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Abstract

The current study estimated the causal links between preschool mathematics learning and late 

elementary school mathematics achievement, using variation in treatment assignment to an early 

mathematics intervention as an instrument for preschool mathematics change. Estimates indicate 

(n= 410) that a standard-deviation of intervention-produced change at age 4 is associated with a 

0.24 standard deviation gain in achievement in late elementary school. This impact is 

approximately half the size of the association produced by correlational models relating later 

achievement to preschool math change, and is approximately 35% smaller than the effect reported 

by highly-controlled OLS regression models (Claessens et al., 2009; Watts et al., 2014) using 

national datasets. Implications for developmental theory and practice are discussed.

An accumulating body of research suggests that early mathematical skills are critical to 

developing long-run success in school (Aunola, Leskinen, Lerkkanem, & Nurmi, 2004; 

Byrnes & Wasik, 2009; Claessens & Engel, 2013; Duncan et al., 2007; Geary, Hoard, 

Nugent, & Bailey, 2013; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Stevenson & 

Newman, 1986; Watts, Duncan, Siegler & Davis-Kean, 2014). Among these studies, Duncan 

and colleagues’ (2007) analysis of six longitudinal datasets provides the most robust 

evidence of strong associations between early and later mathematics achievement. Their 

investigation of school readiness skills asked a seemingly straight-forward question: if one 

examined a broad range of child skills and behaviors at school entry, and controlled for a 

host of child and family background characteristics, which characteristics would emerge as 

the strongest predictors of the child’s eventual school achievement? Among the candidates 

investigated were academic competencies, attention problems, and internal and externalizing 

problem behaviors. Across the datasets, a consistent pattern emerged: mathematics 

achievement at school entry was the strongest predictor of later success in mathematics, and 

in some cases reading, even when all other characteristics tested were controlled. Since the 

publication of this study, other correlational studies have found similar results (Claessens, 

Duncan, & Engel, 2009; Claessens & Engel, 2013; Foster, 2010), including one that 

extended the outcome measurement into high school (Watts et al., 2014).
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Developmental and cognitive theories predict that early mathematics knowledge is 

associated with later achievement because early numerical skills facilitate students’ future 

mathematical skill acquisition (e.g. Aunola et al., 2004; Entwisle & Alexander, 1990; 

Gersten et al., 2009; Jordan et al., 2009). This skill-building framework rests on the idea that 

mathematics is a particularly hierarchical subject, in which mastery of simple concepts and 

procedures is required for understanding more difficult mathematics. For example, solving 

even a simple algebraic equation would be impossible without knowledge of operations such 

as division and multiplication, and this operational knowledge depends on understanding the 

basic principles of counting. Relatedly, Siegler, Thompson, and Schneider (2011) describe 

how students gradually broaden the class of numbers that they understand as they progress 

through mathematics, with successful students moving from mastery of whole numbers in 

early grades to fractions in later elementary and middle school. Indeed, a well-developed 

body of empirical work documents the carefully-sequenced cognitive steps students take as 

they expand their understanding of numbers and mathematics (e.g. Booth & Siegler, 2006; 

Gilmore, McCarthy, & Spelke, 2007; Laski & Siegler, 2007; Opfer & Thompson, 2008; 

Sarama & Clements, 2009).

Beyond the cognitive skill-building framework lie other developmental reasons to expect 

that early success in mathematics would set children on a successful trajectory throughout 

school. Complex interactions between the child and her environment in the early schooling 

years are likely to leave long-lasting influences on the child’s developmental trajectory 

(Bronfenbrenner & Morris, 2006). For example, high-achieving children in kindergarten are 

more likely to receive positive feedback regarding their academic proficiency from teachers, 

parents, and peers, which in turn may boost their perception of their own math competence 

(Bong & Skaalvik, 2003; Meisels, 1998). Relatedly, early mathematics achievement could 

be a gateway to higher-ability tracking in school, which would also support further academic 

development. Indeed, these pathways from early to later mathematics achievement have 

received empirical support, as evidence suggests that self-concepts and placement into gifted 

and talented programs both mediate the association between early and later mathematics 

(Watts et al., 2015).

From Level to Change in Early Mathematics

Much of the correlational evidence linking early and later mathematics ability is based on 

measures of early levels of math skills. Other studies show strong associations between early 

gains in mathematical ability and later success in school. For example, using longitudinal 

data, Watts and colleagues (2014) found that gains in mathematical skills during the first 2 

years of school were more predictive of later achievement than were level-measures of 

school-entry skills. Moreover, early math gains were just as predictive of high school 

achievement as grade-3 math achievement, even after controlling for concurrent gains in 

other cognitive skills, such as working memory and reading achievement. Using nationally-

representative data, Claessens et al. (2009) found that change in mathematics achievement 

across kindergarten was highly predictive of both fifth grade mathematics and reading 

achievement. Finally, using a growth-curve modeling approach, Jordan and colleagues 

(2009) found that change in number competence, measured six times in kindergarten and 

first grade, strongly predicted third-grade mathematics achievement.
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Taken together, these studies suggest that the process of learning mathematics during the 

early-grade years may set students on a higher-achievement trajectory throughout their time 

in school. If the associations between early change and later achievement reported by these 

correlational studies approximate causal effects, then such long-run impacts could be 

expected from educational interventions that successfully promote early mathematics 

learning. Although past studies of early math change controlled for a host of child 

characteristics, including initial level of mathematics achievement, it is still unclear whether 

the regression-adjusted association between early change in mathematics and later 

achievement represents a causal effect. Here we ask: Do early mathematics gains produced 

by random assignment to an intervention predict later math achievement as strongly as the 

naturally-occurring gains used in past studies? If the associations reported in past studies are 

driven by unobserved characteristics, such as interest, motivation, parental support for 

mathematics, or cognitive aptitude, then even highly successful early mathematics 

interventions may have no detectable impact on later achievement.

Indeed, experimental and observational studies suggest that the regression-adjusted 

associations reported by correlational research overstate the potential long-run impacts of 

early mathematics intervention. Bailey, Watts, Littlefield and Geary (2014) hypothesized 

that the stable correlation observed between measures of early mathematical ability and the 

sequence of later mathematics measures may be due to stable but unobserved factors that 

heavily influence mathematics achievement throughout development. Using a latent-factor 

state-trait model, they separated the variance in longitudinal measures of mathematics 

achievement into time-variant (state) and time-invariant (trait) components. They found that 

most of the variation in repeated measures of mathematics achievement was trait-like, as 

variation in individual differences in mathematics achievement were highly stable over time. 

