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Abstract

We performed orthogonal technology comparisons of concurrent peripheral blood and biopsy
tissue samples from 69 kidney transplant recipients, who underwent a comprehensive algorithm-
driven clinical phenotyping. The sample cohort included patients with normal protocol biopsies
and stable transplant function (TX, n=25), subclinical acute rejection (subAR, n=23), and clinical
acute rejection (CAR, n=21). Comparisons between microarray and RNA sequencing (RNA-seq)
signatures were performed, demonstrating a strong correlation between the blood and tissue
compartments for both technology platforms. A number of shared differentially expressed genes
and pathways between subAR and cAR in both platforms strongly suggest that these two clinical
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phenotypes form a continuum of alloimmune activation. SUbAR is associated with fewer or less
expressed genes than cAR in blood, whereas in biopsy tissues, this clinical phenotype
demonstrates a more robust molecular signature for both platforms. The discovery work done in
this study confirms a clear ability to detect gene expression profiles for TX, subAR and cAR in
both blood and biopsy tissue, yielding equivalent predictive performance, that is agnostic to either
technology or platform. Our data also provide strong biologic insights into the molecular
mechanisms underlying these signatures, underscoring their logistical potential as molecular
diagnostics to improve clinical outcomes following kidney transplantation.

Introduction

The survival benefits of solid organ transplants in the United States are well documented (1),
but little impact on long-term Kidney graft survival despite significant improvements in
short-term outcomes (2—4). In the OPTN/SRTR 2013 Annual Data Report, kidney graft
failure rates for deceased donor transplants were 2.7% at 6 months, 3.5% at 1 year for
transplants in 2012-2013, 11.8% at 3 years for transplants in 2010-2011, 23.8% at 5 years
for transplants in 2008-2009, and 49.4% at 10 years for transplants in 2002—-2003 (5).
Moreover, after the first year, the accumulation of late acute rejection episodes doubles the
total incidence from 11-15% to 25% by 5 years (5).

There is a pressing clinical need for more sensitive and specific objective surrogate markers
to predict allo-immune graft injury to potentially inform management and improve outcomes
(6, 7). Serum creatinine is an insensitive and nonspecific marker of allo-immune kidney
injury (8). While over-immunosuppression increases multiple drug-related risks (9), under-
immunosuppression increases risks of clinical acute rejection (CAR), potentially actionable
subclinical acute rejection (subAR) defined by histologically-determined acute rejection in
the absence of renal dysfunction, and ultimately chronic rejection (CR), the leading
immunological cause of long term graft loss (10-12). A molecular signature to detect SubAR
would substantially improve our ability to monitor patients following transplantation, to
intervene early at a stage of immune-mediated rejection with minimal tissue injury also
monitoring response to this intervention, potentially reducing the development of interstitial
fibrosis and tubular atrophy (IFTA). The development of IFTA leads to lower GFR (13) and
graft failure (14). IFTA can develop surprisingly early post-transplant with approximately
15% incidence at three months to 30% at one year and 40% at two years (15-18). Studies
revealed that treatment of SubAR was beneficial and led to improved short (12) and long-
term renal function (19), although no randomized clinical trial has tested this premise,
primarily because molecular tests that can detect SubAR are only now emerging. Consistent
with our view of the importance of maintaining effective immunosuppression we recently
mapped gene expression signatures from histologically and clinically phenotyped kidney
biopsies (20). Biopsies of cAR and CR shared > 85% of known immune/inflammatory
pathways validated in the literature for cell-mediated rejection revealing an arc of immune-
mediated transplant injury. In parallel, subAR, found only by doing protocol biopsies is
associated with the development of chronic injury/IFTA and worse graft function and
survival (3, 10, 13, 16-18, 21-26).
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We have previously demonstrated, using microarray analyses, that peripheral blood whole
genome expression profiling in kidney transplant recipients can accurately distinguish
patients with stable function and normal histology (TX), clinical and histologic cAR, and
acute dysfunction with no rejection (ADNR) (27). Affymetrix DNA microarrays represent
an established, FDA-approved diagnostic testing technology. Costs for DNA microarrays
have dropped significantly over the past decade and with improved workflows and analytical
tools are now comparable to other methods used routinely in commercial diagnostic
laboratories. In parallel, rapid advances in next generation sequencing (NGS) technologies
provide a cost-effective high throughput RNA sequencing (RNA-seq) approach and a clear
potential to enable even lower cost gene expression profiling and faster workflows than can
be obtained today with DNA microarrays (28, 29). Two of the most widely used NGS
platforms; lllumina and lonTorrent have FDA-approved clinical diagnostic workflows.

