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Abstract Tomato is the world’s second most cultivated

vegetable. During cultivation or post-harvest storage, it is

susceptible to more than 200 diseases caused by an array of

pathogenic fungi, nematodes, bacteria, and viruses.

Although wide range of chemical pesticides are currently

available to manage plant diseases, continuous application

of pesticides not only affect the nutritional contents of

tomato but also the texture or productivity of soil. In this

context, plant growth promoting bacteria (PGPB) are one

of the nature friendly, safe, and effective alternatives for

the management of diseases and pathogens of tomato.

Currently, numbers of microbes have been used as soil or

plant inoculants in different plants including tomato as

biocontrol. Besides disease inhibition, these inoculants also

act as growth modulators. The present article describes the

biocontrol potential of PGPB strains and mechanisms for

the diseases management in tomato.

Keywords Biocontrol � Tomato � Plant growth promoting

bacteria (PGPB) � Disease management

Introduction

Recently, it has been estimated that huge proportions of

vegetable crops get deteriorated annually during growth or

post-harvest storage, owing to the diseases caused by

fungus, nematodes, bacteria, and viruses. This is one of the

major limiting factors influencing the food production and

human development over thousands of years (Dun-chun

et al. 2016). From last 50 years, application of chemical

pesticides has been the prevailing control measure for

disease management in crop and vegetables production.

The continuous exposure to chemical pesticides such as

fungicides and weedicides adversely affect the productiv-

ity, texture of soil, nutritional content of vegetables, as well

as the health of human being. Due to the hazards associated

with chemically synthesized herbicides and pesticides,

management of diseases via biological means is the novel

emerging technology and gaining importance in better

agricultural sustainability.

Tomato (Solanum lycopersicum L.) is the second most

important vegetable crop next to potato in the world, with

estimated production reaching as 170 million MT in 2014,

where China accounts for 31% of the total, followed by

USA, India, and Turkey as the major producers (http://

www.fao.org/). Apart from being the important veg-

etable crop worldwide, tomato is also used as a model plant

for genetical studies related to fruit quality, stress tolerance

(biotic and abiotic), and other physiological traits. This is

widely adapted to a variety of agro climate spanning from

the tropics to temperate regions (Panthee and Chen 2010).

Presently, the production and quality of tomato are known

to be largely affected by the pathogens in the field or post-

harvest processing (Walker 1971; Ramyabharathi et al.

2012). Disease development during field or/post-harvest

storage and shipment without the effective inhibitor of

microbial growth results in huge economic loss. Therefore,

a critical need of sustainable approach for the plant disease

management is necessary. In this context, soil or plant

microbial inoculants of plant growth promoting bacteria

(PGPB) seem to be promising approach for disease man-

agement in different crops and vegetables (Kumar et al.

2015a, c).
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Rhizosphere and plant growth promoting bacteria
(PGPB) of tomato

Rhizosphere (interface between root and soil) is the most

prominent zone for diversified plant–microbial interac-

tions, determined by the root exudates that comprise array

of chemical signals, carbon containing metabolites such as

shedding of root cells, exudation, secretion, and the leakage

of sugars, organic acids, and amino acids in soil matrix

(Oku et al. 2012; Kumar et al. 2015b). While rhizospheric

microbes mostly pose neutral effect on plants, even though

some have positive or negative impact on the host devel-

opment and health via complex interactions (Glick 2012).

Some microorganisms are deleterious as they compete with

plants for nutrients or cause disease (soil-borne plant

pathogens), while others like mycorrhizal fungi and PGPB

support their hosts by mobilizing nutrients, stimulating

growth, increasing yield, or reducing biotic and abiotic

stresses (Smith and Smith 2011).

Rhizobacteria inhabiting plant roots exert positive

effects ranging from the direct ones like modulation of

phytohormone levels, phosphate solubilization, ammonia

production to the indirect effect like antibiotic, side-

rophore, and HCN production (Kumar et al. 2014, 2015a).

Various species of bacteria like Pseudomonas, Azospiril-

lum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes,

Arthrobacter, Burkholderia, Bacillus, and Serratia enhance

plant growth and thus act as PGPB (Jasim et al. 2013;

Kumar et al. 2014, 2015a, 2016a, b). In case of tomato,

several plant growth promoting strains like Pseudomonas

fluorescens, Bacillus sp., Azotobacter, Serratia, and Mi-

cromonospora (Pastor et al. 2012; Hammami et al. 2013;

Babu et al. 2015; Martı́nez-Hidalgo et al. 2015) are

involved in growth promotion as well as disease

management.

