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Abstract

We performed orthogonal technology comparisons of concurrent peripheral blood and biopsy 

tissue samples from 69 kidney transplant recipients, who underwent a comprehensive algorithm-

driven clinical phenotyping. The sample cohort included patients with normal protocol biopsies 

and stable transplant function (TX, n=25), subclinical acute rejection (subAR, n=23), and clinical 

acute rejection (cAR, n=21). Comparisons between microarray and RNA sequencing (RNA-seq) 

signatures were performed, demonstrating a strong correlation between the blood and tissue 

compartments for both technology platforms. A number of shared differentially expressed genes 

and pathways between subAR and cAR in both platforms strongly suggest that these two clinical 

Corresponding author: Sunil Kurian, smkurian@scripps.edu.
*These authors contributed equally to the manuscript

Disclosure
The authors of this manuscript have conflicts of interest to disclose as described by the American Journal of Transplantation. DRS, 
SMK, JJF and MMA are founding scientists and have ownership stock in TGI. RMF and SR are full-time employees at TGI. The other 
authors have no conflicts of interest to disclose.

Supporting Information
Additional Supporting Information may be found in the online version of this article.
Table S1: Detailed final breakdown of gene expression profile numbers for the various comparisons in the study.
Table S2 Title: List of cAR vs. TX and subAR vs. TX pathways and their constituent molecules in the peripheral blood and biopsies 
with shared genes (blood and biopsy) highlighted in red.
Figure S1: Performance metrics for microarray based classifiers. Table on top for each comparison shows accuracy, sensitivity, 
specificity, positive and negative predictive values. Figure on the left for each comparison shows the box and whisker plots for the 
accuracies for different classifiers based on the number of probesets used to develop the classifier. Figure on right for each comparison 
shows the Receiver Operating Characteristic curve for the best classifier. The three comparisons on the left are for peripheral blood 
and the three comparisons on the right are for the biopsies.
Figure S2: Performance metrics for RNA-seq based classifiers. Table on top for each comparison shows accuracy, sensitivity, 
specificity, positive and negative predictive values. Figure on the left for each comparison shows the box and whisker plots for the 
accuracies for different classifiers based on the number of probesets used to develop the classifier. Figure on right for each comparison 
shows the Receiver Operating Characteristic curve for the best classifier. The three comparisons on the left are for peripheral blood 
and the three comparisons on the right are for the biopsies.

HHS Public Access
Author manuscript
Am J Transplant. Author manuscript; available in PMC 2018 August 01.

Published in final edited form as:
Am J Transplant. 2017 August ; 17(8): 2103–2116. doi:10.1111/ajt.14224.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenotypes form a continuum of alloimmune activation. SubAR is associated with fewer or less 

expressed genes than cAR in blood, whereas in biopsy tissues, this clinical phenotype 

demonstrates a more robust molecular signature for both platforms. The discovery work done in 

this study confirms a clear ability to detect gene expression profiles for TX, subAR and cAR in 

both blood and biopsy tissue, yielding equivalent predictive performance, that is agnostic to either 

technology or platform. Our data also provide strong biologic insights into the molecular 

mechanisms underlying these signatures, underscoring their logistical potential as molecular 

diagnostics to improve clinical outcomes following kidney transplantation.

Introduction

The survival benefits of solid organ transplants in the United States are well documented (1), 

but little impact on long-term kidney graft survival despite significant improvements in 

short-term outcomes (2–4). In the OPTN/SRTR 2013 Annual Data Report, kidney graft 

failure rates for deceased donor transplants were 2.7% at 6 months, 3.5% at 1 year for 

transplants in 2012–2013, 11.8% at 3 years for transplants in 2010–2011, 23.8% at 5 years 

for transplants in 2008–2009, and 49.4% at 10 years for transplants in 2002–2003 (5). 

Moreover, after the first year, the accumulation of late acute rejection episodes doubles the 

total incidence from 11–15% to 25% by 5 years (5).

There is a pressing clinical need for more sensitive and specific objective surrogate markers 

to predict allo-immune graft injury to potentially inform management and improve outcomes 

(6, 7). Serum creatinine is an insensitive and nonspecific marker of allo-immune kidney 

injury (8). While over-immunosuppression increases multiple drug-related risks (9), under-

immunosuppression increases risks of clinical acute rejection (cAR), potentially actionable 

subclinical acute rejection (subAR) defined by histologically-determined acute rejection in 

the absence of renal dysfunction, and ultimately chronic rejection (CR), the leading 

immunological cause of long term graft loss (10–12). A molecular signature to detect subAR 

would substantially improve our ability to monitor patients following transplantation, to 

intervene early at a stage of immune-mediated rejection with minimal tissue injury also 

monitoring response to this intervention, potentially reducing the development of interstitial 

fibrosis and tubular atrophy (IFTA). The development of IFTA leads to lower GFR (13) and 

graft failure (14). IFTA can develop surprisingly early post-transplant with approximately 