As molecular technology platforms rapidly evolve, concerns have been raised that the ability
to detect diagnostic and predictive gene signatures, discovered and validated on one
technology or platform may not necessarily carry over to others. This concern is particularly
relevant as molecular biomarkers begin their journey towards becoming commercial,
especially given differences between technologies in logistics such as cost, turnaround time,
point of service, and the use of commercially available kits. There is a paucity of technical
studies comparing DNA microarray and RNASeq technologies, and even fewer studies
comparing their relative capabilities as diagnostic tools. Technical studies comparing gene
expression detection by microarrays and NGS technologies have shown good correlations
(30-33). A recent study showed that microarray-based models and RNA-seq performed
similarly in clinical endpoint prediction in ~ 500 biopsies of primary human neuroblastomas
(34). To our knowledge, there are no studies comparing these orthogonal technologies in
biopsy-documented, precisely phenotyped kidney transplant recipients.

We hypothesized that the ability to detect molecular signatures of cAR and subAR in both
peripheral blood and biopsy tissue would be agnostic to the technology platform used to
assess gene expression. To test this hypothesis, we profiled peripheral blood and biopsy
tissue derived from 69 precisely phenotyped kidney transplant recipients (TX=25,
subAR=23, cAR=21) selected from Northwestern University’s Comprehensive Transplant
Center’s Biorepository. After removing technical outliers (GAPDH ratios >4 for microarrays
and RNA-seq samples with total reads < 1 million), gene expression profiles were obtained
by Affymetrix DNA microarray (peripheral blood n=69, biopsies n=65; total n=134). In
parallel, RNA-seq was done on the biopsies of the same patient cohort using the lon Torrent
Proton sequencing platform (n=65) and the matching peripheral blood on the Illumina
NextSeq platform (n=45). Thus, a total of 244 global gene expression profiles were obtained
on three different commercial platforms and their approved workflows. Our data support the
ability to detect signatures of TX, subAR and cAR in both blood and tissue compartments,
yielding equivalent predictive performance, agnostic to the technology or platform used.
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Materials and Methods

Patients and Samples

The Northwestern University Comprehensive Transplant Center houses a large repository of
samples (NU biorepository) from transplant recipients. Kidney transplant recipients at NU
undergo surveillance biopsies at 3, 12 and 24 months post-transplantation or for-cause
biopsies in response to renal dysfunction. All patients who undergo biopsies are approached
to provide informed consent (NU IRB #STU00025946) to enroll in our biorepository. In
addition to blood samples (2.5ml PAXgene tube), a biopsy core was obtained and stored in
RNAIlater (Thermo Fisher, Waltham, MA). Biopsy slides were read by local pathologists,
and also by a central pathologist in a blinded fashion using Banff 2007 criteria (35), and all
pathology slides are digitally archived (Aperio Digital Scanner, Buffalo Grove, IL). The
repository has the stored clinical and laboratory data for all patients. All samples for gene
expression were derived from recipients who had clinical and laboratory data available, as
well as a histologic assessment of their biopsies. All patients who participated in this study
were >18 years of age, and recipients of a primary or subsequent kidney transplant alone.
Recipients of multi-organ or prior non-renal transplants and patients with HIV were
excluded. Standard immunosuppression at Northwestern consists of alemtuzumab induction
with tacrolimus and mycophenolate maintenance (prednisone-free).

Definitions and algorithm used for precision clinical phenotyping of study subjects

Stable renal function. serum creatinine <2.3 mg/dL and <20% variability in the last 3
measurements. Acute renal dysfunction.: >20% increase in serum creatinine compared to the
previous 3 measurements. Normal histology. no rejection (no T-cell mediated or antibody
mediated rejection of borderline or higher) or other abnormal histology (Banff fibrosis score
ci=0 or 1 and ct=0 or 1, and both i and t scores =0) on a surveillance biopsy from a patient
with stable renal function. Central reads were used for the clinical phenotyping algorithm.
TX (n=25). 1) surveillance biopsy, 2) stable renal function, and 3) normal histology; sSubAR
(n=23): 1) surveillance biopsy, 2) stable renal function, and 3) histology showing rejection
(16 borderline and 7 Banff grade 1A); cAR (n=21). 1) for-cause biopsy prompted by 2)
acute renal dysfunction, and 3) histology showing acute rejection (7 borderline, 6 Banff 1A,
6 1B, 1 2A, 1 2B - 5/21 (23%) has positive C4d staining). All clinical phenotypes were
reviewed and blinded by JJF and MMA prior to submitting samples for molecular studies.

Gene expression profiling and statistical analysis

RNA was extracted using the PAXgene Blood RNA system (Qiagen, Valencia, CA) and
Ambion GLOBINCclear (Life Technologies, Carlsbad, CA). Regardless of technology used,
total RNA from biopsies was extracted using the AllPrep DNA\RNA|Protein extraction kits
(Qiagen). Ribosomal clearance was performed on all samples with the GeneRead rRNA
Depletion Kit (Qiagen).