Conversely, changes in any single measure of mathematics ability had relatively small 

effects on subsequent achievement scores once the stable variance was partitioned into a 

single, latent, factor. They concluded that correlational studies investigating the association 

between early and later measures of achievement fail to take into account the multitude of 

stable environmental and individual factors that likely influence achievement over time, and 

this omission leads to an overstatement of the importance of early measures of achievement 

on later measures.

Further, experimental evidence from intervention studies also suggests that long-run 

correlational models may not accurately represent causal impacts. Building Blocks, a 

preschool mathematics curriculum designed by Clements and Sarama (2008), was evaluated 

as part of a multi-site scale-up evaluation of an intervention model called TRIAD 

(Technology-enhanced, Research-based, Instruction, Assessment, and professional 

Development; see Clements, Sarama, Spitler, Lange, & Wolfe, 2011; Clements, Sarama, 

Wolfe, & Spitler, 2013). In the TRIAD evaluation study, state-preschool programs were 

randomly assigned to either a curriculum implementation condition or a business-as-usual 

control condition. Although the intervention produced a large impact on mathematics 

achievement at the end of preschool (Hedge’s g = 0.72), this effect faded by over 60% by the 

end of first grade (Clements et al., 2011; Clements et al., 2013). The fade-out pattern 

reported by Clements and colleagues resembles the results of a meta-analysis of early 

childhood education interventions (Leak et al., 2010), which found that most early 
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interventions faded substantially in the years immediately following the end of treatment. 

Moreover, recent evidence from a large-scale middle childhood mathematics intervention 

has shown similar fadeout effects (Taylor, 2014).

Although these intervention findings dim hopes that producing gains in early mathematical 

skills might transform long-run academic trajectories, analysis of intervention effects do not 

directly test the causal returns of early skill gains. Even if an early intervention such as 

TRIAD produced a large boost in skills during the treatment period, estimates of the 

intervention’s impact on later-grade math achievement would merely test the effect of being 

assigned to the treatment group on later achievement, not the effect of students’ math skills 

gains across the treatment period. Further, traditional “treatment on the treated” analyses in 

such contexts test the effect of actually participating in the program on later outcomes, but 

this analysis still falls short of directly examining the long-run effects of growth in early 

skills.

If we want to understand how long-run developmental trajectories might be altered as a 

result of spurring early gains in academic skills, a different analytic approach is needed. To 

be effective, this approach would need to separate variation in early mathematics change 

from sources of unobserved characteristics (e.g. child IQ, parental investment, interest) that 

might induce an upward bias in the estimated relationship between early skill gains and later 

achievement. Yet, unlike long-run analyses of intervention effects, this approach should also 

directly test the effect of early mathematics change on later achievement, not the effect of 

program participation, or assignment to a program, on later measures of math ability.

Current Study: Instrumental Variables

To obtain a causal estimate of the association between early mathematical skill change and 

later achievement, the current study employs instrumental variables (IV) techniques, which 

are widely used in applied econometric studies (see Angrist & Pischke, 2008; Murnane & 

Willett, 2010). IV methods have recently garnered considerable attention from 

developmental scientists; Gennetian, Magnuson, and Morris (2008) demonstrated the 

potential utility of the method for answering questions of theoretical importance in 

developmental psychology. Auger, Farkas, Burchinal, Duncan and Vandell (2014) employed 

IV for estimating the causal impact of childcare quality on later academic outcomes, and 

Crosby, Dowsett, Gennetian and Huston (2010) used IV to examine the impact of childcare 

type on child behavioral problems.

The intuition behind an IV approach is relatively simple: if the variation in a theoretically-

interesting predictor variable can be purged of the portion of its variation that stems from 

unobserved factors (i.e. selection bias), then the “clean” variation left can be used to estimate 

a causal effect. To generate this clean variation, the observational dataset must contain a 

variable (i.e. instrument) that satisfies two conditions. First, the instrument must have a 

strong effect on the predictor of interest (in our case early math gains). Second, the 

instrument can only affect the eventual dependent variable of interest (in our case later-grade 

achievement) through the main predictor. In other words, the effect of the instrument on the 

dependent variable should be completely mediated by the key endogenous predictor. Both 
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requirements are essential to the success of the IV analysis, and finding instruments that 

satisfy these criteria in developmental research can be difficult (Gennetian et al., 2008).

In the current study, we seek to identify the causal impact of early mathematical skill change 

on later mathematics achievement. We test this causal relation by leveraging random 

assignment within the TRIAD scale-up evaluation as an instrument for preschool 

mathematics change. We then relate this “exogenously-produced” change (i.e., the change in 

mathematics learning that is only due to random assignment to the intervention, not other 

personal or environmental factors such as cognitive ability or parenting) to mathematics 

achievement measured in fourth and fifth grade. We chose the fourth and fifth grade 

outcome measures because they closely align with the time at which outcomes were 

measured in previous correlational work (e.g., Duncan et al., 2007) and because they were 

the most distal measures of mathematics achievement available in the data.

To produce exogenous variation in preschool math change, we take advantage of the fact that 

the Building Blocks intervention randomly assigned treatment to classrooms within clusters 

of preschools (called “blocking groups” and described below). The intuition behind our IV 

approach is that, to the extent that the relationship between early math change and later math 

achievement is causal, preschool clusters showing particularly large treatment impacts on 

math gains across the preschool year should also show larger-than-average impacts on later-

grade achievement. The IV estimate is essentially the ratio of the later-grade impacts to 

early-gain impacts – both of which are produced by random assignment to treatment status. 

Mechanically, we use blocking group and treatment status interactions as instruments for 

early mathematics change in a two-stage least squares (2SLS) model (e.g., Duncan, Morris, 

& Rodruigues, 2011). The 2SLS estimator is a common technique for IV analyses (see 

Murnane & Willett, 2010).

If the instrumental variable criteria mentioned above are satisfied (i.e., the instrument 

strongly predicts preschool math gains, and the instrument only affects later achievement 

through its effect on preschool math learning), then the 2SLS model should provide an 

unbiased estimate of the causal effect of preschool mathematics change on later mathematics 

achievement. Prior research leads us to hypothesize that early mathematics change will have 

a causal effect on later achievement, because early success in mathematics is likely to 

improve the chances of later mathematics achievement through both skill acquisition and 

other related personal and environmental processes (e.g. boosting positive self-concepts, 

placement in higher-achievement tracks in school). However, we expect that the causal 

impact will be smaller than the relations reported by correlational studies, as recent evidence 

suggests that omitted factors probably bias estimates of the association between early and 

later measures of mathematics achievement.

