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ABSTRACT
Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like
nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs
(snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the
snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are
pseudouridylation and 20-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively.
This review details the modifications, their function, the mechanism of modification, and the machineries
involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates.
Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed
out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of
noncoding RNAs.
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Introduction

Although many functions have been ascribed to Cajal bodies
(CBs), perhaps the best-established function is that as sites of
modification of spliceosomal small nuclear RNAs (snRNAs).
Whereas other potential functions are covered in other sections
of this Special Focus on CBs, this review will concentrate on
the role of CBs in the modification of noncoding RNAs. Other
aspects of CBs are covered in other sections.

Over the past few years, RNA modification has garnered
some limelight mainly due to technical improvements of
detection of the modifications enabling genome-wide
approaches. For example, the identification of enzymes that
remove N6-methyladenosines from mRNAs showed the mod-
ification to be reversible and led to the development of meth-
ods identifying this modification genome-wide.18,30,63 This
precipitated exciting findings on the function and mechanism
of this most abundant internal modification of mRNA.49 In
turn, this bounty of information stimulated interest in devel-
oping techniques for identification of other modifications that
were long known in abundant noncoding RNAs, but techni-
cally inaccessible in mRNA. Thus, 4 independent studies
identified pseudouridines in yeast and mammalian mRNAs
showing that this modification is much more widespread than
previously appreciated.8,48,51,74 Despite the considerable
interest and potential impact of these findings in mRNAs,47

pseudouridines (and 20-O-methyl groups) in noncoding
RNAs far outnumber those in mRNAs for 2 reasons: first,
ribosomal RNAs (rRNAs), snRNAs, and small nucleolar
RNAs (snoRNAs) are orders of magnitude more abundant
than mRNAs and, second, they each carry multiple modifica-
tions. It is perhaps for this reason that the sites of modifica-
tion of these RNAs occupy specific organelles in the nucleus,

nucleoli and CBs. Unless specified otherwise, this review
focuses on modification events in mammalian CBs.

Overview

This brief overview is intended to make the subject more
accessible to the uninitiated and serve as reference for the
remainder of the review. Based on common sequence motifs
and secondary structures, snoRNAs form 2 major families,
box H/ACA and box C/D snoRNAs (Fig. 1A).14,39 H/ACA
and C/D RNAs each associate with their own set of the
same 4 core proteins (Fig. 1A) to generate the functional
units, small nucleolar ribonucleoproteins (snoRNPs). As the
names suggest, the most abundant RNAs function in nucle-
oli (snoRNAs) and in CBs (small CB-specific, scaRNAs),
where they guide the modification of rRNAs and snRNAs,
respectively (Fig. 1B). A large, but low-abundant class of H/
ACA RNAs is that of the AluACA RNAs, derived from
intronic Alu elements (Fig. 1A).29 Whereas most snoRNAs
are expressed from introns of mainly housekeeping genes
(Fig. 1B, a), a prominent H/ACA RNA, human telomerase
RNA (hTR), and 5 abundant C/D RNAs (U3, U8, U13,
mgU2-25/61, mgU12-22/U4-8) are expressed from their
own RNA polymerase II promoters (Fig. 1B, b).64,70,80,81,98

These independently expressed snoRNAs traffic through
CBs, where apparently their 50-cap is hypermethylated. The
major modification targets in CBs, the spliceosomal
snRNAs, are also independently expressed (Fig. 1B, c).
However, most snRNAs then embark on an obligate
cytoplasmic journey during which their 50-cap is hyperme-
thylated, their 30-end is trimmed, and they assimilate Sm
proteins for reimport into nuclei and trafficking to CBs
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(Fig. 1B). Armed with this information, we can now delve
into the nuts and bolts of CB function in RNA
modification.

The modifications

Two modifications predominate in snRNAs and have been
associated with CBs, pseudouridylation and 20-O-methylation.
Pseudouridylation is the isomerization of uridine to pseudouri-
dine by breaking the N-glycosidic bond, followed by a 180�

rotation of the base, and the formation of a C–C-glycosidic
bond (Fig. 2A). 20-O-methylation is the methylation of the 20-
hydroxyl group of the ribose moiety of any ribonucleoside
(Fig. 2A). Both modifications change the biophysical properties
of the RNA, even if to a minor degree. Compared to uridine,
pseudouridine stabilizes base stacking, rigidifies the backbone
(through coordination of a water molecule by the additional
amino group of the base), and is more polar.1,4,13 20-O-methyla-
tion changes the hydration shell around the oxygen and pro-
tects the RNA against alkaline hydrolysis.5,23 As a consequence,
modifications fine-tune the function of substrate RNAs.