15% incidence at three months to 30% at one year and 40% at two years (15–18). Studies 

revealed that treatment of subAR was beneficial and led to improved short (12) and long-

term renal function (19), although no randomized clinical trial has tested this premise, 

primarily because molecular tests that can detect subAR are only now emerging. Consistent 

with our view of the importance of maintaining effective immunosuppression we recently 

mapped gene expression signatures from histologically and clinically phenotyped kidney 

biopsies (20). Biopsies of cAR and CR shared > 85% of known immune/inflammatory 

pathways validated in the literature for cell-mediated rejection revealing an arc of immune-

mediated transplant injury. In parallel, subAR, found only by doing protocol biopsies is 

associated with the development of chronic injury/IFTA and worse graft function and 

survival (3, 10, 13, 16–18, 21–26).
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We have previously demonstrated, using microarray analyses, that peripheral blood whole 

genome expression profiling in kidney transplant recipients can accurately distinguish 

patients with stable function and normal histology (TX), clinical and histologic cAR, and 

acute dysfunction with no rejection (ADNR) (27). Affymetrix DNA microarrays represent 

an established, FDA-approved diagnostic testing technology. Costs for DNA microarrays 

have dropped significantly over the past decade and with improved workflows and analytical 

tools are now comparable to other methods used routinely in commercial diagnostic 

laboratories. In parallel, rapid advances in next generation sequencing (NGS) technologies 

provide a cost-effective high throughput RNA sequencing (RNA-seq) approach and a clear 

potential to enable even lower cost gene expression profiling and faster workflows than can 

be obtained today with DNA microarrays (28, 29). Two of the most widely used NGS 

platforms; Illumina and IonTorrent have FDA-approved clinical diagnostic workflows.

As molecular technology platforms rapidly evolve, concerns have been raised that the ability 

to detect diagnostic and predictive gene signatures, discovered and validated on one 

technology or platform may not necessarily carry over to others. This concern is particularly 

relevant as molecular biomarkers begin their journey towards becoming commercial, 

especially given differences between technologies in logistics such as cost, turnaround time, 

point of service, and the use of commercially available kits. There is a paucity of technical 

studies comparing DNA microarray and RNASeq technologies, and even fewer studies 

comparing their relative capabilities as diagnostic tools. Technical studies comparing gene 

expression detection by microarrays and NGS technologies have shown good correlations 

(30–33). A recent study showed that microarray-based models and RNA-seq performed 

similarly in clinical endpoint prediction in ~ 500 biopsies of primary human neuroblastomas 

(34). To our knowledge, there are no studies comparing these orthogonal technologies in 

biopsy-documented, precisely phenotyped kidney transplant recipients.

We hypothesized that the ability to detect molecular signatures of cAR and subAR in both 

peripheral blood and biopsy tissue would be agnostic to the technology platform used to 

assess gene expression. To test this hypothesis, we profiled peripheral blood and biopsy 

tissue derived from 69 precisely phenotyped kidney transplant recipients (TX=25, 

subAR=23, cAR=21) selected from Northwestern University’s Comprehensive Transplant 

Center’s Biorepository. After removing technical outliers (GAPDH ratios >4 for microarrays 

and RNA-seq samples with total reads < 1 million), gene expression profiles were obtained 

by Affymetrix DNA microarray (peripheral blood n=69, biopsies n=65; total n=134). In 

parallel, RNA-seq was done on the biopsies of the same patient cohort using the Ion Torrent 

Proton sequencing platform (n=65) and the matching peripheral blood on the Illumina 

NextSeq platform (n=45). Thus, a total of 244 global gene expression profiles were obtained 

on three different commercial platforms and their approved workflows. Our data support the 

ability to detect signatures of TX, subAR and cAR in both blood and tissue compartments, 

yielding equivalent predictive performance, agnostic to the technology or platform used.
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Materials and Methods

Patients and Samples

The Northwestern University Comprehensive Transplant Center houses a large repository of 

samples (NU biorepository) from transplant recipients. Kidney transplant recipients at NU 

undergo surveillance biopsies at 3, 12 and 24 months post-transplantation or for-cause 

biopsies in response to renal dysfunction. All patients who undergo biopsies are approached 

to provide informed consent (NU IRB #STU00025946) to enroll in our biorepository. In 

addition to blood samples (2.5ml PAXgene tube), a biopsy core was obtained and stored in 

RNAlater (Thermo Fisher, Waltham, MA). Biopsy slides were read by local pathologists, 

and also by a central pathologist in a blinded fashion using Banff 2007 criteria (35), and all 

pathology slides are digitally archived (Aperio Digital Scanner, Buffalo Grove, IL). The 

repository has the stored clinical and laboratory data for all patients. All samples for gene 

expression were derived from recipients who had clinical and laboratory data available, as 

well as a histologic assessment of their biopsies. All patients who participated in this study 

were >18 years of age, and recipients of a primary or subsequent kidney transplant alone. 

Recipients of multi-organ or prior non-renal transplants and patients with HIV were 

excluded. Standard immunosuppression at Northwestern consists of alemtuzumab induction 

with tacrolimus and mycophenolate maintenance (prednisone-free).