DNA Microarrays—Affymetrix Human Genome U133 Plus 2.0 GeneChips (plate format)
were used for gene expression in blood and biopsies. Biotinylated cRNA was prepared with
Ambion MessageAmp Biotin 11 kit (Ambion) and all samples run on the Affymetrix
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GeneTitan MC instrument. The primary transcript detection method is hybridization and
detection of fluorescently labeled cRNA to custom 23mer DNA probes.

lon Torrent Sequencing—RNA-seq of biopsies was done using the lon Torrent Proton 11
(Thermo Fisher). Briefly, 50ng RNA was used to generate sequencing libraries. RNA
concentration was assessed using the Qubit RNA BR Assay kit (Bio-Rad, Hercules, CA).
Sequencing libraries were generated using the lon AmpliSeq™ Transcriptome Human Gene
Expression Kit (Thermo Fisher), and barcoded using lon Express barcodes. cDNA library
quality was assessed using the Agilent® 2200 TapeStation System and the High Sensitivity
D1000 ScreenTape System (Agilent Technologies, Santa Clara, CA). Templates were run on
the lon PI™ v3 chips using the lon Chef system and Hi-Q™ Chef kits. Sequencing depth
per sample was 12 million genome-aligned reads. The primary transcript detection strategy
depends on using lon Torrents custom designed primers targeting multiple exons for all
known protein coding genes.

[llumina Sequencing—All blood samples for RNA-seq were profiled using an Illumina
NextSeq instrument (Illumina Inc. San Diego, CA). Total RNA was converted to cDNA
using Ovation RNA-seq kits (NUGEN, San Carlos, CA) and S1 endonuclease digestion
(Promega, Madison, WI) (36). Digested cDNA libraries were end-repaired, A-tailed and
indexed adapter ligated. Ligation product was purified on Agencourt AMPure XP beads
(Beckman Coulter Genomics, Carlsbad, CA) followed by 2% agarose size selection. Purified
product was amplified for 15 PCR cycles and size selection repeated. Libraries were
assessed on an Agilent Bioanalyzer and quantitated by Quant-iT ds DNA BR Assay kits
(Invitrogen) and a Qubit Fluorimeter (Invitrogen). Cluster generation and 100bp single-end
read sequencing was done following manufacturer’s instructions. Sequencing depth per
sample was 15 million genome-aligned reads. The primary transcript detection strategy is
capture of the cDNAs clusters on a plastic surface followed by brief PCR amplification and
incorporation of fluorescently tagged dNTPs guided by transcript sequences. All expression
data have been deposited to the NIH GEO repository.

Statistical methodologies

Microarray signals were normalized with frozen robust multi-array analysis (FRMA)(37).
Predictions were done using the SVM algorithm implemented in R using the caret package
(38). Diagnostic performance was based on retrospective prediction of known clinical
phenotypes. Predictive accuracy was calculated using the formula (TP+TN)/(TP+FP+FN
+TN); (TP-True Positive, TN-True Negative, FP—False Positive, FN-False Negative).
Diagnostic metrics included sensitivity, specificity, and area under the curve (AUC). Clinical
study parameters were tested by multivariate logistic regression with an adjusted (Wald test)
p-value and false discovery rate (FDR) calculation. Results were classified at three levels of
statistical confidence: False discovery rate (FDR) <10%, p value <0.005, and <0.05.
Pathways were mapped using Ingenuity Pathway Analysis (IPA; Qiagen).
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Clinical Phenotypes and other patient characteristics

Peripheral blood and biopsy tissue samples were analyzed for gene expression from 69
kidney transplant recipients enrolled at the time of biopsy into the NU biorepository, who
had undergone algorithm-driven precise clinical phenotyping (TX, n=25; subAR, n=23;
CAR, n=21). The mean age was 49.3 years (range 22-71 years); 35% were female; 52%
were deceased donor recipients. Blood was collected at the time of biopsy in all cases. The
mean number of days post-transplant to the time of biopsy was 288 days (range 8—748) for
SUbAR, 268 days (range 84-2228) for TX, and 921 days (range 15-2876) for cAR. All
clinical characteristics of the study population are given in Table 1. Given various technical
sample issues, the final breakdowns of samples used in this study are in Table S1.

Classifiers and predictive performance

Analyses of two-class (phenotype) comparisons were performed at three levels of statistical
confidence: 1) stringent False Discovery Rate (FDR) <10%, 2) conservative p value <0.005,
and 3) relaxed p value <0.05. Less stringent statistical limits are justified for smaller data
sets for early stage discovery studies such as ours (69 subjects; 244 total gene expression
profiles). Table 2 shows the differentially expressed genes in blood and biopsies comparing
transcript detection by microarrays and RNA-seq. Statistically significant numbers of
differentially expressed genes are observed between cAR vs. TX and subAR vs. cAR in both
blood and biopsies. However, fewer differentially expressed genes were observed for the
SubAR vs. TX in the peripheral blood by either microarrays or RNA-seg. In contrast
significant and equivalent numbers of genes are detected for the SUbAR vs. TX in the
biopsies.

