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The unique dendritic architecture of a given neuronal subtype determines its synaptic connectivity and
ability to integrate into functional neuronal networks. It is now clear that abnormal dendritic structure
is associated with neuropsychiatric and neurodegenerative disorders. Currently, however, the nature

of the extrinsic factors that limit dendritic growth and branching within predetermined boundaries in
the mammalian brain is poorly understood. Here we identify the Wnt receptor Ryk as a novel negative
regulator of dendritic arborisation. We demonstrate that loss of Ryk in mouse hippocampal and cortical
neurons promotes excessive dendrite growth and branching in vitro. Conversely, overexpression of
wildtype Ryk restricts these processes, confirming that Ryk acts to restrain dendrite arborisation.
Furthermore, we identify a hitherto uncharacterized membrane proximal subdomain crucial for Ryk-
mediated suppression of dendrite morphogenesis, suggesting that it may act through a novel signalling
pathway to constrain dendrite complexity. We also demonstrate that Ryk performs a similar function in
vivo as Ryk haploinsufficient postnatal animals exhibit excessive dendrite growth and branching in layer
2/3 pyramidal neurons of the somatosensory cortex. These findings reveal an essential role for Ryk in
regulating dendrite complexity and raise the intriguing possibility that it may influence neural plasticity
by modifying dendritic structure.

The unique three-dimensional architecture of the dendritic arbour is fundamental to a neuron’s ability to integrate
into functional neuronal networks and dictates the extent and quality of information flow across the network.
Dendritic branch length and the degree of branching directly determine spine density and the size of the target
field, thereby constraining the number of synaptic inputs'~>. Abnormal dendritic arborisation and spine density
lead to diminished synaptic connectivity and impaired cognitive function associated with neurodevelopmen-
tal conditions, including autism and schizophrenia, as well as neurodegenerative disorders such as Alzheimer’s
disease*>. Therefore, delineating the molecular signalling cascades that govern the elaboration of stereotypic
dendritic arbours will not only provide key insights into the fundamental principles guiding the establishment of
complex neural circuits, but will also shed light on aberrant processes that contribute to neuropsychiatric condi-
tions and dementia.

During the developmental phase, dendritic morphology is highly dynamic due to continual extension and
retraction of branches which are stabilized by neuronal activity, thereby promoting synapse maturation® ¢-8,
Members of the Wnt family of morphogens and their receptors have been identified as positive regulators of den-
drite growth and branching, and act through several distinct but interconnected pathways that primarily target
the actin and microtubule cytoskeletons®*!1. Wnt7b increases dendritic branching in an activity-independent
manner via the Dishevelled/Rac/JNK pathway (Planar Cell Polarity (PCP) pathway), a major actin remodel-
ling pathway'!. Wnt5a/Fzd4 interactions promote dendrite branching and growth via the downstream effectors
PSD95 and GRIP1 (glutamate receptor interacting protein 1)!2. Activity-dependent induction of Wnts is also a
major contributor to dendritic arborization'* !4, In this context, Wnts increase dendritic complexity through a
B-catenin/N-cadherin/actin pathway'*. A recent study has linked mutations in FZD9 to the increased dendrite
growth and spine density observed in William’s syndrome’®, demonstrating that Wnt signalling can also limit
dendritic complexity. However, the Wnt signalling pathway responsible for this inhibitory activity has not yet
been identified.
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The Wnt receptor Ryk was first identified as an axon guidance receptor that mediates Wnt5a repulsion, and is
essential for the guidance of layer 2/3 pyramidal axons across the corpus callosum and layer 5 projections along
the corticospinal tract'®-2’. More diverse roles have since emerged for Ryk in a range of neurodevelopmental pro-
cesses, including neural tube formation, neuronal differentiation in the early cortex, the induction of GABAergic
interneuron fate and the suppression of oligodendrocyte identity in the ventral forebrain?!-*. Ryk is known to use
the three principal Wnt pathways®*2*, depending on the biological context. Wnt5a/Ryk mediate axon outgrowth
and chemorepulsion via the Wnt/Ca®* pathway'” !°, whereas in the neural tube, Ryk establishes neuroepithelial
polarity through the PCP pathway?®. In C. elegans Ryk activates 3-catenin-dependent Wnt signalling during vulva
cell fate specification®.