Definitions and algorithm used for precision clinical phenotyping of study subjects

Stable renal function: serum creatinine <2.3 mg/dL and <20% variability in the last 3 

measurements. Acute renal dysfunction: >20% increase in serum creatinine compared to the 

previous 3 measurements. Normal histology: no rejection (no T-cell mediated or antibody 

mediated rejection of borderline or higher) or other abnormal histology (Banff fibrosis score 

ci=0 or 1 and ct=0 or 1, and both i and t scores =0) on a surveillance biopsy from a patient 

with stable renal function. Central reads were used for the clinical phenotyping algorithm. 

TX (n=25): 1) surveillance biopsy, 2) stable renal function, and 3) normal histology; subAR 
(n=23): 1) surveillance biopsy, 2) stable renal function, and 3) histology showing rejection 

(16 borderline and 7 Banff grade 1A); cAR (n=21): 1) for-cause biopsy prompted by 2) 

acute renal dysfunction, and 3) histology showing acute rejection (7 borderline, 6 Banff 1A, 

6 1B, 1 2A, 1 2B - 5/21 (23%) has positive C4d staining). All clinical phenotypes were 

reviewed and blinded by JJF and MMA prior to submitting samples for molecular studies.

Gene expression profiling and statistical analysis

RNA was extracted using the PAXgene Blood RNA system (Qiagen, Valencia, CA) and 

Ambion GLOBINclear (Life Technologies, Carlsbad, CA). Regardless of technology used, 

total RNA from biopsies was extracted using the AllPrep DNA\RNA|Protein extraction kits 

(Qiagen). Ribosomal clearance was performed on all samples with the GeneRead rRNA 

Depletion Kit (Qiagen).

DNA Microarrays—Affymetrix Human Genome U133 Plus 2.0 GeneChips (plate format) 

were used for gene expression in blood and biopsies. Biotinylated cRNA was prepared with 

Ambion MessageAmp Biotin II kit (Ambion) and all samples run on the Affymetrix 
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GeneTitan MC instrument. The primary transcript detection method is hybridization and 

detection of fluorescently labeled cRNA to custom 23mer DNA probes.

Ion Torrent Sequencing—RNA-seq of biopsies was done using the Ion Torrent Proton II 

(Thermo Fisher). Briefly, 50ng RNA was used to generate sequencing libraries. RNA 

concentration was assessed using the Qubit RNA BR Assay kit (Bio-Rad, Hercules, CA). 

Sequencing libraries were generated using the Ion AmpliSeq™ Transcriptome Human Gene 

Expression Kit (Thermo Fisher), and barcoded using Ion Express barcodes. cDNA library 

quality was assessed using the Agilent® 2200 TapeStation System and the High Sensitivity 

D1000 ScreenTape System (Agilent Technologies, Santa Clara, CA). Templates were run on 

the Ion PI™ v3 chips using the Ion Chef system and Hi-Q™ Chef kits. Sequencing depth 

per sample was 12 million genome-aligned reads. The primary transcript detection strategy 

depends on using Ion Torrents custom designed primers targeting multiple exons for all 

known protein coding genes.

Illumina Sequencing—All blood samples for RNA-seq were profiled using an Illumina 

NextSeq instrument (Illumina Inc. San Diego, CA). Total RNA was converted to cDNA 

using Ovation RNA-seq kits (NuGEN, San Carlos, CA) and S1 endonuclease digestion 

(Promega, Madison, WI) (36). Digested cDNA libraries were end-repaired, A-tailed and 

indexed adapter ligated. Ligation product was purified on Agencourt AMPure XP beads 

(Beckman Coulter Genomics, Carlsbad, CA) followed by 2% agarose size selection. Purified 

product was amplified for 15 PCR cycles and size selection repeated. Libraries were 

assessed on an Agilent Bioanalyzer and quantitated by Quant-iT ds DNA BR Assay kits 

(Invitrogen) and a Qubit Fluorimeter (Invitrogen). Cluster generation and 100bp single-end 

read sequencing was done following manufacturer’s instructions. Sequencing depth per 

sample was 15 million genome-aligned reads. The primary transcript detection strategy is 

capture of the cDNAs clusters on a plastic surface followed by brief PCR amplification and 

incorporation of fluorescently tagged dNTPs guided by transcript sequences. All expression 

data have been deposited to the NIH GEO repository.

Statistical methodologies

Microarray signals were normalized with frozen robust multi-array analysis (fRMA)(37). 

Predictions were done using the SVM algorithm implemented in R using the caret package 

(38). Diagnostic performance was based on retrospective prediction of known clinical 

phenotypes. Predictive accuracy was calculated using the formula (TP+TN)/(TP+FP+FN

+TN); (TP–True Positive, TN–True Negative, FP–False Positive, FN–False Negative). 

Diagnostic metrics included sensitivity, specificity, and area under the curve (AUC). Clinical 

study parameters were tested by multivariate logistic regression with an adjusted (Wald test) 

p-value and false discovery rate (FDR) calculation. Results were classified at three levels of 

statistical confidence: False discovery rate (FDR) <10%, p value <0.005, and <0.05. 