Important diseases in tomato

Currently, more than 200 pests and diseases have been

identified in tomato, causing losses in their production

directly or indirectly (Nowicki et al. 2013). Diseases

caused by fungi, nematodes, bacteria, and viruses are of the

most severe concern in cereal crops and vegetables, which

not only affect their nutritional contents, but also human

health and overall economy. Some of the most important

diseases in tomato caused by fungal pathogens are late

blight, Sclerotinia rot, Fusarium wilt, Fusarium crown, and

root rot. Late blight caused by the Phytophthora infestans

is one of the most destructive diseases of tomato resulting

in significant economic loss (20–70%) (Foolad et al. 2008;

Nowicki et al. 2012, 2013). Sclerotinia rot, caused by

Sclerotinia sclerotiorum, is another one of the important

diseases affecting the tomato crop productivity. Wilt,

crown, and root rot diseases in tomato caused by Fusarium

species have been most intensively studied (Laurence et al.

2014; McGovern 2015). Fusarium wilt is common vascular

disease caused by Fusarium oxysporum, resulting in

extensive (10–80%) yield loss in many tomato producing

countries (Kesavan and Chaudhary 1977). In root rot dis-

ease of tomato caused by Fusarium and Phytoptora sp., the

plant foliage becomes yellow and wilts, eventually the

plant dies. Fusarium crown root disease generally strikes

the root system. At present, such pathogens are causing

extensive loss to this important vegetable crop in the field

and under green house conditions, and remain major lim-

iting factors for tomato production. It is estimated that

approximately 45% of the tomato yield has been reduced in

India due to Fusarium sp. (Ramyabharathi et al. 2012).

Root-knot caused by the nematode Meloidogyne sp. is

the other most devastating and widespread disease in

tomato (Hunt and Handoo 2009; Zhou et al. 2016).

Nematode not only affects the crop yield directly but also

makes the plants more susceptible to fungal and bacterial

infections (Ashraf and Khan 2010). In China, it causes up

to 30–50% yield reductions of tomato (Yang et al. 2011).

This disease also severely reduces productivity of a variety

of vegetables and crops worldwide. However, efficient

control measures have yet been developed.

Bacterial leaf spot is common bacterial diseases of

tomato caused by Xanthomonas campestris. It is highly

destructive in both greenhouses as well as in field condi-

tions, causing 10–50% yield loss (Kallo 1991). In India,

tomato productivity loss has been estimated to range from

10 to 80% (Sharma and Sharma 2005), whereas annual

production loss due to this disease is 10–20%, which may

rise to 80% in some cases (Sharma and Sharma 2005;

Reddy et al. 2012). Ralstonia solanacearum is the most

important soil-borne plant pathogens that cause bacterial

wilt in over 200 families of plants, including tomatoes and

hampers their production (Huang et al. 2013). Clavibacter

michiganensis infection systemically causes wilting and

canker on the stem, while blister-like spots are developed

in locally infected leaves causing substantial economic loss

in tomato production worldwide. C. michiganensis viru-

lence factor plays an important role during blister forma-

tion compared to wilting, and also causes local and

systemic infection in tomato (Chalupowicz et al. 2016).

Viral disease of tomato includes tomato spotted wilt

virus, one of the most important viral diseases which

occasionally lead to plant death (Rossello et al. 1993).

Tomato yellow leaf curl is another viral disease of culti-

vated tomato in the tropical and subtropical regions

worldwide, and losses up to 100% are most frequent. In

many regions, tomato yellow leaf curl is one of the limiting
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factors in tomato production. The causal agents are a group

of Gemini virus species belonging to the genus Begomo

virus, all of them named as tomato yellow leaf curl virus.

Pepino mosaic virus is the rapidly emerging virus that has

established itself as one of the most important viral dis-

eases affecting tomato crops.