Method

Study Design

The design of the TRIAD scale-up evaluation is crucial to our analytic model. The 

intervention evaluation study researchers recruited 42 elementary schools with state-funded 

preschool programs serving low-income communities in New York and Massachusetts to 
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participate in the evaluation, and they then grouped these schools into 8 blocks. The 

blocking groups were determined based on fourth-grade state-collected achievement test 

scores alone, and were not linked to district or other shared characteristics. This process was 

done to help ensure that schools in the treatment and control condition were balanced on 

unobserved characteristics (see Clements et al., 2011).

Within each block, schools were randomly assigned to one of three conditions: 1) control 

condition (business as usual); 2) Building Blocks curriculum during preschool only; 3) 

Building Blocks curriculum during preschool with extended pedagogical development (PD) 

in kindergarten and first grade. Schools assigned to either treatment condition (i.e., 

conditions 2 and 3) implemented the Building Blocks curriculum along with aspects of the 

TRIAD model that included PD and extensive instructional support (described below). Thus, 

the TRIAD evaluation study tested the success of the Building Blocks preschool curriculum 

in comparison with other preschool approaches to teaching mathematics, as students in the 

control condition still received mathematical instruction in their preschools (see Clements et 

al., 2011). As explained below, our analysis focuses just on the first and second groups.

The Building Blocks curriculum (Clements & Sarama, 2013), implemented during 

preschool, was based on theory and research on early childhood learning and teaching. The 

basic approach was finding the mathematics in, and developing mathematics from, 

children’s activities by helping children extend and mathematize these activities. All 

components were based on learning trajectories for each core topic. First, empirically based 

models of children’s thinking and learning were synthesized to create a developmental 

progression of levels of thinking in the goal domain that emphasized conceptual 

understanding, procedural skill, and problem solving competencies. Second, sets of activities 

were designed to engender those mental processes or actions hypothesized to move children 

through a developmental progression.

Preschool teachers working in schools assigned to either treatment condition attended 13 

pedagogical development sessions over the course of two years. The PD sessions were 

designed to help teachers understand the developmentally-sequenced learning trajectories 

that form the basis of the Building Blocks curriculum, and teachers also learned the core 

mathematics procedures and concepts for each topic. Teachers were also trained to use 

formative assessment and the Building Blocks software, called Building Blocks Learning 
Trajectories (BBLT). BBLT was an individually-paced program for students that was aligned 

with the curriculum and intended to provide additional instructional support. Finally, 

throughout the preschool year, teachers interacted with program mentors who offered 

instructional guidance and also asssessed the fidelity of implementation. Analyses showed 

that teachers taught the curriculum with adequate fidelity (mode and mean of 1, “agree” on 

−2 to +2 Likert scale) (see Clements & Sarama, 2011; Clements et al., 2011). On an 

observational instrument focused on mathematics, Building Blocks, compared to control, 

teachers had significantly higher scores on the classroom culture scale, total number of 

mathematics activities observed, and the number of computers on and working for students 

to use. However, there were no observed statistically significant differences in the number of 

minutes mathematics was taught (Clements et al, 2011).
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The current study only considers children attending schools assigned to the preschool only 

treatment condition or control (school N= 30). Unfortunately, we were not able to use the 

alternative treatment condition in our current analyses as the requirements for a viable 

instrument (described below) were not met by this third condition. We describe our attempts 

to use the third, follow-on treatment arm in more detail in the online supplementary material.

The key component of our analyses, the instrumental variable, is derived by generating 

treatment by block interactions, which we then relate to preschool mathematics change. We 

use these interactions because we expect that some blocks were more successful at 

producing preschool mathematics change than others, and these block differences should 

produce more variation in intervention-caused preschool math learning. As explained above, 

our IV procedure assesses whether blocks with the largest treatment-induced gains in early 

math also produced the largest impacts on measures of fourth and fifth grade achievement.

Data

We use data drawn from the TRIAD evaluation study, which randomly selected 880 students 

from the preschool classrooms of the schools assigned to either the preschool curriculum 

intervention or the control condition. Students’ mathematical knowledge was assessed at the 

beginning and end of preschool, spring of kindergarten and first grade, fall and spring of 

grade four, and the spring of grade five, and data were collected from the fall of 2006 

(preschool year) through the spring of 2013 (firth grade year). The current study relies on 

data collected during preschool and grades four and five. As described below, we employ 

two separate model specifications. The first group of models uses a balanced panel, which 

only includes students with non-missing test score data during preschool and grades four and 

five (subsequently referred to as the “grade-pooled” sample; n= 410). The second group of 

models considers students that had data on any of the respective follow-up measures (fall of 

fourth grade n= 469; spring of fourth grade n= 543; spring of fifth grade n= 502). The 

missing cases in the grade-pooled sample are missing due to study-attrition. Of the baseline 

characteristics assessed, only free or reduced price lunch (FRPL) status contains any non-

response (approximately 20%), and non-response was not related to treatment status (p= 

0.30). In the regression models that follow, FRPL was included as a covariate, and missing 

cases were set to 0. A dummy variable was then included in each regression indicating 

whether an observation had missing data on the FRPL indicator.

Table 1 presents sample characteristics for participants in the full sample, grade-pooled 

sample, treatment, and control. As Table 1 reflects, half of the students recruited for 

participation in preschool were African American, 23% were Hispanic, and 21% were 

White. Further, 85% of the sample qualified for FRPL (only the 773 non-missing cases were 

considered here). Students who are included in the pooled sample, and thus, did not leave 

the study in the later rounds of data collection, were more likely to attend a New York school 

(p < 0.001). They were also more likely to be Hispanic (p= 0.063) and less likely to be 

White (p = 0.027). However, students in the pooled sample did not statistically significantly 

differ on the preschool entry test, and were not more or less likely to be in the treatment or 

control group.
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A comparison of columns 4 and 5 from Table 1 shows that treatment and control groups 

were balanced on baseline observable characteristics, as no statistically significant 

differences were detected between the two groups.

Measures

Mathematics achievement—During preschool, mathematics achievement was assessed 

at the beginning and end of the preschool year with the Research-based Early Math 

Assessment (REMA; Clements, Sarama, & Liu, 2008; Clements, Sarama, & Wolfe, 2011). 

The REMA was designed specifically for use with children ages 3 through 8, and it was 

administered through two one-on-one interviews with a trained administrator. The test was 

administered in two sections: number and geometry. Topics found on the number portion of 

the exam included counting, subitizing, number sequencing, cardinality, number 

composition and decomposition, place value and adding and subtracting. Topics on the 

geometry part of the exam included shape recognition, congruence, measurement, 

patterning, and shape composition and decomposition.

The REMA included 225 items that were ordered according to difficulty. The study 

administrator stopped the exam once a student incorrectly answered 4 consecutive items. 