Pathways were mapped using Ingenuity Pathway Analysis (IPA; Qiagen).
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Results

Clinical Phenotypes and other patient characteristics

Peripheral blood and biopsy tissue samples were analyzed for gene expression from 69 

kidney transplant recipients enrolled at the time of biopsy into the NU biorepository, who 

had undergone algorithm-driven precise clinical phenotyping (TX, n=25; subAR, n=23; 

cAR, n=21). The mean age was 49.3 years (range 22–71 years); 35% were female; 52% 

were deceased donor recipients. Blood was collected at the time of biopsy in all cases. The 

mean number of days post-transplant to the time of biopsy was 288 days (range 8–748) for 

subAR, 268 days (range 84–2228) for TX, and 921 days (range 15–2876) for cAR. All 

clinical characteristics of the study population are given in Table 1. Given various technical 

sample issues, the final breakdowns of samples used in this study are in Table S1.

Classifiers and predictive performance

Analyses of two-class (phenotype) comparisons were performed at three levels of statistical 

confidence: 1) stringent False Discovery Rate (FDR) <10%, 2) conservative p value <0.005, 

and 3) relaxed p value <0.05. Less stringent statistical limits are justified for smaller data 

sets for early stage discovery studies such as ours (69 subjects; 244 total gene expression 

profiles). Table 2 shows the differentially expressed genes in blood and biopsies comparing 

transcript detection by microarrays and RNA-seq. Statistically significant numbers of 

differentially expressed genes are observed between cAR vs. TX and subAR vs. cAR in both 

blood and biopsies. However, fewer differentially expressed genes were observed for the 

subAR vs. TX in the peripheral blood by either microarrays or RNA-seq. In contrast 

significant and equivalent numbers of genes are detected for the subAR vs. TX in the 

biopsies.

To measure the correlation of differential expression, blood vs. biopsies and microarrays vs. 

RNA-seq, M (log ratios) and A (mean/average) (MA) scale plots were created (Figures 1a-

b). Principal Components Analysis (PCA) (Figure 2) shows that the differentially expressed 

genes in the biopsies, by virtue of their larger numbers and robust statistical significances, 

separate phenotypes more efficiently than blood for both platforms.

Next the performance of optimal classifiers based on the differentially expressed genes to 

predict the precision phenotypes was tested. Classifiers were selected using a preselected set 

of features (probesets) picked by the SVM algorithm in an unbiased fashion and run using 

both cross validation and bootstrapping. A number of methods for are available, but we used 

two common methods for internal validation using data-splitting 5-fold: cross validation 

(Table 3a), that splits the data into smaller cohorts and the more rigorous bootstrapping 

(Table 3b) that leverages the whole dataset. Classifiers were selected using a preselected set 

of features (probesets) picked by the SVM algorithm in an unbiased fashion and run using 

both cross validation and bootstrapping.

The best microarray classifier sets for peripheral blood using 5-fold cross-validation 

predicted cAR vs. TX and subAR vs. TX with AUCs of 0.95, respectively. By the rigorous 

bootstrapping the AUCs were 0.96 and 0.82. The best microarray classifier sets for the 
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biopsies using 5-fold cross-validation predicted cAR vs. TX and subAR vs. TX with AUCs 

1.00 and 0.99 respectively. By bootstrapping the AUCs were 1.00 and 0.95.

The best RNA-seq classifier sets for peripheral blood using 5-fold cross-validation predicted 

cAR vs. TX and subAR vs. TX with AUCs 1.00 and 0.96, respectively. By bootstrapping the 

AUCs were 1.00 and 0.87. The best RNA-seq classifier sets for the biopsies using 5-fold 

cross-validation predicted cAR vs. TX and subAR vs. TX with AUCs of 0.99 and 0.92 

respectively and by bootstrapping the AUCs were 0.99 and 0.77.

Thus, this first analysis comparing DNA microarrays to RNA-seq suggests that RNA-seq 

may have a slight performance advantage that must be tested with multiple independent 

external cohorts as data over-fitting is always possible with internal validation methods. 

Receiver Operating Curves (ROCs) using the best performing classifiers for the microarray 

classifier sets by bootstrapping are shown in Figure S1 and RNA-seq classifiers in Figure 

S2.

Differentially expressed genes present in both the blood and biopsies regardless of 
technology platform (shared genes)

The differentially expressed shared genes for blood and biopsies by microarrays and RNA-

seq are shown in Table 4. The cAR vs. TX and subAR vs. TX comparisons were significant 

at p <0.05. cAR vs. TX was also significant at a more stringent cut-off of FDR <10%. Even 

though genes are shared between blood and biopsy the directionality of change (up or down 

regulation in a specific comparison) may not be the same. Thus, the simple observation of a 

shared gene in two compartments does not mean their function is biologically the same. 

Indeed, half the shared genes showed the opposite fold change direction for all comparisons 

suggesting that the blood and the biopsy are truly independent immunological compartments 

with distinctly different biological processes (Table 5).

We tested the hypothesis that subAR is a state of allo-immune/inflammatory rejection at 

which point the amount of tissue injury has not exceeded the threshold to cause clinical 

transplant dysfunction (i.e. acute renal dysfunction; decreased eGFR). If this were true, one 

prediction would be that subAR is a milder form of cAR manifesting relatively lower gene 

expression levels for genes upregulated in cAR and higher expression of genes 

downregulated in cAR.