To measure the correlation of differential expression, blood vs. biopsies and microarrays vs.
RNA-seq, M (log ratios) and A (mean/average) (MA) scale plots were created (Figures 1a-
b). Principal Components Analysis (PCA) (Figure 2) shows that the differentially expressed
genes in the biopsies, by virtue of their larger numbers and robust statistical significances,
separate phenotypes more efficiently than blood for both platforms.

Next the performance of optimal classifiers based on the differentially expressed genes to
predict the precision phenotypes was tested. Classifiers were selected using a preselected set
of features (probesets) picked by the SVM algorithm in an unbiased fashion and run using
both cross validation and bootstrapping. A number of methods for are available, but we used
two common methods for internal validation using data-splitting 5-fold: cross validation
(Table 3a), that splits the data into smaller cohorts and the more rigorous bootstrapping
(Table 3b) that leverages the whole dataset. Classifiers were selected using a preselected set
of features (probesets) picked by the SVM algorithm in an unbiased fashion and run using
both cross validation and bootstrapping.

The best microarray classifier sets for peripheral blood using 5-fold cross-validation
predicted cAR vs. TX and subAR vs. TX with AUCs of 0.95, respectively. By the rigorous
bootstrapping the AUCs were 0.96 and 0.82. The best microarray classifier sets for the
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biopsies using 5-fold cross-validation predicted cAR vs. TX and subAR vs. TX with AUCs
1.00 and 0.99 respectively. By bootstrapping the AUCs were 1.00 and 0.95.

The best RNA-seq classifier sets for peripheral blood using 5-fold cross-validation predicted
CAR vs. TX and subAR vs. TX with AUCs 1.00 and 0.96, respectively. By bootstrapping the
AUCs were 1.00 and 0.87. The best RNA-seq classifier sets for the biopsies using 5-fold
cross-validation predicted cAR vs. TX and subAR vs. TX with AUCs of 0.99 and 0.92
respectively and by bootstrapping the AUCs were 0.99 and 0.77.

Thus, this first analysis comparing DNA microarrays to RNA-seq suggests that RNA-seq
may have a slight performance advantage that must be tested with multiple independent
external cohorts as data over-fitting is always possible with internal validation methods.
Receiver Operating Curves (ROCs) using the best performing classifiers for the microarray
classifier sets by bootstrapping are shown in Figure S1 and RNA-seq classifiers in Figure
S2.

Differentially expressed genes present in both the blood and biopsies regardless of
technology platform (shared genes)

The differentially expressed shared genes for blood and biopsies by microarrays and RNA-
seq are shown in Table 4. The cAR vs. TX and subAR vs. TX comparisons were significant
at p <0.05. cAR vs. TX was also significant at a more stringent cut-off of FDR <10%. Even
though genes are shared between blood and biopsy the directionality of change (up or down
regulation in a specific comparison) may not be the same. Thus, the simple observation of a
shared gene in two compartments does not mean their function is biologically the same.
Indeed, half the shared genes showed the opposite fold change direction for all comparisons
suggesting that the blood and the biopsy are truly independent immunological compartments
with distinctly different biological processes (Table 5).

We tested the hypothesis that SUDAR is a state of allo-immune/inflammatory rejection at
which point the amount of tissue injury has not exceeded the threshold to cause clinical
transplant dysfunction (i.e. acute renal dysfunction; decreased eGFR). If this were true, one
prediction would be that SubAR is a milder form of cAR manifesting relatively lower gene
expression levels for genes upregulated in cAR and higher expression of genes
downregulated in cAR.

Therefore, we plotted the subset of shared genes between the cAR vs. TX and the subAR vs.
TX comparisons in both blood and biopsies. As shown in Figures 3a-d, the majority of the
shared cAR vs. TX genes (green dots) that had the same fold-change directionality (up or
down regulated), also had a greater fold change than the same genes in the sSubAR vs. TX.

Pathway mapping of shared and unique genes between blood and biopsies

Pathway mapping of blood vs. biopsy genes was done using IPA. A p<0.05 and >10
molecules that were differentially expressed in each pathway filter was used. We combined
the microarray and RNA-seq data using the following criteria: 1) genes for mapping were
comprised of shared genes; 2) shared genes had the same fold change direction. For the cAR
vs. TX comparison there were 109 shared pathways between blood and biopsy. The top 10
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shared pathways ranked by p-value were Mitochondrial Dysfunction, B Cell Receptor,
Oxidative Phosphorylation, Protein Ubiquitination, NFAT, Tec Kinase, HGF, CD28,
PI3K/AKT and Glucocorticoid Receptor Signaling. In contrast there were only 8 shared
pathways between blood and biopsy for the subAR vs. TX comparison. These were B Cell
Receptor, T Lymphocyte Apoptosis, CD28, CTLA4 in Cytotoxic T Lymphocytes, Leukocyte
Extravasation, Phospholipase C, NFAT Regulation of the Immune Response and T Cell
Receptor Signaling (Table 6).