Spliceosomal snRNAs harbor additional modifications.
Except snRNA U6 and U6atac, all snRNAs possess a trime-
thylguanosine cap structure followed by two 20-O-methylated
residues that are modified during cap formation. One or two
N6-methyladenosines and 2-methylguanosines have also
been identified in snRNAs.58 However, these modifications
do not occur in CBs. For example, cap hypermethylation
occurs during the cytosolic step of U snRNP maturation
(Fig. 1B).61 Surprisingly, the cap methylase Tgs1 is also con-
centrated in CBs, where it may specifically hypermethylate
the cap of independently expressed snoRNAs (Fig. 1B,
b).21,85 Similar to Tgs1, the survival of motor neurons
protein (SMN), which functions in the cytoplasm to assem-
ble Sm rings on snRNAs, also concentrates in CBs despite

snoRNAs being devoid of Sm proteins.50 Obviously, some
aspects of the snRNP lifecycle and CB function remain to be
elucidated.

Guide RNAs

To appreciate the role of CBs in RNA modification, it is impor-
tant to understand the mechanism of modification. Although
pseudouridylation and 20-O-methylation can be catalyzed by
single-protein enzymes, the modification of mammalian
snRNAs appears exclusively accomplished by snoRNPs. Some
of the snoRNPs have distinctive features and names (see
below).32,52,60,91 SnoRNPs each consist of a short, function-
defining guide RNA and 4 core proteins including the pseu-
douridine synthase or the methyltransferase (Fig. 1A). Con-
served sequence motifs characterize the guide RNAs, boxes H
(ANANNA) and ACA in pseudouridylation guides and boxes
C/C’ (RUGAUGA) and D/D’ (CUGA) in methylation guides
(Fig. 2B and C). Base pairing of the guide RNAs with the sub-
strate RNAs determines the nucleotides to be modified (Fig. 2B
and C). Accordingly, each modification site possesses at least
one complementary guide RNA. A large number of guide
RNAs thus mirrors the large number of modification sites.
Presently, some 700 snoRNAs are expressed at significant lev-
els.32 As the name suggests, the most abundant RNAs are local-
ized in nucleoli where they function in the modification of
rRNA, which contains about 100 of each modification that are
all guided by snoRNAs.56

Guide RNPs

Each snoRNA is stabilized by 4 core proteins, box C/D RNAs
by Nop56, Nop58, 15.5K, and the methylase fibrillarin and box
H/ACA RNAs by NHP2, NOP10, GAR1, and the pseudouri-
dine synthase NAP57, also known as dyskerin and Cbf5.52,60,87

Figure 1. SnoRNAs and life cycle. (A) List of small nucleolar RNAs (snoRNAs) and ribonucleoprotein (RNP) core proteins. Abbreviations: small Cajal body (CB)-specific (sca)
and human telomerase RNA (hTR). (B) Schematic of snoRNA mode of expression, trafficking, and sites of action and that of its main target in CBs, spliceosomal small
nuclear RNAs (snRNAs). See text for full explanation. Pseudouridylation and 20-O-methylation modifications are indicated (asterisks). Note proteins were left off for
simplicity and clarity.
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Each RNP contains 2 sets of the core proteins, one for each
kink-turn motif formed by boxes C/D and C’/D’ and one for
each hairpin of H/ACA RNAs. Although most individual snoR-
NAs are low-abundant and consequently difficult to detect in
cells, collectively, they are readily identified through their core
proteins by indirect immunofluorescence. In fact, the 2
enzymes of the RNPs, fibrillarin and NAP57, were among the
first proteins identified in CBs, colocalizing with the CB marker
coilin.2,62,69

Substrate RNAs

The identification of coilin afforded the immunolocalization in
CBs of trimethylguanosine capped RNAs, Sm proteins, and the
U1 snRNP.68,76 These RNAs corresponded to the spliceosomal
snRNAs U1, U2, U4, and U5 whose concentration in nuclear
foci was visualized around the same time by RNA fluorescent
in situ hybridization (FISH).10 After a cytoplasmic maturation

phase – where they acquire a heptameric ring of Sm proteins,
their cap is hypermethylated, and their 30-end is trimmed –
mammalian snRNAs reenter the nucleus and shuttle to CBs,
possibly with the help of the cap hypermethylase Tgs1 and the
Sm assembly protein SMN.61,66,79,84,86 In addition to snRNAs,
the snoRNAs U3 and U8 target to CBs.42,43,44,65,73 All these
noncoding RNAs are subject to pseudouridylation and 20-O-
methylation. Spliceosomal snRNAs collectively contain 28
pseudouridines and 18 20-O-methyl groups (Table 1).33,58,93 At
least in the case of U2 snRNA, which contains 13 pseudouri-
dines alone, the modifications are essential for snRNP forma-
tion and splicing.92 Further, the perhaps most prominent H/
ACA RNA, human telomerase RNA (hTR), accumulates in
CBs.27,97 The hTR of active telomerase RNPs is pseudouridy-
lated and its modification affects the structure of the RNA and
the function of telomerase.36 Apparently, all snoRNA substrates
are independently expressed and it remains to be determined if
intronic snoRNAs are also modified.