PGPB as biocontrol agent in tomato

Some pest management researchers have focused their

efforts on developing alternatives to synthetic chemicals

for controlling pests and diseases. Among these alterna-

tives to as biological control or biocontrol are referred. The

term biocontrol is used not only to control diseases in

plants but also disease management practiced during the

fruits storage. Plant growth promoting bacteria (PGPB) as

biocontrol agents (BCA) have certain advantages over the

conventional chemical control methods, because the former

are ecofriendly, non-toxic, naturally occurring microor-

ganisms, and their application is sustainable not only for

the environment but also to the human health. Another

advantage of PGPB as biocontrol agent is the mode of

action against the pathogens or the diseases, which also

helps in the enhancement of crop growth and yield. The

important mechanisms involved in the antagonism by

BCA, are the production of antibiotics, cell wall degrading

enzymes, bio-surfactants and volatiles, and also induction

of systemic resistance (ISR) in plants (Pérez-Montano et al.

2014; Kumar et al. 2015c). PGPBs are also involved in

competition for space, nutrients, and stimulation of the

plant’s defense capacity (Van der Ent et al. 2008).

Studies on the control of pathogens by rhizobacteria

usually focus on pathogenic microorganisms, but they are

equally effective against weeds and insects (Flores-Fargas

and O’Hara 2006; Siddiqui et al. 2005; Kumar et al.

2015c). The effective control of soil-borne diseases using

PGPB has been reported by many authors (Whipps 2001;

Lucy et al. 2004; Berg and Smalla 2009). Recently, a large

number of bacterial strains have been isolated and identi-

fied for their development as biocontrol agents against

tomato diseases. Punja et al. (2016) used Bacillus subtilis

strain under greenhouse conditions to control the post-

harvest fruit infection. B. subtilis strains were also utilized

by Kilani-Feki et al. (2016) for the suppression of Botrytis

cinerea, the causative agent of tomato fruit rot. Gowtham

et al. (2016) utilized ten rhizobacterial strains to manage

the Fusarium wilt in tomato, and found that two different

strains Bacillus amyloliquefaciens and Ochrobacttrum

intermedium significantly inhibited the incidence of wilt

and also enhanced the vigor index of seedlings. Abdallah

et al. (2016) inoculated seven different endophytic strains

isolated from the native Nicotiana glauca plants, and found

94–88% significant reductions in yellowing and wilt

symptom, and 95–97.5% in vascular browning. Hammami

et al. (2013) screened the effectiveness of Pseudomonas

fluorescens strains against different diseases such as

damping-off, root rot, stem canker, and leaf blight of

tomato. Khan et al. (2012) utilized Paenibacillus lenti-

morbus strains for controlling early blight disease by Al-

ternaria solani in tomato.

Goudjal et al. (2014) utilized endophytic actinomycetes

for the biocontrol of Rhizoctonia solani causing damping-

off in tomato. These strains significantly inhibited the

pathogen growth, and enhanced the growth parameters of

tomato. In recent years, the biocontrol of plant diseases,

particularly using the antibiotic metabolites of actino-

mycetes, has emerged as an alternative to chemical control

agents (Huang et al. 2011). The role of actinomycetes in

biocontrol of soil-borne plant pathogen has been demon-

strated against Fusarium spp. (Gopalakrishnan et al.2011),

Phytophthora spp. (Shahidi Bonjar et al. 2006) and

Pythium spp. (Hamdali et al. 2008).

Some of the fungal strains have also been used as bio-

control for pathogens and diseases in tomato. Kriaa et al.

(2015) isolated glucose oxidase producing Aspergillus

tubingensis, which inhibited growth and spore production

in Fusarium solani. Trichoderma isolates have also been

reported as the potential biocontrol for some fungal

pathogens in tomato. You et al. (2016) reported Tricho-

derma-mediated growth inhibition of Botrytis cinerea, and

their application in soils promoted growth of tomato. Some

of the important strains of PGPB and their biocontrol

potential against the pathogens are described in Table 1.

Mechanisms of biocontrol by PGPB

Disease controls through BCA (biocontrols) commonly

rely on competition for nutrients and space at the infection

site, production of metabolites, and manipulation of bac-

terial signaling molecules (Kloepper 1993; Wu et al. 2009).

In all such cases, pathogens are antagonized by the pres-

ence and activities of other organisms they encounter

(Fig. 1). The primary mechanism of pathogen suppression

via nutrient competition involves the secretion of com-

pounds like siderophores that efficiently sequester iron and

deprive the pathogen from this important element (Raaij-

makers et al. 2002). Some bacteria inhibit pathogen’s

growth by secretion of metabolites that include antibiotics,

toxins, surface active compounds (biosurfactant), and cell

wall degrading enzymes (Whipps 2001; Compant et al.