An overall analysis of the cAR vs. TX and subAR vs TX in both blood and biopsies revealed
6 key shared pathways (CD28 in T Helper Cells, CTLA4 in Cytotoxic T Lymphocytes,
Leukocyte Extravasation, Phospholipase C, NFAT in Regulation of the Immune Response
and T Cell Receptor Signaling). Even though these pathways are shared, there were
molecules that mapped to the same pathways but were not identical. For example, in the
CD28 signaling pathway, the CD28 molecule was only differentially expressed in the blood
but PIK3CA was seen in both tissues (Supplementary Table 2).

Discussion

We performed orthogonal technology comparisons of gene expression from both peripheral
blood and biopsy tissue compartments concurrently obtained from 69 algorithm-driven
clinically phenotyped kidney transplant recipients. We used two high-throughput global gene
expression profiling technologies: microarray analysis using Affymetrix Gene Arrays and
RNA-seq using both the lon Torrent and Illumina platforms.

The results of the study demonstrate: 1) diagnostic performance based on the ability to
retrospectively predict known clinical phenotypes using SVM were equivalent across
technologies and platforms (Affymetrix DNA microarrays, lon Torrent and Illumina RNA-
seq), 2) optimal classifiers selected using the SVM algorithm were different reflecting the
technical differences inherent in the chemistries for detection and quantification of gene
expression across platforms 3) despite significant overlap in the differentially expressed
genes between the blood and biopsies, directionality of these changes differed considerably
between compartments, suggesting that these represent distinct immune compartments, and
4) allo-immune/inflammatory pathway mapping to compare differential gene expression in
blood and biopsies revealed a number of different genes in each of these two compartments,
but these mapped to similar pathways across all technologies. Thus, our ability to detect
signatures for TX, subAR and cAR in both compartments appears to be agnostic to the
technology or platform used, and equivalent predictive performance metrics were obtained.
These data suggest that the ability to develop signatures on one platform should result in a
similar ability to develop an equivalent performing signature on another, in response to
potential logistical and commercial advantages of new and evolving technologies. To our
knowledge, this is the first study to compare orthogonal technologies for molecular
diagnostics using mRNA-based differential gene expression in kidney transplant recipients.

We addressed important and often overlooked aspects of biomarker discovery. To avoid
over-training, we used both 5-fold cross validation as well as a full leave-one-out
bootstrapping methodologies. Of interest, the actual optimal classifiers were different for
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each platform, and therefore workflows will need to be developed for different technology
platforms for introduction into clinical practice. Nonetheless, we show that they each give
equivalent predictive performances on TX, cAR and subAR. Thus, decisions made by
clinical laboratories regarding which commercial test to use will likely be based on issues
other than performance, such as test costs, details of workflow, cost of equipment and its
maintenance, and the choice of data analyses pipelines to report results to a clinician. This
outcome provides a strong comfort level for the use of microarrays or RNA-seq, as well as
that of specific RNA-seq platforms to develop predictive molecular biomarkers to diagnose
and predict rejection.

It also appears that the peripheral blood changes may not be as robust as the changes at the
tissue site of injury. The subAR signature in the peripheral blood appears to signal a milder
form of cAR, consistent with previous data showing similar cellular processes between
SubAR and cAR (44). Our data show a high level of sharing of differentially expressed genes
and pathways between cAR and subAR . SUbAR is represented by fewer and less expressed
genes than cAR in blood. This is further supported by our analysis that 65-70% of subAR
cases are detected by using a signature that was discovered for the diagnosis of cAR in blood
(Affymetrix DNA microarrays - data not shown).

Traditional invasive biopsy-based diagnoses are vulnerable to the challenge of sampling
errors and differences between the interpretations of individual pathologists (39) (40). The
2007 Banff group previously defined and subsequently refined the pathologic criteria for
post-implantation biopsies using the same criteria for implantation biopsies (35).The inter-
observer concordance that measures reproducibility between pathologists showed that graft
correlates such as acute tubular injury, inflammation in non-scarred areas (Banff i score),
and interstitial inflammation had the poorest concordance rates. The Banff working group on
pre-implantation biopsies recently concluded that significant limitations remain (41).
Despite concerns about histology being the ‘gold standard’, as well as the ongoing debate
about the virtues of the local versus central histology reads, we chose to use the central read
for the histology component of our clinical phenotype algorithms. We believe that we we
may be able to demonstrate a better correlation between the molecular phenotype of the
biopsy with long-term outcome compared to either the local or central histology reads. The
pros and cons of the currently used platforms to profile rejection phenotypes and build
predictive models have been very nicely discussed in a review of genomics in understanding
and prediction of Clinical Renal Transplant Injury(42). In this study the slightly better
performance of the RNA-seq classifiers was attributed to low signal-to-noise ratio compared
to microarrays, and a larger dynamic range of expression levels over which transcripts can
be reliably detected as shown in other studies (43, 44). Similarly, the sequencing depth in
this study was lower than the generally agreed consensus of ~ 30—40 million reads (43) that
is suited to detect major splice isoforms which was not our focus. We tested the power of the
detected genes to discriminate the clinical phenotypes and to compare how well the
signatures perform.