Small CB-Specific RNAs – scaRNAs

The guide RNAs responsible for snRNA modification are special-
ized snoRNAs in CBs, the small CB-specific RNAs (scaRNAs).
Although they possess all the features of common box H/ACA and
C/D RNAs, they harbor additional short sequence motifs that are
responsible for CB localization, in case of H/ACA RNAs, it is the
CAB box (ugAG) and in that of C/D RNAs, it is the G�U/U�G
wobble stem (Fig. 2B and C).57,71 The CAB box is recognized by
theWD40 repeat proteinWdr79 (akaWrap53 and TCAB1) that is
required for localization of scaRNPs to CBs.82,83 Although C/D
scaRNAs lack a CAB box, Wdr79 is also involved in their targeting
to CBs even if it recognizes these scaRNAs with a G�U/U�G wob-
ble stem about 20-fold less than H/ACA scaRNAs with a CAB
box.82

In addition to these sequence motifs required for CB locali-
zation, some scaRNAs show remarkable features not seen in
other snoRNAs. They can occur as tandem snoRNAs with 4
potential guide sequences instead of 2 and they can form hybrid
snoRNAs, wherein an H/ACA RNA with a CAB box is inserted
into the loop of a C/D snoRNA giving rise to 2 potential pseu-
douridylation pockets and 2 methyl guide sequences
(Table 2).11,26,38 Currently 29 scaRNAs have been described, 17
H/ACA, 2 C/D, 1 tandem H/ACA, 4 tandem C/D, and 5 hybrid
C/D-H/ACA scaRNAs (Table 2).32 Additionally, hTR, which
carries a CAB box and ends in an H/ACA domain, is a scaRNA
running up the current number of scaRNAs to 30.27,64 If we
consider the expression levels of the scaRNAs reported in the
ENCODE sRNA-seq data,32 then the H/ACA motifs outnum-
ber the C/D motifs over 20-fold. Consequently, box H/ACA
core proteins should outnumber box C/D core proteins more
than 20-fold in CBs because scaRNAs concentrate in CBs and

Figure 2. Modifications and scaRNAs. (A) Schematic of pseudouridylation (red) and
20-O-methylation (green). Note although indicated on the same nucleoside, these
are independent modification reactions. (B) H/ACA scaRNA with CB localizing ele-
ments (CAB) and a substrate RNA in one of the 2 pseudouridylation pockets. Note
CAB boxes and guide elements can reside in one or the other hairpin or both. (C)
C/D scaRNA with a CB localizing G�U/U�G wobble stem (G�U) and 2 substrate
RNAs. Note the fifth nucleotide of the substrate from boxes D and/or D0 is targeted
for 20-O-methylation (CH3).

Table 1. Number of human internal snRNA modifications.

snRNA U1 U2 U4 U5 U6 U4atac U6atac U12 Total

Pseudouridines� 2 13 3 3 3 1 1 2 28
20-O-methyl groups� 1 7 2 2 5 1 18

�Numbers are from.33,58,93
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the snoRNP core proteins assemble proportionately around
each motif. Indeed, relative to nucleoli, the indirect immunoflu-
orescence signal for NAP57 is higher in CBs, whereas that for
fibrillarin is consistently lower than in nucleoli.62,69 However, it
should be noted that some of the scaRNAs have reported tar-
gets in both, CBs and nucleoli (Table 2). Although, the targets
need to be experimentally verified, these scaRNAs are therefore
likely residents of both nuclear bodies. Thus it seems that even
in the case of scaRNAs, there is no absolute separation between
nuclear organelles.