Therefore, we plotted the subset of shared genes between the cAR vs. TX and the subAR vs. 

TX comparisons in both blood and biopsies. As shown in Figures 3a-d, the majority of the 

shared cAR vs. TX genes (green dots) that had the same fold-change directionality (up or 

down regulated), also had a greater fold change than the same genes in the subAR vs. TX.

Pathway mapping of shared and unique genes between blood and biopsies

Pathway mapping of blood vs. biopsy genes was done using IPA. A p<0.05 and >10 

molecules that were differentially expressed in each pathway filter was used. We combined 

the microarray and RNA-seq data using the following criteria: 1) genes for mapping were 

comprised of shared genes; 2) shared genes had the same fold change direction. For the cAR 

vs. TX comparison there were 109 shared pathways between blood and biopsy. The top 10 
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shared pathways ranked by p-value were Mitochondrial Dysfunction, B Cell Receptor, 

Oxidative Phosphorylation, Protein Ubiquitination, NFAT, Tec Kinase, HGF, CD28, 

PI3K/AKT and Glucocorticoid Receptor Signaling. In contrast there were only 8 shared 

pathways between blood and biopsy for the subAR vs. TX comparison. These were B Cell 

Receptor, T Lymphocyte Apoptosis, CD28, CTLA4 in Cytotoxic T Lymphocytes, Leukocyte 

Extravasation, Phospholipase C, NFAT Regulation of the Immune Response and T Cell 

Receptor Signaling (Table 6).

An overall analysis of the cAR vs. TX and subAR vs TX in both blood and biopsies revealed 

6 key shared pathways (CD28 in T Helper Cells, CTLA4 in Cytotoxic T Lymphocytes, 

Leukocyte Extravasation, Phospholipase C, NFAT in Regulation of the Immune Response 

and T Cell Receptor Signaling). Even though these pathways are shared, there were 

molecules that mapped to the same pathways but were not identical. For example, in the 

CD28 signaling pathway, the CD28 molecule was only differentially expressed in the blood 

but PIK3CA was seen in both tissues (Supplementary Table 2).

Discussion

We performed orthogonal technology comparisons of gene expression from both peripheral 

blood and biopsy tissue compartments concurrently obtained from 69 algorithm-driven 

clinically phenotyped kidney transplant recipients. We used two high-throughput global gene 

expression profiling technologies: microarray analysis using Affymetrix Gene Arrays and 

RNA-seq using both the Ion Torrent and Illumina platforms.

The results of the study demonstrate: 1) diagnostic performance based on the ability to 

retrospectively predict known clinical phenotypes using SVM were equivalent across 

technologies and platforms (Affymetrix DNA microarrays, Ion Torrent and Illumina RNA-

seq), 2) optimal classifiers selected using the SVM algorithm were different reflecting the 

technical differences inherent in the chemistries for detection and quantification of gene 

expression across platforms 3) despite significant overlap in the differentially expressed 

genes between the blood and biopsies, directionality of these changes differed considerably 

between compartments, suggesting that these represent distinct immune compartments, and 

4) allo-immune/inflammatory pathway mapping to compare differential gene expression in 

blood and biopsies revealed a number of different genes in each of these two compartments, 

but these mapped to similar pathways across all technologies. Thus, our ability to detect 

signatures for TX, subAR and cAR in both compartments appears to be agnostic to the 

technology or platform used, and equivalent predictive performance metrics were obtained. 

These data suggest that the ability to develop signatures on one platform should result in a 

similar ability to develop an equivalent performing signature on another, in response to 

potential logistical and commercial advantages of new and evolving technologies. To our 

knowledge, this is the first study to compare orthogonal technologies for molecular 

diagnostics using mRNA-based differential gene expression in kidney transplant recipients.

We addressed important and often overlooked aspects of biomarker discovery. To avoid 

over-training, we used both 5-fold cross validation as well as a full leave-one-out 

bootstrapping methodologies. Of interest, the actual optimal classifiers were different for 
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each platform, and therefore workflows will need to be developed for different technology 

platforms for introduction into clinical practice. Nonetheless, we show that they each give 

equivalent predictive performances on TX, cAR and subAR. Thus, decisions made by 

clinical laboratories regarding which commercial test to use will likely be based on issues 

other than performance, such as test costs, details of workflow, cost of equipment and its 

maintenance, and the choice of data analyses pipelines to report results to a clinician. This 

outcome provides a strong comfort level for the use of microarrays or RNA-seq, as well as 

that of specific RNA-seq platforms to develop predictive molecular biomarkers to diagnose 

and predict rejection.

It also appears that the peripheral blood changes may not be as robust as the changes at the 

tissue site of injury. The subAR signature in the peripheral blood appears to signal a milder 

form of cAR, consistent with previous data showing similar cellular processes between 

subAR and cAR (44). Our data show a high level of sharing of differentially expressed genes 

and pathways between cAR and subAR . SubAR is represented by fewer and less expressed 

genes than cAR in blood. This is further supported by our analysis that 65–70% of subAR 

cases are detected by using a signature that was discovered for the diagnosis of cAR in blood 

(Affymetrix DNA microarrays - data not shown).