2005; Haas and Defago 2005; Kumar et al. 2015c),

whereas their specific metabolites also trigger the induction

of systemic resistance (Van Loon et al. 1998). It is obvious

that several mechanisms of action work simultaneously in
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Table 1 Biocontrol potential of PGPB against tomato diseases

Sr.

no.

Disease Disease causing organism Antagonistic organisms References

1 Bacterial speck Pseudomonas syringae pv. tomato Pseudomonas sp., Bacillus amyloliquefaciens/

methylotrophicus and Pseudomonas veronii

Romero et al.

(2016)

2 Bacterial spot Xanthomonas campestris Bacillus subtilis Abbasi and

Weselowski

(2015)

3 Bacterial wilt and

canker

Clavibacter michiganenensis Pseudomonas putida Aksoy et al.

(2017)

4 Bacterial wilt Sclerotinia sclerotiorumm

Fusarium solani

Alternaria alternata

Pseudomonas fluorescens Hammami et al.

(2013)

5 Bacterial wilt Ralstonia solanacearum PGPR Huang et al.

(2013)

6 Bacterial wilt Ralstonia solanacearum Lactic acid bacterium Konappa et al.

(2016)

7 Bacterial wilt Ralstonia solanacearum Ralstonia pickettii QL-A6 Wei et al. (2013)

8 Bacterial wilt Ralstonia solanacearum Endophytic bacteria Nawangsih et al.

(2011)

9 Crown and stem

rot

Rhizoctonia solani and Sclerotium

rolfsii

Burkholderia cepacia T1A-2B and Pseudomonas sp. T4B-

2A

De Curtis et al.

(2010)

10 Damping-off Pythium aphanidermatum and

Pythium ultimum

P. corrugata, P. fluorescens, P. marginalis, P. putida, P.

syringae,P. viridiflava

Gravel et al.

(2005)

11 Early blight Alternaria solani Pseudomonas, Bacillus, Azotobacter, Seeatia Babu et al. (2015)

12 Early blight Alternaria solani Paenibcillus lentimorbus Khan et al. (2012)

13 Fusarium crown

and root rot of

tomato

Fusarium oxysporum f.sp. radicis-

lycopersici

Bacillus megaterium c96 and Burkholderia cepacia c91 Omar et al.

(2006)

14. Fusarium wilt Fusarium oxysporum f. sp.

lycopersici

Alcaligenes faecalis S18 and Bacillus cereus S42 Abdallah et al.

(2016)

15. Fusarium wilt Fusarium oxysporum Bacillus pumilis Benhamou et al.

(1998)

16. Fusarium wilt Fusarium oxysporum Bacillus amyloliquefaciens Gowtham et al.

(2016)

17. Fusarium wilt Fusarium oxysporum Bacillus amyloliquefaciens Loganathan et al.

(2014)

18. Fusarium wilt Fusarium oxysporum Bacillus subtilis, P. fluorescens Sundaramoorthy

and Balabaskar

(2013)

19 Fusarium wilt Fusarium oxysporum P. putida Srinivasan et al.

(2009)

20 Root rot Fusarium solani Aspergillus tubingensis Kriaa et al.

(2015)

21 Grey mould or

fruit rot disease

Botrytis cinerea Bacillus subtilis V26 Kilani-Feki et al.

(2016)

22 Grey mould or

fruit rot disease

Botrytis cinerea Trichoderma harzianum Elad et al. (1993)

23 Grey mould or

fruit rot disease

Botrytis cinerea Streptomyces sp. Li et al. (2011)

24 Grey mould or

fruit rot disease

Botrytis cinerea Candida oleophila Lima et al. (1997)

25 Grey mould or

fruit rot disease

Botrytis cinerea Paenibacillus polymyxa Helbig (2001)

26 Tomato Rot

disease

Rhizoctonia solani Bacillus subtilis B99-2 Ma et al. (2015)
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many BCA. Some of the general mechanisms regarding

biocontrol of tomatoes diseases are briefly discussed

below.