The testing process was videotaped and subsequently coded for correctness and strategy use. 

Approximately 10% of the assessments were double coded, and assessors and coders were 

blind to study condition. The REMA scores were then converted to Rasch-IRT scores to 

account for random guessing and item difficulty. The measure was validated in three diverse 

samples of young children, and it has been shown to have a 0.86 correlation with the Child 

Math Assessment: Preschool (see Clements et al., 2008), a .74 correlation with the Applied 
Problems subtest of the Woodcock Johnson III (see Weiland et al., 2012), and strong internal 

reliability (Cronbach’s α = 0.94; see Clements et al., 2008). The REMA was also 

administered in the spring of kindergarten and first grade. The current study employs both 

the standardized Rasch-IRT scores and simple raw-counts of the number of items correctly 

answered (subsequently referred to as “raw scores”).

During the fall and spring of grade 4 and spring of grade 5, an extension of the REMA, 

called the TEAM 3–5, was administered (Clements, Sarama, Khasanova, & Van Dine, 

2012). The TEAM 3–5 is a paper-and-pencil assessment that can be administered in a group 

setting. It is aligned with the developmental progressions as the REMA although some 

topics are “retired” (e.g., simple counting, subitizing, shape recognition) while others, 

similarly drawn from research-based developmental progressions (see Maloney, Confrey, & 

Nguyen, in press; Wilson, Mojica, & Confrey, 2013) are introduced or receive greater 

emphasis (e.g., multiplication and division, fractions and decimals, measurement of area and 

volume, coordinate systems, and more sophisticated analysis of geometric shapes). In the 

current sample, the TEAM 3–5 was found to have good internal reliability (Cronbach’s α = 

0.91). Further, correlations between the assessment and state grade-5 achievement tests in 

New York (r(351)= 0.82, p < 0.001) and Massachusetts (r(110)= 0.76, p < 0.001) were high 

for the subset of students for which state tests were available (approximately 40% of the full 

sample). As with the REMA, the TEAM 3–5 was also converted to a standardized Rasch-

IRT score.
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The key measure in the study, mathematics change, was constructed by taking the simple 

difference between the standardized post-preschool IRT-scored REMA and the standardized 

preschool entry IRT-scored REMA. Thus, model coefficients should be interpreted as “a 

standard deviation of change,” which makes the effects most comparable to effect sizes 

reported in both intervention and correlational literature. However, because IRT scores can 

be difficult to interpret, we have also calculated a simple measure of the change in the raw 

number of items correctly answered on the pre- and posttests. When considering this 

measure in comparison with the IRT scores, recall that the IRT score takes into account 

correctness, as well as strategy use and item difficulty. Thus, the raw scores reflect a much 

simpler, and less comprehensive, measure of mathematics knowledge that do not have the 

characteristics of measurement that the IRT scores possess.

Table 2 presents descriptive statistics for both IRT-scaled and raw score measures of the 

pretest, posttest, and change measure for both the treatment and control groups. On average, 

students in the treatment group correctly answered approximately 11 items on the pretest, 

and students in the control group answered 12 items, a statistically non-significant difference 

(p = 0.526). By the end of preschool, students in the treatment group correctly answered 

approximately 21 more questions than on the pretest measure, and students in the control 

group correctly answered roughly 16 more items than on the pretest (p < 0.01). Thus, both 

groups grew substantially in their mathematics knowledge. The standardized IRT scores also 

reflect the substantial change students made in both the treatment and control groups. The 

REMA IRT scores were standardized to have a mean of zero at approximately first grade, 

thus the change from an average score of −3.25 for the treatment group at pretest to a score 

of −1.87 at the posttest reflects positive growth toward the normed first grade mean.

Covariates—Information regarding child ethnicity, gender, age, limited English 

proficiency, special education status, and FRPL status were collected at baseline from the 

study schools’ administrative data. The measures are included as controls in the following 

analyses.

IV Model

We used a two-stage least-squares (2SLS) modeling procedure in Stata 13.0 to estimate the 

causal effect of preschool mathematical skill change on later mathematics achievement. In 

the first stage regression, we regressed our key predictor, preschool mathematics change, on 

treatment status, blocking group, preschool-entry mathematics achievement, baseline 

measures of student characteristics, and, most importantly, the interaction between treatment 

status and blocking group. The resulting equation for the ith child in the jth block is as 

follows:

1
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where MathChangeij is the post-test math score subtracted from the pre-test math score of 

the ith student in the jth block, and the instruments are represented by the treatment dummy 

variable (Txij) and the treatment and block interactions (Block* Txij). The use of interactions 

between random-assignment design characteristics (such as site) and treatment status as 

instruments has been used in other quasi-experimental studies of educational settings (Auger 

et al. 2014, Duncan et al., 2011; Taylor, 2014). The second stage regression, which estimated 

the impact of preschool math change on later achievement, then used the predicted values 

for preschool math change generated in the first equation:

2

where MathAchievementijt represents the math achievement test score for the ith child, in 

blocking group j, at time t (either fall or spring of fourth grade, or spring of fifth grade). In 

this equation, the instruments from the first equation (treatment status, and treatment and 

block interactions) do not appear, and θ1 represents the causal impact of preschool 

mathematical skill change on later achievement. If the key IV assumptions described below 

are satisfied, then Zij, the error term, should only represent random shocks, and should not 

include the sources of omitted variable bias that typically plague correlational models.

Whenever IV methods are employed, the instrumented parameter of interest (θ1 in Equation 

2) should be interpreted as the local average treatment effect (LATE), where “local” 

describes compliant students (see Angrist & Pischke, 2008; Murnane & Willett, 2010). In 

other words, IV methods only identify the effect for participants who were compelled to 

participate in the treatment based on random assignment. In our setting, this means that we 

identify the effect of preschool mathematics change for students who grew in mathematics 

only as a result of random assignment to the treatment.

As described in more detail below, we estimated separate 2SLS models for fall and spring of 

fourth grade, and spring of fifth grade measures of mathematics achievement, respectively. 

However, we also estimated models in which we pooled mathematics achievement scores 

across these three grades. All models presented included robust standard errors that were 

adjusted for clustering at the school level.