Recent studies in Drosophila have uncovered paradoxical functions for Ryk in dendrite morphogenesis.
Wnt5a/Ryk interactions confine dendritic territories on the adult Drosophila epidermis by restricting dendrite
growth?’. In this context, Ryk promotes Wnt5a signal transduction. In contrast, Ryk inhibits Wnt5a-mediated
dendrite repulsion in the developing Drosophila antennal lobe®. A recent study has provided preliminary evi-
dence that Ryk may be involved in the initiation of dendrite sprouting in the mouse*. However, to date, the
involvement of Ryk in dendritic growth and arborisation has not been explored in the mammalian system. Here
we demonstrate that Ryk is a negative regulator of dendrite arborisation in mouse cultured hippocampal and cor-
tical neurons and provide evidence that it acts through an alternative pathway to restrict dendrite complexity. We
further demonstrate that Ryk functions in vivo to constrain dendritic complexity in layer 2/3 pyramidal neurons
of the postnatal somatosensory cortex.

Results

Ryk is expressed in neurons undergoing dendritic arborisation. In early postnatal life dendrites
vigorously extend and retract processes prior to stabilization following synapse formation®*¢. Before extensive
dendritogenesis occurs (embryonic day 18.5, E18.5) Ryk mRNA is present at moderate levels in layer 2/3 of the
mouse cortex and at lower levels in layers 4, 5 and 6, whereas it is less intensely expressed in the hippocampus
(Allen Brain Atlas, http://www.brain-map.org). To determine the Ryk mRNA expression pattern in the postnatal
brain we performed in situ hybridization analysis which revealed that Ryk was expressed broadly throughout the
neocortex at postnatal days 3 and 5 (P3, P5) (Fig. 1). The highest level of Ryk mRNA was seen in layers 2/3 of the
somatosensory and auditory cortices, whereas lower expression was seen in neuronal populations within layers
4, 5 and 6 (Fig. 1a,b,d,e). Strong Ryk expression was also observed in the retrosplenial and piriform cortices and
the amygdala (Fig. 1a,d). At P3 and P5 the granule cells of both the dentate gyrus and the pyramidal neurons
within the CA1 region of the hippocampus also exhibited strong Ryk expression (Fig. 1a,c,d,f). By P14 Ryk levels
are greatly decreased in all cortical areas but remain high in the dentate gyrus and CA1 region (Allen Brain Atlas,
http://www.brain-map.org). Therefore Ryk is most intensely expressed in cortical and hippocampal neurons as
they undergo dynamic dendritic growth and arborisation, suggesting that it may play an important role in den-
drite morphogenesis.

Ryk suppresses dendrite growth and branching in hippocampal neurons. In our previous study
we provided preliminary evidence that Ryk controlled dendrite sprouting of cultured cortical neurons at 2 days
in vitro (DIV2)®. Here we test the hypothesis that Ryk plays a key role in the establishment of dendritic structure.
We first depleted Ryk in cultured hippocampal neurons from E18.5 C57Bl/6 mouse embryos using RNA inter-
ference. Quantitative PCR confirmed the expression of Ryk mRNA in cultured neurons during the period of vig-
orous dendrite expansion (P3-P5) (Fig. 2a). As Ryk is most strongly expressed in the granule cells of the dentate
gyrus and in the CA1 hippocampal region between P3 and P5 (Fig. 1) we focused our analysis on Ctip2-positive
neurons which are restricted to these regions®. Ryk knockdown was achieved using a short hairpin RNA (shRyk,
control: shScr) or long hairpin miRNA?*! (miRyk, control: miCo) cloned into vectors encoding GFP. Knockdown
efficiency was assessed by cotransfection with full-length mouse Ryk (FL-Ryk) in HEK293T cells. shRyk or miRyk
expression resulted in 83% or 84% reduction of Ryk, respectively (Supplementary Fig. 1a,b).

