
essential splicing demands, including oncogenesis, which

requires the potentially more efficient spliceosomal snRNP
biogenesis pathway provided by the CB.

What can we learn from other Nuclear bodies and
in vitro studies?

Many studies have also been published that have characterized
the formation of other NBs using various cell models and tech-
nical approaches, which may assist researchers to better under-
stand the dynamics of CB assembly. Of interest is the potential
identification of an essential structural long non-coding RNA
(lncRNA). Indeed, an important determinant of splicing
speckle141 and paraspeckle142 formation is the presence of a
seeding lncRNA that regulates body formation.143 However, to
date, no lncRNA has been successfully identified that is struc-
turally important for CB assembly. This indicates that CBs do
not require a stabilizing lncRNA, the RNA component of
snRNPs is sufficient to fulfil this role or that a lncRNA remains
to be identified. This is similar to nucleolar assembly, which is
dependent upon ribosomal rDNA transcription by RNA
polymerase I.144 A recent coilin interactome study did not sug-
gest any candidate lncRNAs for this role, suggesting that the
former scenario is more likely to be true.62 For the nucleolus
and the CB, it can be assumed that the high local expression of
highly structured RNAs (the ribosomal rRNAs and snRNAs,
respectively) may compensate for the lack of a singular struc-
tural lncRNA.

Recent phase separation studies have greatly improved our
understanding of NB assembly and structural organization.
Several groups have shown that multivalent proteins enriched
with highly disordered domains are capable of forming liquid
droplets in vitro that display many characteristic features of
NBs, including fusion and fission events.86,87,90,91,145 It has also
been suggested that separation of nucleoli, paraspeckles146 and
Nuage bodies formed by DEAD-box helicase 4 (Ddx4)
protein86,147 is driven by these disordered domains-containing
proteins. Coilin and its homologs are highly disordered but
Arabidopsis thaliana-derived coilin is stabilized upon snRNA
binding leading to multimerization in vitro,114 which can be
assumed to contribute to CB nucleation. Intriguingly, it is pro-
posed that the nucleolus and droplets in vitro produced using
nucleolar proteins may consist of multiple, immiscible phases
that are separated by different surface tensions.147 This is also
true of Tat-activating regulatory DNA-binding protein-43
(TDP-43) nuclear foci, which display NB characteristics in vivo
and possess nucleoplasm-rich inclusions.148 This may result in
a molecular production-line by coupling transcription with
spatially segregated downstream RNA and RNP processing
steps. Similarly, multiple coexisting but mutually-exclusive coi-
lin-rich and SMN-rich phases within the CB have been identi-
fied by super resolution microscopy (although the HLB does
not display a similar internal structure).140,149 At what point
during CB assembly these multiple coexisting phases arise and
whether they influence nucleation is unclear. However, these
data indicate that intra-NB biochemistry may be more discrete
than previously believed and NB sub-structure is compartmen-
talized to efficiently catalyze multiple parallel molecular
processes.
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A similar but distinct biophysical property of NBs is
increased macromolecular crowding compared to the sur-
rounding nucleoplasm. This phenomenon arises following the
accumulation of large macromolecules in limited spaces and is
an underappreciated contributing factor to biochemical and
assembly reactions.150 This leads to the exclusion of water
thereby lowering entropy and energetic barriers within the NB.
Crowded environments display enhanced reaction rates, slower
diffusion and better protein/RNA folding compared to non-
crowded volumes.92,151-153 In total, these effects may explain
the proposed acceleration of molecular processes conferred by
NBs, including transcription and RNA processing, as well as
the early stages of coilin and SMN oligomerization.154 Indeed,
crowding effects within picoliter droplets containing DNA and
polymerases in vitro enhances the retention of transcriptional
machinery and enhanced RNA synthesis at transcription
sites.155 This may be an important contributing factor to the
early stages of CB nucleation by enhancing snRNA gene
transcription.

These studies indicate that the crowded environment within
NBs is necessary for various specific molecular processes and
this coordination may be more highly optimized than previ-
ously believed. However, considering the number of NBs and
the range of biological functions that they are linked to, infer-
ences from studies that do not directly examine CB function
must be treated with caution. Regardless, they provide note-
worthy suggestions for future investigations into the biology of
CB assembly and structural maintenance.

Conclusions

The CB is found in a limited number of cells and tissues but
appears to play an important role in boosting and supporting
high spliceosome turnover when present. We propose that
assembly of this specialized nuclear microenvironment that
improves cellular efficiency is a dynamic response to defined
genomic and cellular cues (Fig. 4). Upon transcription of target
gene loci and arrays, such as RNU1 and HIST1, coilin and other
resident CB architectural proteins undergo numerous post-
translational modifications. This initiates the formation of a

stabilized and phase-separated macromolecular hub that
attracts additional target gene loci to form specific clusters in
both cis- and trans-chromosomal configurations. Protein and
RNA factors become enriched in the crowded CB environment,
which theoretically expedites spliceosomal snRNP production.
CB formation also appears to correlate with the level of mRNA
processing in a cell and lineage-specific factors. However, it is
imperative that the relationship between phase separation,
snRNP processing and gene association is fully elucidated. In
particular, uncovering the mechanisms that define 3D genome
reorganization following CB assembly and their biological sig-
nificance is essential. Together, these data will improve our
understanding of the functional benefit of CB-dependent
snRNP biogenesis compared to that which occurs in the nucle-
oplasm of CB-deficient cells.
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