Correlations between instruments and mathematics change—To be effective in 

an IV analysis, an instrument must have a strong effect on the endogenous predictor 

variable. In this case, the treatment by block interactions need to produce enough variation 

to reliably predict mathematics change in Equation 1. Indeed, in the intervention considered 

here, the treatment was specifically designed to affect mathematics change during the 

preschool year. However, some blocks may have been more successful at this goal than other 

blocks. To assess the correlation between the instruments and preschool mathematics 

change, we ran a regression predicting our key measure of preschool mathematics change on 
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baseline characteristics (including preschool-entry mathematics score), block and treatment 

dummies, and interactions between treatment and block. With standard errors adjusted for 

clustering at the school level, the joint-test for the set of treatment and block interactions 

produced a large-enough F-statistic (F(8) =41.46, p < 0.001) to confidently conduct 2SLS 

analyses, as an F-statistic of 10 is usually considered the threshold for an effective 

instrument (e.g. Angrist & Pischke, 2008). Column 1 of Table 3 displays the coefficients 

produced by this model, including the block and treatment interactions. Block 5 was omitted 

from the regression as the comparison group, as this was the block with the most students 

(n=162). In this model, the treatment had a large main effect (β = 0.699, SE= 0.138), and 

some blocks produced positive interactions with treatment status, while others produced 

negative coefficients. This indicates considerable variability between blocks on the effect of 

the treatment on mathematics change.

Exclusion restriction—To produce only exogenous variation in the endogenous 

predictor, the instrument should not be correlated with the error term in Equation 2. In other 

words, the instrument should not have an effect on the dependent variable (late elementary 

school mathematics achievement) except through the endogenous predictor (preschool 

mathematics change).

Theoretically, this should be the case in the current analysis. The model by which the 

intervention was designed conceptualizes the impact of the intervention on elementary 

school mathematics achievement through a skill-building framework that hinges upon gains 

made in preschool mathematics achievement (Clements et al., 2011; 2013). Thus, future 

mathematical skill production relies on the mathematics skills children carry at the end of 

preschool, as the preschool mathematical competencies allow them to learn and master new, 

more difficult, material. Further, we found no differences in baseline observables between 

the treatment and control groups (see Table 1), indicating that at baseline the treatment 

group was not advantaged in a way that would have improved their chances of becoming 

high achievers later on.

However, it is possible that the intervention could have affected later elementary school 

mathematics achievement through other mechanisms, such as boosts in language skills, 

motivation or executive functioning. Further, treatment students could have been sorted into 

higher quality classrooms after preschool, which could have, in turn, boosted their later 

mathematics achievement. Our data include observational measures of classroom 

instructional quality from the children’s kindergarten and first grade classrooms 

(observations were recorded for approximately 73% of the current analysis sample; see 

Clements et al., 2013 for full description of the observational measure). We found no 

indication that treatment status was correlated with kindergarten or first grade instructional 

quality. We also found that treatment status was not related to the likelihood of staying in the 

same school through kindergarten, first grade, or fifth grade.

Unfortunately, we lack the broad measures of child characteristics needed to rule out 

unexpected changes in child functioning due to the preschool mathematics intervention. 

However, language skills were measured at the beginning of the kindergarten year, and 

Sarama and colleagues (2012) reported a standardized statistically significant treatment 
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impact of approximately 0.10 on the measure of language achievement (measure included 

the ability to recall key words, use of complex utterances, willingness to reproduce 

narratives independently, and inferential reasoning). We tested whether this boost in 

language skills could bias our models by running our primary OLS and IV models with, and 

without, the kindergarten entry language score. Including the language measure did not 

change our estimates (results shown in online supplementary file), indicating that although 

the treatment impacted language functioning, this boost in language did not affect later 

mathematics achievement.

Given that the intervention was only the implementation of a preschool mathematics 

curriculum (that ran for approximately 15 minutes per day; Clements et al., 2011), not a 

global program targeted at a wide array of socio-emotional and cognitive skills, it seems 

most plausible that the primary mechanism through which the intervention affected students 

was through preschool mathematical skill development. Still, we cannot rule out whether the 

treatment might have caused changes in unobserved child characteristics, such as motivation 

or executive functioning. In both cases, changes in these unobserved skills could bias our 

estimates if boosts in these skills also impacted later mathematics achievement. Previous 

correlational studies that have examined relations between mathematics achievement and 

various socio-emotional and cognitive skills suggest that any likely bias-causing candidate 

would probably have a small effect on our model (e.g. Claessens & Engel, 2013; Duncan et 

al., 2007; Jordan et al., 2009; Watts et al., 2014). Nevertheless, if such biases were present in 

our models, they would likely have positive correlations with later mathematics achievement 

and preschool change, and would then bias our key estimate in an upward direction. Because 

we lack the measures to totally rule out this potential threat, our findings should be 

considered upper-bound estimates of the causal relation between preschool mathematical 

skill change and later mathematics achievement.

Grade-Pooled Estimates

In the analyses that follow, we rely primarily on estimates generated from a grade-pooled 

dataset. In these models, we pooled observations across the fall and spring of fourth grade 

and the spring of fifth grade, such that each student was observed three times, and students 

were only included in this sample if they had non-missing data on both fourth grade 

measures and the fifth grade test (n= 410). We chose this path for two reasons. First, IV 

models typically generate relatively large standard errors, because IV models depend only 

on variation produced by the instruments, and thus have less variation with which to produce 

estimates (Angrist & Pischke, 2008). Thus, to generate precise estimates, more statistical 

power is required.

Second, this model is justified by the high correlations between the fourth and fifth grade 

test scores, as these measures each had an average correlation of 0.84. Further, after pooling 

across grades, we regressed fall of fourth grade, spring of fourth grade, and spring of fifth 

grade mathematics achievement on preschool mathematics change and covariates. In this 

model, we included dummies for grade level and interactions between grade and change. 

This set of interactions, which test whether the relation between change and later 
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achievement differs between grade levels, were jointly not statistically significantly different 

from 0 (F(2)= 0.50, p= 0.610).

However, because the impact of preschool change on achievement at different grade levels is 

of theoretical interest, we also present models that were estimated using non-pooled data. In 

these models, fall and spring of fourth grade and spring of fifth grade achievement were each 

regressed independently on instrumented-preschool mathematics change.

Results

We begin with results from OLS models in which we regressed our later measures of 

mathematics achievement (fall and spring of fourth grade and spring of fifth grade) on 

preschool mathematics change, preschool entry mathematics achievement, and other 

baseline characteristics. Columns 2 through 4 of Table 3 presents results from non-pooled, 

OLS, models in which we examined the relation between preschool mathematics change and 

fourth and fifth grade mathematics achievement, respectively. Key independent and 

dependent variables were standardized, and all models presented included the full list of 

control variables (correlations for all predictor variables are shown in the online 

supplementary file). Columns 2 through 4 show the relatively stable predictive relation 

between preschool mathematics change and later achievement, as a standard deviation of 

change had approximately a one-half standard deviation effect on fall and spring fourth- and 

spring of fifth-grade achievement. The effects reported in columns 2 through 4 are larger 

than the OLS-adjusted effects of early mathematical skill change reported by Claessens et al. 