Interfering RNAs were transfected into hippocampal neurons at DIV3 and the number of branches and den-
drite length were quantified 48 h later using the Neuron] plugin of Image]. shRNA depletion of Ryk resulted in a
significant increase in total dendrite length per neuron compared to GFP alone or control cells expressing shScr
(Fig. 2b,c). This effect was rescued by cotransfecting shRNA-resistant mouse Ryk, confirming that this phenotype
was Ryk-specific (GFP: 606.9 + 48.14 um; shRyk: 893.0 £ 60.66 um; shScr: 632.3 & 38.53 pm; shRyk 4 FL-Ryk:
600.3 £39.99 um, n=6). In addition, we observed a significant increase in the total number of dendrites following
Ryk depletion due to an expansion in the number of secondary and higher (2°/higher) order dendrites (Fig. 2b,d)
(GFP: 8.83 +0.54; shRyk: 17.17 £ 1.80; shScr: 12.00 £ 1.77; shRyk + FL-Ryk: 11.33 & 1.38; n = 6). The number of
primary dendrites was not affected by the loss of Ryk. Down-regulation of Ryk using miRyk also resulted in an
increase in both dendrite length and the number of 2°/higher order dendrites (Supplementary Fig. 1e,f) (length:
GFP: 606.9 £ 48.82 pm; miRyk: 751.6 £41.06 pm; miCo: 512.6 + 31.84 pm; miRyk + FL-Ryk: 549.4 + 34.51 pm;
2°/higher dendrites: GFP: 7.41 £ 0.76; miRyk: 14.22 +2.09; miCo: 9.15 4 1.17; miRyk + FL-Ryk: 9.86 & 0.94;
n=6). Cotransfection of miRNA-resistant Ryk with miRyk fully rescued dendritic growth and branching, demon-
strating the specificity of the miRyk sequence. Therefore, depletion of Ryk in cultured hippocampal neurons pro-
moted dendritic growth and branching, suggesting that Ryk is a negative regulator of dendrite morphogenesis.

To confirm that Ryk acts to reduce dendritic complexity, we next expressed FL-Ryk (Myc-tagged) in hip-
pocampal neurons. Myc immunolabelling performed at DIV5 showed that Ryk was concentrated in actin-rich
filopodia at the tip of the extending MAP2-positive dendritic shaft. FL-Ryk was therefore appropriately posi-
tioned to influence dendrite morphogenesis (Fig. 2e). As predicted, expression of FL-Ryk led to a reduction in
total dendrite length and a decreased number of 2°/higher order branches compared to cells expressing GFP
alone (Fig. 2f-h) (length: GFP: 900.3 4 46.77 um; FL-Ryk: 709.3 & 32.49 pm; 2°/higher order dendrites: GFP:
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Figure 1. Ryk is expressed in the neocortex and hippocampus during dendritogenesis. In situ hybridization at
P3 (a,b,c) showed that Ryk mRNA was present throughout the cortex where it was most intensely expressed in
layer 2/3 (L2/3) of the somatosensory cortex (som) (a,b). Strong expression was also seen in the granule cells of
the dentate gyrus (dg) and in the pyramidal cells of the CA1 region of the hippocampus (a,c). Ryk expression
remained high in these areas at P5 (d,e,f). (a,d) Insets: no hybridization signal was seen with control riboprobes.
am, amygdala; aud, auditory cortex; pf, piriform cortex; rs, retrosplenial cortex.

19.00+1.80; FL-Ryk: 12.5+1.38; n=6). Together, these data confirm that Ryk inhibits dendritic branching and
growth in Ctip2-positive hippocampal neurons.