Traditional invasive biopsy-based diagnoses are vulnerable to the challenge of sampling 

errors and differences between the interpretations of individual pathologists (39) (40). The 

2007 Banff group previously defined and subsequently refined the pathologic criteria for 

post-implantation biopsies using the same criteria for implantation biopsies (35).The inter-

observer concordance that measures reproducibility between pathologists showed that graft 

correlates such as acute tubular injury, inflammation in non-scarred areas (Banff i score), 

and interstitial inflammation had the poorest concordance rates. The Banff working group on 

pre-implantation biopsies recently concluded that significant limitations remain (41). 

Despite concerns about histology being the ‘gold standard’, as well as the ongoing debate 

about the virtues of the local versus central histology reads, we chose to use the central read 

for the histology component of our clinical phenotype algorithms. We believe that we we 

may be able to demonstrate a better correlation between the molecular phenotype of the 

biopsy with long-term outcome compared to either the local or central histology reads. The 

pros and cons of the currently used platforms to profile rejection phenotypes and build 

predictive models have been very nicely discussed in a review of genomics in understanding 

and prediction of Clinical Renal Transplant Injury(42). In this study the slightly better 

performance of the RNA-seq classifiers was attributed to low signal-to-noise ratio compared 

to microarrays, and a larger dynamic range of expression levels over which transcripts can 

be reliably detected as shown in other studies (43, 44). Similarly, the sequencing depth in 

this study was lower than the generally agreed consensus of ~ 30–40 million reads (43) that 

is suited to detect major splice isoforms which was not our focus. We tested the power of the 

detected genes to discriminate the clinical phenotypes and to compare how well the 

signatures perform.

We also believe that it is important to map the gene networks to show that our analyses are 

not simply statistical but also founded in the biology of rejection and tissue injury. Despite 

shared genes, the comparison of the blood and biopsy expression profiles also shows clear 
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differences. Our results demonstrate that the tissue injury and damage begins in the graft and 

that the blood reveals genes, unique to that compartment, but are nevertheless also informing 

the prediction of clinical phenotypes consistent with our previous work and that of others 

(20, 27, 45–49).

While classifiers cannot be locked across technologies or platforms, the predictive 

performance appears to be equivalent and agnostic to the platform suggesting the ability to 

develop signatures across platforms with relatively little technical variation and estimation of 

expression levels of RNA transcripts (50), as these become more robust and cost-effective 

(31).

This study has some limitations: the sample size was small, and only appropriate for a 

discovery study as intended, but we demonstrate with the bootstrapping methodology which 

is the closest approximation to real error estimates in a simulation of independent cohorts; 

no appreciable deterioration of the predictive metrics for our signatures. While we provided 

internal validation through widely accepted data-splitting cross-validation bootstrapping 

methods, we did not perform external independent validation of the signatures described. 

This was not the intended goal of this study. In fact, these studies are ongoing in the NIH-

funded CTOT study of 300 transplant recipients followed serially for two years. Instead, our 

primary objective to assess whether different technology platforms could be used to detect 

differential gene expression profiles that signal immune activation in both peripheral blood 

and biopsy tissue. We also acknowledge that our population had no cases of pure antibody-

mediated rejection (AMR), although 23% of the cAR biopsy samples showed C4d positive 

staining. Also, the majority of patients were Caucasian. However, we have successfully 

validated our biopsy molecular phenotypes in a Brazilian cohort of 94 patients of 

significantly different racial and ethnic backgrounds (48) suggesting strong unifying 

immune mechanisms despite differences in racial, ethnic and genetic backgrounds.

In conclusion, we present a proof-of-concept discovery study that evaluates the predictive 

performance and profiling capabilities of two complementary techniques of global gene 

expression profiling for discrimination of three post-transplant phenotypes. This is also the 

first study to our knowledge of kidney transplant rejection that has performed peripheral 

blood and biopsy profiling and compared them.
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cAR clinical acute rejection

AMR antibody mediated rejection

CMV cytomegalovirus

DE differential expression

FDR false discovery rate

FN false negative

FP false positive

fRMA frozen robust multi-array analysis

IA immune activation

IFTA interstitial fibrosis/tubular atrophy

IQ immune quiescence

NGS next generation sequencing

SubAR subclinical acute rejection

TGI Transplant Genomics Inc.

TN true negative

TP true positive

TX transplant with excellent function
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Figure 1. 
Correlation between the blood findings and the biopsy findings comparing the two analytical 

methodologies (microarrays and RNA-seq). The similarity between the technologies was 

also reflected in the consistently higher number of differentially expressed genes in the 

biopsy compared to the blood. The M (log ratios) and A (average) scale (MA) plots for all 

comparisons are shown in Figures 1a for RNAseq (NGS) and b for the microarrays.
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Figure 2. 
Supervised Principal Components Analysis (PCA) plots for the two tissues and technologies 

showing the separation of the phenotypes using the maximum set classifiers.
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Figure 3. 
Scatter plots of the fold changes for cAR vs TX (x-axes) and subAR vs. TX (y-axes) to 

demonstrate that that cAR fold changes are of greater magnitude than subAR changes. 3a, 

Microarrays - Blood 3b, RNA-seq - Blood 3c, Microarray - Biopsies 3d RNA-seq - Biopsies. 