Production/synthesis of antimicrobial metabolites

Antibiosis is an attractive and a highly effective mode of

action as witnessed by BCA in disease suppression, espe-

cially in the soil-borne infections in a number of crops

(Handelsman and Stab 1996). In general, BCA produce

antimicrobial metabolites, the low-molecular weight

diverse group of organic compounds, which are deleterious

for the growth and metabolic activities of other microor-

ganisms (Fravel 1988; Raaijmakers et al. 2002). In the past

decades, a large number of microorganisms, especially the

bacterial genera, have been used for the production of

metabolic products. Some of the metabolites produced by

bacterial BCA have broad spectrum activity and act against

various groups of microorganisms (Raaijmakers et al.

2002). Some species of Bacillus and Pseudomonas produce

a large number of antimicrobial products which act against

pathogenic fungi, nematodes, bacteria, helminths, etc.

(Thomashow and Weller 1995; Raaijmakers et al. 2002;

Almaghrabi et al. 2013).

Secondary metabolite such as pyrrolnitrin (3-chloro-4-

(20-nitro-30-chlorophenyl) pyrrole), produced by different

bacterial strains like Pseudomonas (Ligon et al. 2000),

Serratia sp. (Kalbe et al. 1996), and B. cepecia (Burkhead

et al. 1994), effectively acts against different pathogens.

Another metabolite 2,4-diacetylpholoroglucinol (DAPG)

produced by Pseudomonas fluorescens CHA0 has been

greatly utilized for the suppression of root-knot in tomato

(Siddiqui and Shaukat 2003). Phenazine produced by

Pseudomonas sp. effectively acts against pathogen Fusar-

ium oxysporum in tomato (Chin-A-Woeng et al. 1998).

Production of antimicrobial metabolite is modulated by

exogenous and endogenous factors, addition of fertilizers,

carbon sources, and minerals (Shanahan et al. 1992; Duffy

and Defago 1999). The addition of glucose enhanced pro-

duction of DAPG in Pseudomonas strains, whereas the

supplementation of phosphate fertilizer repressed the pro-

cess (Duffy and Defago 1999).

Production of cell wall degrading enzymes

Production and secretion of cell wall degrading enzymes are

the major mechanisms used by BCA to control soil-borne

pathogens (Kobayashi et al. 2002; Kumar et al. 2015c).

These enzymes affect the structural integrity of target

pathogens cell wall (Budi et al. 2000). Cell wall degrading

enzymes secreted by biocontrol strains used b-1, 3-glu-

canase, chitinase, cellulase, and protease that exert direct

Table 1 continued

Sr.

no.

Disease Disease causing organism Antagonistic organisms References

27 Grey mould or

fruit rot disease

Botrytis cinerea Micromonospora Martı́nez-Hidalgo

et al. (2015)

28 Grey mould or

fruit rot disease

Botrytis cinerea Bacillus amyloliquefaciens Mari et al. (1996)

29 Grey mould or

fruit rot disease

Botrytis cinerea Bacillus subtilis Hang et al. (2005)

30 Grey mould or

fruit rot disease

Botrytis cinerea Pseudomonas rhodesiae, Pseudomonas sp.,

Exiguobacterium sp., Bacillus amyloliquefaciens/

methylotrophicus, Pseudomonas veronii, Pseudomonas sp.

and Pantoea eucalypti

Romero et al.

(2016)

31 Grey mould or

fruit rot disease

Botrytis cinerea Trichoderma You et al. (2016)

32 Post –harvest

diseases

Penicillium and Rhizopus Bacillus subtilis Punja et al.

(2016)

33 Root-knot disease Meloidogyne incognita Bacillus methylotrophicus strain R2-2 and Lysobacter

antibioticus strain 13-6

Zhou et al. (2016)

34 Stem cankar Alternaria alternata P. fluorescens Pastor et al.

(2012)

35 Tomato bacterial

wilt

Ralstonia solanacearum Streptomyces virginiae Y30 and E36 Tan et al. (2011)

36 Vascular wilt and

crown root rot

Fusarium oxysporum f. sp.

lycopersici and F. oxysporum f. sp.

radicis-lycopersici

Pseudomonas fluorescens Pf-5 and SB65, P. corrugata SB40

and Burkholderia Cepacia

Larkin and Fravel

(1998)
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inhibitory effect on the hyphal growth of fungal pathogens,

and chitinase and b-1, 3-glucanase lyse chitin, insoluble

linear polymer of a-1, 4-N-acetylglucosamine of cell wall of

pathogens (Labuschagne et al. 2010). Some of the biocontrol

strains like P. aeruginosa, and P. fluorescens possess chiti-

nolytic activities that degrade the chitin in the cell wall

(Nelson and Sorenson 1999). Someya et al. (2000) reported

chitinolytic and antifungal activities of the potent biocontrol

strain of S. marcescens B2 that effectively acted against the

soil-borne pathogens R. solani and F. oxysporum.