Ryk inhibits dendrite morphogenesis via its juxtamembrane domain. Ryk has been shown to
bind the Wnt effectors Dvl and Vangl2 via its C-terminal PDZ-binding domain?*3**. To determine whether
Ryk regulates dendritic complexity through its interaction with these proteins, we removed the PDZ-binding
domain (ie. the C-terminal residues AYV; RykAAYV; Fig. 3a). Expression of RYKAAYV in DIV3 hippocampal
neurons induced a significant decrease in both dendritic growth and 2°/higher order branching compared to neu-
rons expressing GFP alone (Fig. 3b,c). This reduction in dendritic branching was equivalent to that observed for
FL-Ryk (length: GFP: 558.1 & 38.26 pum; FL-Ryk: 424.7 £ 25.87 um; RykAAYV: 417.7 4 28.26 pum; 2°/higher order
dendrites: GFP: 8.65 & 1.04; FL-Ryk: 5.97 £ 0.71; RykAAYV: 5.90 £ 0.68; n = 6), Therefore, the PDZ-binding
domain is not essential for Ryk inhibition of dendrite morphogenesis. As all Wnt signalling pathways are reliant
on the downstream effector Dv1* %2425, these data provide evidence that Ryk uses an alternative signalling path-
way to restrict dendrite complexity.
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Figure 2. Ryk inhibits dendritic growth and branching in cultured hippocampal neurons. (a) Quantitative PCR
showed that Ryk was expressed in cultured hippocampal neurons. HPRT, hypoxanthine guanine phosphoribosyl
transferase. (b,c,d) Plasmids containing Ryk-specific ShRNA (shRyk) or control shRNA (shScr) and GFP were
transfected into DIV3 hippocampal neurons and dendritogenesis assessed at DIV5. Depletion of Ryk resulted
in an increase in dendritic length (b,c) and the number of secondary and higher order (2°/higher) dendrites
(b,d). Coexpression of shRNA-resistant FL-Ryk with shRyk fully rescued dendritic growth and branching
(n=6; 50-60 neurons/condition; *p < 0.05; **p < 0.01; ****p < 0.0001). (¢) When transfected alone, FL-Ryk,
identified by an anti-Myc antibody, localized to the dendritic shaft and filopodia of hippocampal neurons.
Dendrites were identified using anti-MAP2. Bottom panels 1 and 2 are enlargements of insets. Arrows point to
FL-Ryk clusters. Overexpression of FL-Ryk alone in hippocampal neurons led to a decrease in dendritic length
(f,g) and 2°/higher order branching (f,h) (n=6; 50-60 neurons/condition; **p =0.0015; ***p =0.0008). Data
are represented as the mean + s.e.m. (b,e,f) Arrowheads indicate the axon.
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Figure 3. Ryk inhibits dendrite morphogenesis via its juxtamembrane domain. (a) Schematic diagram of FL-
Ryk and truncation mutants. (b,c) Deletion of the Ryk PDZ-binding domain (AAYV) inhibited dendrite growth
and 2°/higher order branching to the same extent as FL-Ryk (n = 6; 50-60 neurons/condition; *p < 0.05).

(d,e) Similarly, the truncation mutants T299, R330 and Q361 inhibited dendrite growth and 2°/higher order
branching to the same extent as FL-Ryk (n = 6; 50-60 neurons/condition; *p < 0.05; **p < 0.01; ***p < 0.001
compared to GFP alone). However, removal of the entire ICD (AICD) abrogated the ability of Ryk to suppress
dendrite growth and 2°/higher order branching (*p < 0.05; **p < 0.01; **p < 0.001; ****p < 0.0001). Data are
represented as the mean +s.e.m. ECD, extracellular domain; ICD, intracellular domain; TM, transmembrane
domain.

To identify the region within the Ryk intracellular domain (ICD) responsible for the suppression of dendritic
arborisation, we generated a series of truncation mutants (Fig. 3a) and assessed their effect on dendrite growth
and branching. Immunolabelling of hippocampal neurons expressing these mutants revealed that, as for FL-Ryk,
all mutants localized to the dendritic filopodia (Supplementary Fig. 3a), indicating that targeting of Ryk in the
growing dendrite was not dependent on its cytoplasmic domain. As shown above, expression of FL-Ryk signif-
icantly reduced dendritic complexity compared to the GFP controls (Fig. 3d,e). However, removal of the entire
ICD (RykAICD) abrogated this suppressive activity as both dendritic growth and 2°/higher order branching
were equivalent to those of control cells (Fig. 3d,e), demonstrating that the ICD is required for Ryk function. Note
that RykAICD was found on the plasma membrane, indicating that its cell surface expression was not affected
(Supplementary Fig. 3b).

In contrast to RykAICD, mutants in which the ICD had been truncated at amino acid Q361, R330 or T299
fully retained their ability to suppress the expansion of the dendritic tree (Fig. 3d,e). In these experiments we
observed a significant reduction in growth and 2°/higher order branching after transfection of each mutant
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compared to GFP alone. This decrease in growth and branching was equivalent to that observed for FL-Ryk.
These results identify a small juxtamembrane region of the Ryk ICD as essential for Ryk-mediated suppression
of dendrite morphogenesis. As RykAICD terminates 56 amino acids N-terminal to the T299 truncation (ie. at
amino acid 243), the core region involved in regulating dendrite complexity lies within the short region between
amino acids 243 and 299 (56 amino acids).