Green dots denote greater cAR vs TX fold changes and blue dots denote greater subAR vs. 

TX fold changes. The table shows the number of genes in each comparison and the 

overlapping genes that were plotted to create figures 3a-d.
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Table 1

Clinical characteristics of all study subjects

Phenotype AR subAR TX Significance

Sample (n) 21 23 25 NS

Recipient Age (±SD) 46.3 ± 12.6 47.3 ± 13.3 53.8 ± 8.3 NS

Recipient Sex (Female %) 23.8 34.7 44.0 NS

Recipient Ethnicity (AA %) 14.2 26.1 32 NS

Time to Biopsy (Days) 921.2 ± 936.5 287.6 ± 170.2 267.2 ± 426.1 AR vs. TX - p = 0.01 subAR vs. TX - p = 0.01

Donor Age (±SD) 40.4 ± 14.5 40.01 ± 13.4 41.1 ± 13.7 NS

Donor Sex (Female %) 10.0 10.0 15.0 NS

Donor Ethnicity (AA %) 4.0 6.0 6.0 NS

HLA Mismatches 4.1 ± 1.6 3.8 ± 1.9 3.9 ± 1.7 NS

PRA (> 20%) 7.0 12.0 14.0 NS

Donor Type (Deceased Donor %) 9.0 9.0 10.0 NS

Pre-Tx Diabetes (Type II %) 3.0 6.0 5.0 NS

DGF (%) 4.0 6.0 6.0 NS

Induction (alemtuzumab %) 89.4 91.3 92.1 NS

Immunosuppression (CNI %) 90.4 95.6 96.0 NS

Creatinine (±SD) 3.4 ± 2.1 1.5 ± 0.5 1.4 ± 0.4 AR vs. subAR p = 0.0003 subAR vs. TX p = 0.0005

Steroids (%) 19 30 32 NS

C4d Staining positive (%) 23 8.0 8.6 NS

SD - Standard Deviation; AA - African American; PRA - Panel Reactive Antibodies; DGF - Delayed Graft Function
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Table 2

Differentially expressed in blood and biopsy by microarrays and RNA-seq using statistical confidence levels 

of FDR<10% and p<0.005 and p< 0.05

Microarray Blood DE Genes FDR<10% p<0.005 p<0.05

cAR vs. TX 1326 855 2286

subAR vs. TX 0 33 720

Microarray Biopsy DE Genes FDR<10% p<0.005 p<0.05

cAR vs. TX 7529 5192 7377

subAR vs. TX 804 796 2932

RNA-seq Blood DE Genes FDR<10% p<0.005 p<0.05

cAR vs. TX 1198 832 2566

subAR vs. TX 3 294 1647

NGS Biopsy DE Genes FDR<10% p<0.005 p<0.05

cAR vs. TX 8481 5316 8921

subAR vs. TX 604 749 2564

cAR, clinical acute rejection; DE, differential expression; FDR, false discovery rate; RNA-seq, RNA sequencing; subAR, subclinical acute 
rejection; TX, transplant excellence.
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Table 5

Comparison of the directionality of fold-changes among the shared genes between blood and biopsies by 

microarrays and RNA-seq.

Comparison Fold change (same direction) %
of genes

Fold change (opposite direction) % of
genes

Microarray cAR vs. TX 54.3 45.7

Microarray subAR vs. TX 47.2 52.8

NGS cAR vs. TX 46.5 53.5

NGS subAR vs. TX 48.5 51.5
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Table 6

Overlapping pathways between blood vs. biopsy genes for the cAR vs. TX and subAR vs. TX comparisons.

Pathway cAR vs. TX - Peripheral
Blood Molecules (n)

cAR vs. TX - Biopsy
Pathways Molecules

(n)

14-3-3-mediated Signaling 34 67

Actin Nucleation by ARP-WASP Complex 15 33

Acute Myeloid Leukemia Signaling 23 52

Acute Phase Response Signaling 35 82

Aldosterone Signaling in Epithelial Cells 40 77

Androgen Signaling 31 57

Antiproliferative Role of Somatostatin Receptor 2 20 38

Apoptosis Signaling 23 51

Assembly of RNA Polymerase II Complex 16 23

Axonal Guidance Signaling 91 176

B Cell Receptor Signaling 40 110

Breast Cancer Regulation by Stathmin1 51 98

Cardiac Hypertrophy Signaling 55 103

CCR3 Signaling in Eosinophils 30 62

CCR5 Signaling in Macrophages 20 37

CD28 Signaling in T Helper Cells 33 78

Cholecystokinin/Gastrin-mediated Signaling 25 53

Clathrin-mediated Endocytosis Signaling 45 90

Colorectal Cancer Metastasis Signaling 52 112

CREB Signaling in Neurons 45 83

CTLA4 Signaling in Cytotoxic T Lymphocytes 24 45

CXCR4 Signaling 41 86

Docosahexaenoic Acid (DHA) Signaling 16 26

EGF Signaling 20 44

Endometrial Cancer Signaling 17 37

Endothelin-1 Signaling 40 81

Ephrin Receptor Signaling 36 89

ErbB Signaling 24 51

ErbB4 Signaling 18 35

ERK/MAPK Signaling 42 96

Erythropoietin Signaling 22 47

Estrogen Receptor Signaling 35 65

Fc Epsilon RI Signaling 26 60

FcÎ³ Receptor-mediated Phagocytosis in Macrophages and 22 52

fMLP Signaling in Neutrophils 34 71

G Beta Gamma Signaling 23 46
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Pathway cAR vs. TX - Peripheral
Blood Molecules (n)