We also believe that it is important to map the gene networks to show that our analyses are
not simply statistical but also founded in the biology of rejection and tissue injury. Despite
shared genes, the comparison of the blood and biopsy expression profiles also shows clear
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differences. Our results demonstrate that the tissue injury and damage begins in the graft and
that the blood reveals genes, unique to that compartment, but are nevertheless also informing
the prediction of clinical phenotypes consistent with our previous work and that of others
(20, 27, 45-49).

While classifiers cannot be locked across technologies or platforms, the predictive
performance appears to be equivalent and agnostic to the platform suggesting the ability to
develop signatures across platforms with relatively little technical variation and estimation of
expression levels of RNA transcripts (50), as these become more robust and cost-effective
(31).

This study has some limitations: the sample size was small, and only appropriate for a
discovery study as intended, but we demonstrate with the bootstrapping methodology which
is the closest approximation to real error estimates in a simulation of independent cohorts;
no appreciable deterioration of the predictive metrics for our signatures. While we provided
internal validation through widely accepted data-splitting cross-validation bootstrapping
methods, we did not perform external independent validation of the signatures described.
This was not the intended goal of this study. In fact, these studies are ongoing in the NIH-
funded CTOT study of 300 transplant recipients followed serially for two years. Instead, our
primary objective to assess whether different technology platforms could be used to detect
differential gene expression profiles that signal immune activation in both peripheral blood
and biopsy tissue. We also acknowledge that our population had no cases of pure antibody-
mediated rejection (AMR), although 23% of the cAR biopsy samples showed C4d positive
staining. Also, the majority of patients were Caucasian. However, we have successfully
validated our biopsy molecular phenotypes in a Brazilian cohort of 94 patients of
significantly different racial and ethnic backgrounds (48) suggesting strong unifying
immune mechanisms despite differences in racial, ethnic and genetic backgrounds.

In conclusion, we present a proof-of-concept discovery study that evaluates the predictive
performance and profiling capabilities of two complementary techniques of global gene
expression profiling for discrimination of three post-transplant phenotypes. This is also the
first study to our knowledge of kidney transplant rejection that has performed peripheral
blood and biopsy profiling and compared them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation between the blood findings and the biopsy findings comparing the two analytical

methodologies (microarrays and RNA-seq). The similarity between the technologies was
also reflected in the consistently higher number of differentially expressed genes in the
biopsy compared to the blood. The M (log ratios) and A (average) scale (MA) plots for all
comparisons are shown in Figures 1a for RNAseq (NGS) and b for the microarrays.
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Supervised Principal Components Analysis (PCA) plots for the two tissues and technologies
showing the separation of the phenotypes using the maximum set classifiers.
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)
logFC_ARTX

-2 0
logFC_ARTX logFC_ARTX
Comparison cAR vs. TX SubAR vs. TX Overlap (%)
Microarrays - Blood 2287 720 73 (3.2%", 10.1%")
NGS - Blood 2566 1647 143 (5.6%", 8.7%")
Microarrays - Biopsies 7376 2931 937 (12.7%", 32.0%")
NGS - Biopsies 8922 2565 1188 (13.3%", 46.3%")

* - Overlap compared to cAR vs. TX
A _ Overlap compared to subAR vs. TX

Figure 3.

Scatter plots of the fold changes for CAR vs TX (x-axes) and SUbAR vs. TX (y-axes) to
demonstrate that that cAR fold changes are of greater magnitude than subAR changes. 3a,
Microarrays - Blood 3b, RNA-seq - Blood 3c, Microarray - Biopsies 3d RNA-seq - Biopsies.
Green dots denote greater cCAR vs TX fold changes and blue dots denote greater SubAR vs.
TX fold changes. The table shows the number of genes in each comparison and the
overlapping genes that were plotted to create figures 3a-d.
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Table 1