(2009) and Watts et al. (2014), as their studies produced standardized effects of 

approximately 0.35. This discrepancy probably reflects the greater availability of cognitive 

control measures available in the datasets employed by those studies.

Grade-Pooled IV Estimates

Next, we turn to estimates generated from pooled models that used block and treatment 

interactions as instruments for preschool mathematics change. Recall that in the pooled 

models, each student’s fourth and fifth grade tests were considered as separate observations 

in one model. In each model, standard errors were adjusted for school-level clustering, but 

we also tested models that adjusted for student-level clustering to account for the panel 

structure of the dataset, and results did not qualitatively differ.

In column 1 of Table 4, we begin with the reduced form estimates, which show the effect of 

the instrument on the eventual outcome variable of interest. In our study, the reduced form 

model can be interpreted as a basic treatment impact model, as we show the average 

treatment impact of random assignment to the TRIAD intervention on mathematics 

achievement in fall and spring of 4th grade and spring of 5th grade. Across the grades, the 

average treatment impact was positive, but not significant (β= 0.094, SE= 0.064, p = 0.154). 

However, our IV results suggest that the simple treatment impact estimate masks the effect 

of treatment-induced change in mathematics on later achievement.

For purposes of comparison, column 2 of Table 4 presents grade-pooled OLS results 

comparable with the estimates displayed in columns 2 through 4 of Table 3, as a standard 
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deviation of preschool mathematics change was related to a 0.535 standard deviation gain in 

later mathematics achievement (SE= 0.044, p < 0.001). Column 3 displays the 2SLS-

estimated (instrumental variables) impact of standardized mathematics change on later 

achievement with only site, blocking group, and preschool entry math score controlled. In 

this model, the effect fell by over 50% when compared with the OLS models, though the 

estimate was still substantively and statistically significant (β= 0.236, SE= 0.113, p = 0.037). 

In column 4, we added the full list of background characteristics, and the coefficient was 

nearly unchanged, though the standard error fell, reflecting the control variables’ added 

utility for increasing precision (β= 0.242, SE= 0.081, p = 0.003). The lack of change in the 

coefficient on preschool change after the addition of these control variables provides some 

degree of confidence that the exclusion restriction assumption is fairly safe in our models, as 

this indicates that the relation between instrument-produced change and later achievement 

was not correlated with baseline observables.

Additional Models

Column 5 through 7 present 2SLS estimates generated from non-pooled models in which 

every student was only observed one time, and the fall of fourth grade, spring of fourth 

grade, and spring of fifth grade scores were considered individually. We present these 

models because they can provide theoretically interesting information regarding whether the 

relation between exogenously-produced mathematics change and later achievement may 

differ by grade. However, we hesitate to draw strong inferences based on these models 

because our sample sizes drop considerably in each of them, and this limits our ability to 

generate precise estimates when using IV (see Angrist & Pischke, 2008). Thus, these models 

merely inform the primary estimates presented in columns 3 and 4 of Table 4, but drawing 

strong conclusions based solely on these models would be inadvisable.

As columns 5 and 7 demonstrate, the significant and positive effect detected in the pooled 

models was not found in models relating change to either measure of fourth grade 

achievement. Although the fall of fourth grade model presented a positive coefficient with a 

large standard error (β= 0.132, SE= 0.109, p = 0.223), the spring of fourth grade model 

produced a coefficient of nearly zero (β= 0.039, SE= 0.096, p = 0.683). However, we were 

surprised to find that preschool math change strongly predicted fifth grade mathematics 

achievement in our disaggregated IV model (β= 0.257, SE= 0.079, p = 0.001). It would 

seem that the fifth grade effect was largely driving the positive grade-pooled estimate, as the 

grade-pooled estimate roughly represents an average of the three disaggregated effects.

In the online supplementary file, we present results from additional analyses in which we 

estimated our grade-pooled IV model in only key subgroups (i.e., African Americans, 

Limited English Proficient students, high and low achieving students, FRPL students). 

Across all groups we found positive effects within the confidence interval of our key 

estimate shown in column 3 of Table 4. We found the largest effect for African American 

children (β= 0.379, SE= 0.104, p < 0.001), but we did not find that this effect was 

statistically significantly different from the effect for Non-African American students (p= 

0.150).
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In analyses presented in the supplementary file, we also tested the sensitivity of our primary 

findings to various model specifications. As mentioned above, we tested whether controlling 

for kindergarten measures of language and literacy skills changed our results, and we found 

no indication that our models were affected by these measures. Further, we examined 

models that did not control for baseline mathematics achievement, and found that this did 

not substantively change our estimates. Next, we tested whether controlling for grade level 

changed the grade-pooled IV estimates, and again found that our results were robust to this 

specification. Finally, we tested whether changing our IV estimation procedures affected our 

results. We found that using only the single treatment status indicator as an instrument 

produced a positive, marginally statistically significant, coefficient of 0.154 (SE= 0.094, p = 

0.104), and using “limited information maximum likelihood” IV estimator instead of the 

2SLS estimator produced a coefficient quite similar to the one reported in column 3 of Table 

4.

Discussion

The current study tested the extent to which learning mathematics during preschool 

improves mathematics achievement in late elementary school. We leveraged variation in 

preschool learning produced by a preschool mathematics intervention to generate causal 

estimates of the impact of gains in preschool mathematics knowledge. In our main models, 

we found that a 1-SD boost in preschool math learning produced approximately a quarter-

SD gain in late elementary school achievement. However, we were surprised that this 

relation was only detected between preschool math learning and fifth grade achievement, 

and we found no such association between preschool gains and fourth grade achievement.

Taken together, these results lead us to make two primary conclusions. First, correlational 

approaches to questions regarding longitudinal achievement patterns should be approached 

with great caution. Second, early learning does not appear to be an “inoculation” that 

necessarily produces later achievement gains, and consequently, theories regarding skill-

building processes probably require some amount of revision.

Comparisons with Correlational Literature

Our results suggest that the correlational literature, based primarily of OLS models that 

controlled for a host of family and child background characteristics, probably overstated the 

long-run effects of preschool mathematics achievement. When compared with OLS models 

estimated in the current study, the IV models reduced the effect of preschool change on later 

mathematics achievement by nearly 50%. When considered alongside the intervention 

literature, perhaps this finding should not be surprising, as preschool interventions often 

show steady fadeout patterns as time after the end of treatment elapses. Yet, why did the 

correlational literature fail to predict the modesty of the causal relation between early math 

skill gains and later achievement?