Induced resistance (IR)

Induced resistance (IR) is defined as an enhancement of

plant’s defensive capacity against a broad spectrum of

pests and pathogens (Ramamoorthy et al. 2001). The ele-

vated resistance is due to an inducing agent like the

pathogen or upon exposure to biotic or abiotic stimuli.

There are two major types of IR which includes induced

systemic resistance (ISR) and systemic acquired resistance

(SAR) (Kumar et al. 2015c). Plants acquire enhanced level

Fig. 1 Overview of plant growth promoting bacteria in disease management of tomato
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of resistance to pathogens upon exposure to biotic stimuli

provided by many PGPB, which are activated by certain

molecules to as elicitors. Elicitors are generally cell wall

polysaccharides, salicylic acid, cyclic lipopeptides, signal

molecules like N-acyl-homoserine-lactones (AHLs), phy-

tohormones, ethylene, and jasmonic acid (Van loon 2007;

Van der Ent et al. 2009; Pérez-Montano et al. 2014).

Induced systemic resistance in tomato against Botrytis

cinerea involves jasmonic acid signaling as observed dur-

ing biochar amendments (Mehari et al. 2015). The side-

rophore, pyocyanin, and pyochelin produced by

Pseudomonas species are reported to induce resistance in

tomato plants against tobacco mosaic virus (Choudhary

et al. 2007). In another study, it was observed that root

inoculation of tomato plants with Micromonospora strains

effectively reduced leaf infection by the fungal pathogen

Botrytis cinerea. The Micromonospora induced defense

mechanism upon exposure to pathogen attack has been

validated by gene expression studies. Tomato plants treated

with PGPR Micromonospora sp. responded in terms of

strong and quick induction of jasmonate-regulated defense

pathway upon exposure to pathogen (Martı́nez-Hidalgo

et al. 2015).

Future prospective

Food security for the ever increasing human population can

be achieved by sustainable management of natural

resources. Various studies reported a significant role of

PGPB in agricultural management. However, knowledge

gap is still underlying plant–microbe interactions under

different stress conditions particularly the biotic ones.

Knowledge of rhizosphere ecology governing the distri-

bution of pathogens and antagonists may open the door for

enhancing biocontrol effectiveness against phy-

topathogens. Future research demands intensive rhizo-

engineering based on favorable identification and parti-

tioning of the novel biomolecules, which might create the

unique setting for interactions between plants and

microbes. Alternatively, exploration and application of

multi strain microbial inoculants over the single strain

could be the effective means for disease suppression. In

addition, genetic modifications for enhancing the biocon-

trol efficacy can also be an emerging research field for

future disease managements. For instance, the transfor-

mation of strains with increased levels of antimicrobials

and growth enhancing metabolites can be the better options

(Walsh et al. 2001). Temperature-dependent activity can be

enhanced by the addition of ice-nucleating PGPB. Fur-

thermore, role of non-symbiotic endophytic PGPB in dis-

ease management and growth promotion is very limited.

The microbial, biochemical, and molecular study using

cutting edge tool may provide in-depth knowledge for

better understanding of interactions between the plants and

interacting microorganism. For example, root colonization

of Pseudomonas fluorescens PICF7, an olive root endo-

phyte triggered expression of genes potentially coding for

olive lipoxygenase (LOX-2), phenylalanine ammonia lyase

(PAL), acetone cyanohydrin lyase (ACL) in not only the

targeted organ (root) but also showed broad pattern of plant

defense in terms of tissues (Cabanas et al. 2014). To sum

up, future challenge is to improve the efficacy and dura-

bility of biocontrol under field conditions. If this is

resolved, the efficacy of biocontrol could feasibly be

improved through implications of the expertise to develop

improved screening protocols, formulations, and applica-

tion procedures, as well as the innovative integrated disease

management practices.
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