Clinical characteristics of all study subjects
Phenotype AR SubAR X Significance
Sample (n) 21 23 25 NS
Recipient Age (+SD) 46.3+12.6 473+13.3 53.8+8.3 NS
Recipient Sex (Female %) 23.8 34.7 44.0 NS
Recipient Ethnicity (AA %) 14.2 26.1 32 NS
Time to Biopsy (Days) 921.2+936.5 | 287.6+170.2 | 267.2+426.1 AR vs. TX - p=0.01 subAR vs. TX - p=0.01
Donor Age (+SD) 40.4 £ 145 40.01£134 41.1+13.7 NS
Donor Sex (Female %) 10.0 10.0 15.0 NS
Donor Ethnicity (AA %) 4.0 6.0 6.0 NS
HLA Mismatches 41+16 38+19 39+17 NS
PRA (> 20%) 7.0 12.0 14.0 NS
Donor Type (Deceased Donor %) 9.0 9.0 10.0 NS
Pre-Tx Diabetes (Type 11 %) 3.0 6.0 5.0 NS
DGF (%) 4.0 6.0 6.0 NS
Induction (alemtuzumab %) 89.4 91.3 92.1 NS
Immunosuppression (CNI %) 90.4 95.6 96.0 NS
Creatinine (xSD) 3421 15+05 14+04 AR vs. subAR p = 0.0003 subAR vs. TX p = 0.0005
Steroids (%) 19 30 32 NS
C4d Staining positive (%) 23 8.0 8.6 NS

SD - Standard Deviation; AA - African American; PRA - Panel Reactive Antibodies; DGF - Delayed Graft Function
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Differentially expressed in blood and biopsy by microarrays and RNA-seq using statistical confidence levels

of FDR<10% and p<0.005 and p< 0.05

Microarray Blood DE Genes FDR<10% | p<0.005 | p<0.05
CARvs. TX 1326 855 2286
SUbAR vs. TX 0 33 720
Microarray Biopsy | DE Genes FDR<10% | p<0.005 | p<0.05
CARvs. TX 7529 5192 7377
SUbAR vs. TX 804 796 2932
RNA-seq Blood DE Genes FDR<10% | p<0.005 | p<0.05
CARvs. TX 1198 832 2566
SUbAR vs. TX 3 294 1647
NGS Biopsy DE Genes FDR<10% | p<0.005 | p<0.05
CARvs. TX 8481 5316 8921
SUbAR vs. TX 604 749 2564

CAR, clinical acute rejection; DE, differential expression; FDR, false discovery rate; RNA-seq, RNA sequencing; subAR, subclinical acute

rejection; TX, transplant excellence.
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Comparison of the directionality of fold-changes among the shared genes between blood and biopsies by
microarrays and RNA-seq.

Comparison Fold change (same direction) % | Fold change (opposite direction) % of
of genes genes

Microarray CAR vs. TX 54.3 457

Microarray subAR vs. TX 47.2 52.8

NGS cAR vs. TX 46.5 53.5

NGS subAR vs. TX 48.5 51.5

Am J Transplant. Author manuscript; available in PMC 2018 August 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Kurian et al.

Table 6

Page 24

Overlapping pathways between blood vs. biopsy genes for the cAR vs. TX and sSubAR vs. TX comparisons.

Pathway CAR vs. TX - Peripheral | cAR vs. TX - Biopsy
Blood Molecules (n) Pathways Molecules
(n)
14-3-3-mediated Signaling 34 67
Actin Nucleation by ARP-WASP Complex 15 33
Acute Myeloid Leukemia Signaling 23 52
Acute Phase Response Signaling 35 82
Aldosterone Signaling in Epithelial Cells 40 77
Androgen Signaling 31 57
Antiproliferative Role of Somatostatin Receptor 2 20 38
Apoptosis Signaling 23 51
Assembly of RNA Polymerase 11 Complex 16 23
Axonal Guidance Signaling 91 176
B Cell Receptor Signaling 40 110
Breast Cancer Regulation by Stathminl 51 98
Cardiac Hypertrophy Signaling 55 103
CCR3 Signaling in Eosinophils 30 62
CCRS Signaling in Macrophages 20 37
CD28 Signaling in T Helper Cells 33 78
Cholecystokinin/Gastrin-mediated Signaling 25 53
Clathrin-mediated Endocytosis Signaling 45 90
Colorectal Cancer Metastasis Signaling 52 112
CREB Signaling in Neurons 45 83
CTLA4 Signaling in Cytotoxic T Lymphocytes 24 45
CXCR4 Signaling 41 86
Docosahexaenoic Acid (DHA) Signaling 16 26
EGF Signaling 20 44
Endometrial Cancer Signaling 17 37
Endothelin-1 Signaling 40 81
Ephrin Receptor Signaling 36 89
ErbB Signaling 24 51
ErbB4 Signaling 18 35
ERK/MAPK Signaling 42 96
Erythropoietin Signaling 22 47
Estrogen Receptor Signaling 35 65
Fc Epsilon RI Signaling 26 60
Fcl3 Receptor-mediated Phagocytosis in Macrophages and 22 52
fMLP Signaling in Neutrophils 34 71
G Beta Gamma Signaling 23 46
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Pathway CAR vs. TX - Peripheral | cAR vs. TX - Biopsy
Blood Molecules (n) Pathways Molecules
()
Gap Junction Signaling 41 76
GDNF Family Ligand-Receptor Interactions 21 43
Germ Cell-Sertoli Cell Junction Signaling 35 90
Gl+q Signaling 39 81
Glioblastoma Multiforme Signaling 38 73
Glioma Signaling 30 53
Glucocorticoid Receptor Signaling 70 141
GM-CSF Signaling 19 43
GNRH Signaling 32 63
HER-2 Signaling in Breast Cancer 21 51
HGF Signaling 31 72
Huntington’s Disease Signaling 54 117
T+-Adrenergic Signaling 28 40
iCOS-iCOSL Signaling in T Helper Cells 30 69
IGF-1 Signaling 32 62
IL-1 Signaling 22 52
IL-12 Signaling and Production in Macrophages 38 68
I1L-17 Signaling 20 47
IL-2 Signaling 19 42
I1L-3 Signaling 26 48
IL-8 Signaling 49 102
Insulin Receptor Signaling 33 66
Integrin Signaling 50 107
Interferon Signaling 11 21
JAK/Stat Signaling 25 51
LPS-stimulated MAPK Signaling 20 51
Melanocyte Development and Pigmentation Signaling 23 43
Melanoma Signaling 15 33
Mitochondrial Dysfunction 43 110
Molecular Mechanisms of Cancer 72 176
mTOR Signaling 42 97
Myc Mediated Apoptosis Signaling 18 43
NGF Signaling 28 62
Non-Small Cell Lung Cancer Signaling 21 49
NRF2-mediated Oxidative Stress Response 47 98
Ovarian Cancer Signaling 30 63
Oxidative Phosphorylation 36 74
P2Y Purigenic Receptor Signaling Pathway 37 61
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Pathway CAR vs. TX - Peripheral | cAR vs. TX - Biopsy
Blood Molecules (n) Pathways Molecules