The answer could simply be that it is nearly impossible to control for all of the potential 

confounds between early and later test scores. Indeed, previous correlational investigations 

(Claessens et al., 2009; Watts et al., 2014) included a wide array of cognitive, academic, and 

socio-emotional skills not included in our study, but these controls apparently failed to 
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account for all of the underlying sources of bias. Watts and colleagues (2014) even 

controlled for gains in reading achievement and domain-general cognitive skills, and still 

found a 1-SD gain in early math achievement was associated with a 0.37 SD boost in late 

elementary school achievement. When compared with our grade-pooled models, these 

estimates are approximately 35% larger than the 0.24-SD effect that we found using 

instrumental variables (it should be noted that the 95% confidence interval for our primary 

grade-pooled model ranged from 0.08 to 0.39).

Further, compared with previous examinations, we did not find the IV-produced effect of 

preschool change to be consistent across grades, as we found no evidence of a strong 

relation between change and achievement in fourth grade, but we detected a substantial link 

between change and achievement in fifth grade. Certainly, the developmental period over 

which change was measured should be considered when drawing such comparisons, as 

Claessens and colleagues measured mathematical skill change during kindergarten, and 

Watts et al. measured mathematics change from preschool through the end of first grade. It is 

possible that change during kindergarten or first grade could be a stronger predictor of later 

achievement than change during preschool. Yet, given that we found a comparably large, 

OLS-adjusted, relation between preschool change and later achievement, we find it unlikely 

that this difference accounts entirely for the discrepancies between our IV estimates and the 

associations reported in previous correlational research.

If previous correlational models simply lacked the necessary set of controls, what factors 

might need to be controlled if correlational models stand a chance of replicating causal 

estimates? Indeed, future work should seek to find the set of measures that can fully reduce 

bias in analyses of longitudinal academic achievement data, and it is likely that such 

measures would need to include indicators of a wide variety of environmental and personal 

characteristics that could influence the development of math achievement over time. 

However, a few recent investigations also demonstrate that alternative approaches to 

modeling correlational data may provide a more productive path forward. Bailey and 

colleagues (2014) found that a state/trait model, which accounted for omitted-variables bias 

by modeling the stable variation present in repeated measures of mathematics achievement 

as a single, latent factor, substantially reduced the predictive relation between gains in an 

early measure of math ability and later measures of achievement.

Alternatively, the current paper provides another possible approach for generating more 

accurate causal predictions. If researchers can find instruments that satisfy the criteria 

described above, then such analyses could better improve our understanding of many 

developmental processes, as this approach is not necessarily limited to investigations of 

cognitive and academic development. Finding viable instruments is no easy task, but other 

quasi-experimental approaches can also provide more robust causal estimates (see Murnane 

and Willett (2010) for an approachable review of a variety of quasi-experimental methods). 

For example, Cortes and Goodman (2014) found that students who were approximately 

randomly assigned to an extra mathematics course in high school (generated from a 

regression discontinuity in assignment based on prior-year math scores) had higher 

graduation rates and were more likely to attend college. Such findings provide robust causal 

evidence of the possible benefits of mathematics education, and offer an important test of 
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developmental theories that would predict better outcomes for students with enhanced math 

learning opportunities. Thus, although quasi-experimental methods may be difficult to 

pursue, the benefits of generating more accurate causal estimates should make such efforts 

worthwhile.

Implications for Developmental Theory and Practice

Our most surprising result, perhaps, was that we found a strong impact of instrument-

produced change on fifth grade mathematics achievement, but we found no impact on 

achievement in our two fourth grade measures of math ability. We did not hypothesize this 

pattern of results, and because these models were less precisely estimated than our grade-

pooled models, we do not wish to overstate these findings. Nevertheless, when considering 

what processes might have given rise to these results, recall that the same test was 

administered at both fourth grade measurement points and at the spring of fifth grade 

measurement point. Thus, changes in the measure should not account for differences in the 

pattern of findings. However, it is likely that the curriculum students encountered in school 

changed substantially between the fourth and fifth grade years. During the fifth grade year, 

the schools in Massachusetts and New York both switched to the Common Core Standards, 

which emphasizes conceptual understanding of mathematics (Common Core Standards 

Initiative, 2010). Further, it has been argued that this shift toward conceptually-focused math 

would especially alter the way math was taught in low-income schools (Schmidt & 

Burroughs, 2013).

It is quite possible that the knowledge gained from the intervention during preschool only 

benefited students once the more conceptually-rich content was emphasized in fifth grade. 

Certainly, this finding warrants further investigation and replication before major 

conclusions can be drawn. Yet, it should be noted that even if preschool math change only 

positively impacted mathematics achievement in fifth grade, but not fourth grade, then this 

finding strongly contradicts the predictions made by correlational models. Previous studies 

(e.g., Duncan et al., 2007; Claessens & Engel, 2013; Watts et al., 2014) have all reported 

stable relations between early mathematics achievement and later measures of achievement, 

no matter when the dependent variable was measured. Indeed, these findings led previous 

studies to predict that early intervention efforts would have stable long-run effects (Duncan 

et al., 2007; Watts et al., 2014). Our findings suggest that this is not likely to be the case.

Our pattern of results has implications for developmental theory. If our fifth grade finding is 

found to be robust to replication, then this would suggest that skill-building processes do not 

necessarily unfold in a monotonic manner. In other words, early math skills might not 

reliably lead to the development of later mathematical knowledge across all settings. Rather, 

early mathematical knowledge may only lead to the production of later knowledge when this 

early knowledge base is paired with the correct mix of content and teaching. This suggests 

that subsequent environments play a critical role in sustaining cognitive development in the 

wake of early investments in cognitive skills. This also suggests that skill-building theories 

that predict that early knowledge gains will necessarily lead to advantages in later 

achievement (e.g., Cunha & Heckman, 2008) may need some revision, as our results imply 
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that skill development may be a more complex process that relies on many factors other than 

the mere possession of early skill advantages.

However, we also wish to underscore that our preferred estimates, the grade-pooled models, 

suggested that intervention-spurred early gains in mathematics led to approximately a fifth 

of a SD gain in mathematics across fourth and fifth grade. This implies that early skill gains 

do matter for developing long-run achievement trajectories. Although the effect was not as 

large as was previously predicted by correlational work (e.g., Duncan et al., 2007), our 

results do demonstrate the long-run utility of early skills advantages. When considering what 

these results imply for developmental theory and practice, we should recall the “LATE” 

interpretation of instrumental variables results (see Angrist & Pischke, 2009). Instrumental 

variables techniques identify effects for the “complier” population within the sample. In our 

study, compliers are students who responded to the intervention, and gained in mathematics 

knowledge as a result of participation in the program. This is perhaps intuitive, as this means 

that we identified the effect of early math gains for students that, for whatever reason, were 

able to particularly benefit from participation in Building Blocks. Understanding what types 

of students respond best to early academic programs, like Building Blocks, presents a 

promising avenue for further research, as it opens the door for targeting programs toward 

students that might stand to benefit the most from early cognitive investments.