Where substrate and guide RNAs meet – A function for CBs

Given the congregation of modification machinery and sub-
strate RNAs in CBs, it was a small step to predict that CBs are
the sites of snRNA modification – guilty by association. Dem-
onstration of this theory however was not straightforward. The
elegant work of the Kiss group pointed the way.28 First, they
showed that a mutant U2 snRNA that is unable to reenter the
nucleus indeed failed to be modified. Only when targeted to
CBs, but not to nucleoli, was U5 snRNA modified documenting
that CBs are the sites of snRNA modification. For other poten-
tial functions of CBs, such as RNP assembly, the reader is
referred to other reviews of this Special Focus issue. Modifica-
tion of snRNAs, however, can also occur in the absence of CBs,
i.e. in coilin knockout cells, which are left with 2 types of rem-
nants of CBs, one that accumulates the scaRNAs and snRNAs
and one that accumulates independently transcribed snoRNAs
and the snoRNP chaperone Nopp140, hinting at a separation
of snRNA and snoRNA modification.28,79 That CB structures

per se are not required for snRNA modification is further sup-
ported by data from fly, which, when lacking CBs and Wdr79
still contain fully modified snRNAs.15,16 Moreover, snRNA
modification can occur in the absence of SMN.17 Finally, even
mammalian cells often do not contain visible CBs, yet their
pre-mRNA splicing seems unperturbed.76 Obviously, snRNAs
and scaRNPs can get together without the environs of CBs.

On the other hand, the number and size of CBs correlates
positively with the metabolic rate of the cell including tran-
scription and with it pre-mRNA splicing and snRNA synthesis
and modification.40,45,75,77 Altogether, these findings support a
model whereby, through concentration of snRNAs and
scaRNPs, CBs promote snRNA modification, which can also
occur outside of these bodies even if at lesser efficiency.

Alternative methods of modification and consequences

Although snRNA modification in mammalian cells appears
exclusively catalyzed by scaRNPs, in yeast there are 2 mecha-
nisms, an RNA-guided and an RNA-independent, i.e., protein-
only, mechanism.53,54 Whether the latter exists in mammalian
cells is not clear, though a recombinant Pus7 homolog is capa-
ble of pseudouridylating the uridine in position 34 of human
U2 snRNA and a redundant modification mechanism was indi-
cated.33,96 Alternatively, the absence of a true CB (and with it
scaRNAs) in yeast could account for the difference. It will be
interesting to determine if mammalian snRNA modification
can be induced at novel sites as demonstrated for yeast snRNAs
and if such modification would also occur in CBs.89 These are
important questions, as modification of snRNAs can have

Table 2. List of scaRNAs.

Name Alt. Name ID Type Target 1 Target 2 Target 3 Target 4

SCARNA7 U90 snoID_0598 CD-SCARNA 5.8S-76 U1.1-70
SCARNA28 snoID_0620 CD-SCARNA U2.2-47 NA
SCARNA1 ACA35 snoID_0603 HACA-SCARNA NA 18S-1441
SCARNA3 HBI-100 snoID_0596 HACA-SCARNA NA U6.6-40
SCARNA4 ACA26 snoID_0595 HACA-SCARNA U2.3-41 U2.3-39
SCARNA8 U92 snoID_0601 HACA-SCARNA U2.3-34 U2.3-44
SCARNA11 ACA57 snoID_0610 HACA-SCARNA NA U5.3-41
SCARNA14 U100 snoID_0612 HACA-SCARNA NA U1.1-72
SCARNA15 ACA45 snoID_0604 HACA-SCARNA NA U2.3-39
SCARNA16 ACA47 snoID_0602 HACA-SCARNA NA U1.4-5
SCARNA18 U109 snoID_0609 HACA-SCARNA NA U1.4-6
SCARNA18B snoID_0707 HACA-SCARNA NA U1.4-6
SCARNA19 hTR/TERC snoID_1118 HACA-SCARNA telomeres
SCARNA20 ACA66 snoID_0592 HACA-SCARNA NA U12.1-27
SCARNA21B snoID_0577 HACA-SCARNA U12.1-18 28S-4426
SCARNA22 ACA11 snoID_0611 HACA-SCARNA NA NA
SCARNA23 ACA12 snoID_0594 HACA-SCARNA NA U6.6-40
SCARNA26A snoID_0618 HACA-SCARNA U4.2-79 NA
SCARNA26B snoID_0625 HACA-SCARNA U4.1-79 NA
SCARNA27 snoID_0614 HACA-SCARNA NA NA
SCARNA5 U87 snoID_0597 Hybrid U5.1-39 18S-595 18S-1530 U4.1-65
SCARNA6 U88 snoID_0613 Hybrid U5.1-39 18S-1628 28S-2861 28S-1530
SCARNA10 U85 snoID_0608 Hybrid 18S-283 U5.1-44 1818S-101 U5.1-43
SCARNA12 U89 snoID_0607 Hybrid NA 18S-917 18S-556 18S-464
SCARNA21 ACA68 snoID_0599 Hybrid U12.1-17 U12.1-18 U6atac-83 28S-4426
SCARNA2 HBII-382 snoID_0593 Tandem-CD U2.1-25 NA 18S-1363 28S-1963
SCARNA9 mgU2-19/30 snoID_0605 Tandem-CD U2.1-19 NA NA U2.1-30
SCARNA9L snoID_0600 Tandem-CD U2.1-19 NA NA U2.1-30
SCARNA17 U91 snoID_0591 Tandem-CD U12-21 NA U4.1-8 U2.1-43
SCARNA13 U93 snoID_0606 Tandem-HACA NA U7-7 U5.1-51 U2.3-54