cAR vs. TX - Biopsy
Pathways Molecules

(n)

Gap Junction Signaling 41 76

GDNF Family Ligand-Receptor Interactions 21 43

Germ Cell-Sertoli Cell Junction Signaling 35 90

GÎ±q Signaling 39 81

Glioblastoma Multiforme Signaling 38 73

Glioma Signaling 30 53

Glucocorticoid Receptor Signaling 70 141

GM-CSF Signaling 19 43

GNRH Signaling 32 63

HER-2 Signaling in Breast Cancer 21 51

HGF Signaling 31 72

Huntington’s Disease Signaling 54 117

Î±-Adrenergic Signaling 28 40

iCOS-iCOSL Signaling in T Helper Cells 30 69

IGF-1 Signaling 32 62

IL-1 Signaling 22 52

IL-12 Signaling and Production in Macrophages 38 68

IL-17 Signaling 20 47

IL-2 Signaling 19 42

IL-3 Signaling 26 48

IL-8 Signaling 49 102

Insulin Receptor Signaling 33 66

Integrin Signaling 50 107

Interferon Signaling 11 21

JAK/Stat Signaling 25 51

LPS-stimulated MAPK Signaling 20 51

Melanocyte Development and Pigmentation Signaling 23 43

Melanoma Signaling 15 33

Mitochondrial Dysfunction 43 110

Molecular Mechanisms of Cancer 72 176

mTOR Signaling 42 97

Myc Mediated Apoptosis Signaling 18 43

NGF Signaling 28 62

Non-Small Cell Lung Cancer Signaling 21 49

NRF2-mediated Oxidative Stress Response 47 98

Ovarian Cancer Signaling 30 63

Oxidative Phosphorylation 36 74

P2Y Purigenic Receptor Signaling Pathway 37 61
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Pathway cAR vs. TX - Peripheral
Blood Molecules (n)

cAR vs. TX - Biopsy
Pathways Molecules

(n)

p53 Signaling 30 63

p70S6K Signaling 39 64

Pancreatic Adenocarcinoma Signaling 27 69

PDGF Signaling 21 52

phagosome maturation 31 74

Phospholipase C Signaling 48 115

PI3K Signaling in B Lymphocytes 31 71

PI3K/AKT Signaling 32 73

PKCÎ¸ Signaling in T Lymphocytes 29 74

Production of Nitric Oxide and Reactive Oxygen Species in Ma 49 98

Prolactin Signaling 24 49

Prostate Cancer Signaling 24 55

Protein Kinase A Signaling 73 165

Protein Ubiquitination Pathway 61 138

Pyridoxal 5’-phosphate Salvage Pathway 16 32

RANK Signaling in Osteoclasts 24 52

RAR Activation 44 89

Regulation of eIF4 and p70S6K Signaling 33 86

Regulation of IL-2 Expression in Activated and Anergic T Lym 19 51

Renal Cell Carcinoma Signaling 23 43

Renin-Angiotensin Signaling 32 65

Role of NFAT in Cardiac Hypertrophy 46 93

Role of NFAT in Regulation of the Immune Response 45 105

Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabol 10 14

Systemic Lupus Erythematosus Signaling 51 98

T Cell Receptor Signaling 26 64

Tec Kinase Signaling 39 97

Telomerase Signaling 25 62

Thrombin Signaling 45 98

Thrombopoietin Signaling 20 37

Type II Diabetes Mellitus Signaling 28 62

UVB-Induced MAPK Signaling 18 33

VEGF Family Ligand-Receptor Interactions 22 40

VEGF Signaling 29 50

Xenobiotic Metabolism Signaling 55 122

Pathway subAR vs. TX -
Peripheral Blood

Molecules (n)

subAR vs. TX -
Biopsy Pathways

Molecules (n)

B Cell Receptor Signaling 28 22
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Pathway subAR vs. TX -
Peripheral Blood

Molecules (n)

subAR vs. TX -
Biopsy Pathways

Molecules (n)

Calcium-induced T Lymphocyte Apoptosis 14 10

CD28 Signaling in T Helper Cells 21 21

CTLA4 Signaling in Cytotoxic T Lymphocytes 20 15

Leukocyte Extravasation Signaling 36 23

Phospholipase C Signaling 35 24

Role of NFAT in Regulation of the Immune Response 29 26

T Cell Receptor Signaling 25 16

Pathways highlighted in red signify shared pathways
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