Although our results imply that early gains in mathematics ability should lead to moderate 

advantages in math achievement later in elementary school, for interventions, it is important 

to consider the amount of change that would be required of a program to replicate the effect 

reported here. For an intervention effect to produce a 1-sd end-of-treatment effect on 

mathematics gains, students in the treatment group would need to gain a full standard 

deviation more in mathematics achievement than students in the control group. Although our 

raw score measure compares imperfectly to the standardized Rasch-IRT scores (recall that 

IRT scores take into account strategy use and item difficulty), the raw scores presented in 

Table 2 show that students in the control group still learned a considerable amount of 

mathematics during preschool. If we trace the raw score means back to the test items, our 

results suggest that students would need to move from simple number recognition to 

addition and subtraction by the end of preschool to produce a full standard deviation of 

change beyond the control group. Although such a progression in average mathematical 

ability during preschool may not be impossible, current data from nationally representative 

samples indicates that addition and subtraction is taught far less than more simple 

mathematics topics in even kindergarten, and only 5% of students have mastered adding and 

subtracting at kindergarten entry (Engel, Claessens, & Finch, 2013). Thus, our results likely 

reflect an upper-bound of the probable long-run effects of successful early math 

interventions.

Limitations and Conclusion

The results should also be considered against the limitations of the study. As was discussed 

previously, the exclusion restriction assumption could be violated if the intervention affected 

later mathematics achievement through unknown pathways unaccounted for by the present 

models. Unfortunately, we lack the data to extensively test for extraneous treatment-effect 
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pathways. Yet, we found no evidence that boosts in language skills might have also affected 

later mathematics achievement, and our results did not change with the inclusion of 

background control variables. We also tested whether students in the treatment group were 

more likely to remain in the same school throughout the elementary school years, and 

whether they entered into higher quality kindergarten and first grade classrooms. In both 

cases, we found no evidence that treatment students’ schooling environments changed after 

the treatment year. This also suggests that peer effects should not bias our results, as students 

in the treatment group were not more likely to remain in school with the same peers than 

students in the control condition.

Further, although we employed fairly comprehensive measures of mathematics achievement, 

it is likely that these measures still failed to capture all dimensions of children’s mathematics 

knowledge. Thus, it remains possible that the benefits of gains in early math skills were not 

fully detected by the later mathematics measures. Finally, when interpreting our results, one 

should recall that our models were only tested within a relatively low-income sample of 

children. Thus, it is unclear how our results might relate to students from different 

socioeconomic backgrounds. This further implies the need for replicating our results in 

diverse settings and samples.

Nevertheless, the threat of omitted variable bias was not completely eradicated, meaning the 

current estimates produced by the 2SLS models likely reflect upper-bound estimates of the 

effect of intervention-caused mathematics change on later math achievement. Thus, although 

we found some indication that a standard deviation of change during preschool might lead to 

approximately a quarter of a standard deviation gain in later mathematics achievement, 

intervention fade out is likely to be substantial even in the years following a treatment 

successful enough to produce an average treatment effect of a full standard deviation. As a 

result, if educational practitioners and policy-makers wish to produce early childhood 

interventions that sustain effects in the years following the end of preschool, time and 

attention might be better placed on developing methods designed to build upon preschool 

gains during the early elementary school years (see Clements and colleagues (2013) for 

description of a follow-through treatment that abated early intervention fadeout effects to a 

degree).

In sum, the current paper demonstrated the use of a quasi-experimental method for better 

understanding how mathematics skills develop during the early and middle childhood years. 

Our results illustrate that previous correlational approaches overstated the long-run benefits 

of early math intervention, and that more robust approaches are necessary for generating 

better causal estimates. Further, such approaches are also fundamental to our ability to test 

developmental theories, as the current findings imply that early math skills do not 

automatically lead to future academic success.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Math Change Descriptives

Treatment Control P-
Values

PreK Entry Math

    IRT Score −3.249 −3.164 0.467

(0.856) (0.795)

    Number Correct 11.46 12.10 0.526

(7.493) (7.781)

PreK Post Math

    IRT Score −1.872 −2.245 0.004

(0.672) (0.749)

    Number Correct 32.70 28.02 0.022

(12.11) (12.07)

PreK Change

    IRT Score 1.376 0.919 0.001

(0.705) (0.650)

    Number Correct 21.25 15.92 0.001

(8.647) (8.053)

Observations 456 378  

Note. Entries show means and standard deviations are shown in parentheses. The IRT scores were scaled such that a score of “0” approximates the 
achievement level of a student in first grade. The p-value column lists p-values from regressions in which each variable listed was regressed on 
treatment status. P-values less than 0.001 were rounded to 0.001.
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Table 3

OLS Models Predicting Preschool Change and Late-Elementary School Math Achievement

Later Achievement

Math
Change

Fall- 4th
Grade

Spring- 4th
Grade

Spring- 5th
Grade

(1) (2) (3) (4)

Math Change 0.568*** 0.582*** 0.529***

(0.044) (0.042) (0.043)

Treatment 0.699*** −0.313*** −0.371*** −0.234***

(0.138) (0.047) (0.041) (0.061)

Controls Inc. Inc. Inc. Inc.

Blocking Group Inc. Inc. Inc. Inc.

Block * Treatment

    1 −0.127

(0.262)

    2 −0.320*

(0.135)

    3 −0.281

(0.165)

    4 0.102

(0.162)

    6 −0.262

(0.186)

    7 −0.189

(0.187)

    8 0.045

(0.182)

Observations 834 469 543 502

R-squared 0.425 0.499 0.496 0.448

Note. Robust standard errors were adjusted for clustering at the school level, and are displayed in parentheses. In each model, the dependent 
variable was standardized, as was math change and age. Column 1 displays coefficients produced by treatment and block and treatment group 
interaction (the main component of the IV analysis) predicting math change during preschool. Columns 2 through 4 display the results of OLS 
models predicting standardized math achievement in grades 3 through 5, respectively, with baseline characteristics and preschool math change. 
Coefficients produced by control variables (prek entry math, gender, race, whether limited English proficient, age, whether designated for special 
education, whether FRPL, site and blocking group) can be found in the online supplementary materials.

*
p<0.05

***
p<0.001
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