Data from32 except the alternative (alt.) names.46

The predicted targets refer to the snRNAs and rRNAs followed by target nucleotide position.
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serious consequences. Thus, modification is generally required
for snRNP assembly and pre-mRNA splicing.92 And specifi-
cally, pseudouridines in U2 snRNA stimulate the ATPase activ-
ity of Prp5 during spliceosome assembly and a pseudouridine
in U6 snRNA is part of the filamentous growth program in
yeast.7,88 In mRNA, pseudouridines can turn nonsense codons
into sense codons diversifying the cellular proteome?34

Open questions

Though the function of CBs as sites of snRNA modification is
firmly established, many questions and puzzles remain. For
example, are all snRNAs modified in CBs, what about U6,
which lacks a trimethylguanosine cap, does not transit through
the cytoplasm, and which was proposed to be modified in the
nucleolus?20,94

Regardless, the pseudouridylation of at least one of its uri-
dines is catalyzed by a scaRNP – scaRNA23 guides the pseu-
douridylation at position 40 of U6 snRNA.37

What about snoRNAs, do all traffic through CBs? Unlike most
other snoRNAs, U3 and U8 are highly abundant and thus could be
isolated and their modification directly demonstrated,35,70 but no
guide RNAs have been identified so far.32,46 Whether other, less
abundant snoRNAs aremodified is unknown. After transfection or
microinjection, U3, U8, and U14 snoRNAs indeed traffic to or
through CBs, but, except for U3 snoRNA,31,67 endogenous mole-
cules have so far escaped detection in CBs.9,10,65,66,73 In contrast,
the endogenous scaRNAsU85, U88, U91, and U92 have been visu-
alized in CBs.11

Regardless, the identification of most snoRNAs among
RNAs UV-crosslinked to coilin would suggest that most
snoRNAs, if not all, traffic through CBs.55 Indeed, after
microinjection some of these snoRNAs are detected in CBs
before accumulating in nucleoli, their place of action. Nev-
ertheless, whereas coilin is highly concentrated in CBs,
some 70% of it is present in the nucleoplasm, even if much
more dilute.3,9,41,59 Therefore, it cannot be excluded that
some of the snoRNA associations with coilin occur outside
CBs. If CBs play a role in the biogenesis of all snoRNPs,
then why are none of the snoRNP maturation factors,
except Nopp140, present in CBs?12,22,24 Importantly, assem-
bly of most core proteins, at least in the case of H/ACA
RNPs, does not occur in CBs but at the site of snoRNA
transcription.6,12,19,72,90 Finally, it is unclear how all the
snoRNPs involved in rRNA modification find their way
into CBs without specific localizing motifs.

To what degree are snRNAs modified? The simple fact that
snRNA modifications were recognized early on suggests that
most of the snRNAs are fully modified at individual sites.
Indeed, this has been verified for the case of yeast rRNA using
a quantitative mass spectrometric approach showing that some
84% of the 112 modified nucleotides are nearly fully modified.78

This is in stark contrast to genome-wide RNAseq based
approaches that identified much lower levels of, e.g., pseudouri-
dylation.95 Thus, it can be safely assumed that most modifica-
tion positions in snRNAs are modified to a high degree.

Furthermore, there is the conundrum of how the different
types of RNAs find their way into CBs. While there seems to be
a role for Tgs1 and SMN in targeting of snRNAs and for

PHAX in targeting of snoRNA substrates to CBs,84 how the
remainder of the snoRNPs find their way into CBs remains
unclear. In contrast, accumulation of scaRNAs clearly depends
on their CAB box that is recognized by Wdr79, but CAB boxes
are also present in the over 300 AluACA RNAs that are present
in the nucleoplasm but not CBs.29 Therefore, although neces-
sary, Wdr79 may not be sufficient for targeting of scaRNAs but
require additional factors, perhaps such as the nucleolar and
CB protein Nopp140.25 Obviously, these are only some of the
questions that remain to be clarified, leaving plenty of CB mod-
ification work ahead.
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