()
p53 Signaling 30 63
p70S6K Signaling 39 64
Pancreatic Adenocarcinoma Signaling 27 69
PDGF Signaling 21 52
phagosome maturation 31 74
Phospholipase C Signaling 48 115
PI3K Signaling in B Lymphocytes 31 71
PI3K/AKT Signaling 32 73
PKCT, Signaling in T Lymphocytes 29 74
Production of Nitric Oxide and Reactive Oxygen Species in Ma 49 98
Prolactin Signaling 24 49
Prostate Cancer Signaling 24 55
Protein Kinase A Signaling 73 165
Protein Ubiquitination Pathway 61 138
Pyridoxal 5’-phosphate Salvage Pathway 16 32
RANK Signaling in Osteoclasts 24 52
RAR Activation 44 89
Regulation of elF4 and p70S6K Signaling 33 86
Regulation of IL-2 Expression in Activated and Anergic T Lym 19 51
Renal Cell Carcinoma Signaling 23 43
Renin-Angiotensin Signaling 32 65
Role of NFAT in Cardiac Hypertrophy 46 93
Role of NFAT in Regulation of the Immune Response 45 105
Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabol 10 14
Systemic Lupus Erythematosus Signaling 51 98
T Cell Receptor Signaling 26 64
Tec Kinase Signaling 39 97
Telomerase Signaling 25 62
Thrombin Signaling 45 98
Thrombopoietin Signaling 20 37
Type Il Diabetes Mellitus Signaling 28 62
UVB-Induced MAPK Signaling 18 33
VEGF Family Ligand-Receptor Interactions 22 40
VEGF Signaling 29 50
Xenobiotic Metabolism Signaling 55 122
Pathway SubAR vs. TX - SubAR vs. TX -

Peripheral Blood | Biopsy Pathways
Molecules (n) Molecules (n)

B Cell Receptor Signaling 28 22
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Pathway

SubAR vs. TX -
Peripheral Blood
Molecules (n)

SubAR vs. TX -
Biopsy Pathways
Molecules (n)

Calcium-induced T Lymphocyte Apoptosis 14 10
CD28 Signaling in T Helper Cells 21 21
CTLA4 Signaling in Cytotoxic T Lymphocytes 20 15
Leukocyte Extravasation Signaling 36 23
Phospholipase C Signaling 35 24
Role of NFAT in Regulation of the Immune Response 29 26
T Cell Receptor Signaling 25 16

Pathways highlighted in red signify shared pathways

Am J Transplant. Author manuscript; available in PMC 2018 August 01.

Page 27



	Abstract
	Introduction
	Materials and Methods
	Patients and Samples
	Definitions and algorithm used for precision clinical phenotyping of study subjects
	Gene expression profiling and statistical analysis
	DNA Microarrays
	Ion Torrent Sequencing
	Illumina Sequencing

	Statistical methodologies

	Results
	Clinical Phenotypes and other patient characteristics
	Classifiers and predictive performance
	Differentially expressed genes present in both the blood and biopsies regardless of technology platform (shared genes)
	Pathway mapping of shared and unique genes between blood and biopsies

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