Ryk restricts dendritic complexity in cortical neurons both in vitro and in vivo.  Our in situ analy-
sis demonstrated that Ryk was expressed in all cortical layers during the time when neurons are elaborating com-
plex dendritic structures (P3-P5, Fig. 1). Transfection of FL-Ryk into cultured cortical neurons revealed that Ryk
accumulated in puncta along the dendritic shaft and was also localized to the dendritic filopodia (DIV5, Fig. 4a),
again suggesting a role in dendrite morphogenesis. To determine whether Ryk was able to inhibit cortical den-
drite growth and branching, we compared cortical neuronal cultures from E18.5 Ryk loss-of-function (Ryk='-)
embryos and wildtype (Ryk™/*) littermates'® **. Analysis of dendrite structure at DIV5 revealed that dendritic
growth and 2°/higher order branching were significantly increased in Ryk~/~ cortical neurons, whereas the num-
ber of primary dendrites was not affected (Fig. 4b-d) (length: Ryk*/*: 518.6 £ 29.02 jum; Ryk~'~: 641.7 £29.62 pmy;
2°/higher dendrites: Ryk*/*: 7.53 4-0.96; Ryk~'~: 9.85 1+ 0.78; n =6). Therefore, Ryk negatively regulates dendrite
complexity in cortical neurons.

We next investigated if loss of Ryk also increased dendritic complexity in the postnatal mouse cortex. Ryk is
highly expressed in layer 2/3 when dendritogenesis is at its peak (Fig. 1). We therefore focused on the dendrites
of layer 2/3 pyramidal neurons in the somatosensory cortex. As Ryk~'~ embryos die prior to birth, we performed
Sholl analysis on Golgi-impregnated P14 cortex from pups heterozygous for the Ryk loss-of-function allele. This
analysis revealed a small but significant enhancement in the complexity of the dendritic tree in Ryk-depleted
(Ryk*'~) neurons. Specifically, we observed a significant increase in the number of branches (ie. number of inter-
sections) within 50 pm of the soma and a trend towards increased branching at greater distances in the Ryk*/~
cortex (Fig. 5a,b). In addition, the aggregate dendrite length within each concentric radial segment (Fig. 5¢c) and
the mean total length of Ryk*/~ dendrites per neuron (Fig. 5d) were greater for Rykt/~ neurons than Ryk™'* neu-
rons. Together these data demonstrate that Ryk haploinsufficiency leads to enhanced layer 2/3 dendrite growth
and branching, thereby confirming that Ryk constrains dendritic complexity in the postnatal cortex.

Discussion

The contribution of a given neuron to the information flow within the neural circuit is governed by the structure
of its dendritic arbour. The size and geometry of the dendritic tree directly determines synaptic density, type of
synaptic input and position relative to the cell body, all of which influence the firing pattern of the neuron®. It
is now clear that abnormal dendritic structure diminishes synaptic connectivity, leading to impaired cognitive
function associated with conditions such as autism and schizophrenia as well as neurodegenerative disorders>*
5. During the developmental period, exuberant extension and retraction of dendritic branches allow the neuron
to explore potential territories” . To generate the unique stereotypic architecture of a given neuronal subtype,
dendrite growth and branching must be constrained within predetermined boundaries. Here we identify the Wnt
receptor Ryk as a novel negative regulator of dendritic arborisation and show that it is expressed at high levels in
layer 2/3 pyramidal neurons of the postnatal somatosensory cortex, the granular cells of the dentate gyrus and
the principal neurons within the CA1 region of the hippocampus during the postnatal period when dendritic
structure is being established (Fig. 1). We demonstrate that acute loss of Ryk in actively growing hippocampal
and cortical neurons promotes excessive dendrite growth and branching in vitro. Conversely, overexpression of
wildtype Ryk suppresses these processes, confirming that Ryk acts to restrain dendrite arborisation. Notably,
manipulation of Ryk activity impacted on secondary and higher order branching only, indicating that it plays
a precise role in shaping the dendritic tree. Importantly, our results also provide evidence that Ryk function is
conserved in vivo where layer 2/3 pyramidal neurons in the somatosensory cortex of Ryk haploinsufficient P14
animals exhibit excessive dendrite growth and branching. Therefore our study has unveiled an essential role for
Ryk in sculpting dendritic structure.

Unexpectedly, in contrast to the increased dendrite arborisation seen in Ryk~/~ cortical neurons and
shRNA-depleted hippocampal neurons, a small but significant decrease in dendrite growth and branching was
observed in Ryk~/~ hippocampal neurons (Supplementary Fig. 2). This suggests that a compensatory mechanism
was operating in response to genetic ablation in the Ryk~'~ hippocampal neurons but not after acute ShRNA
depletion. That this compensatory mechanism was not invoked in Ryk~/'~ cortical neurons indicates that Ryk sig-
nalling plays a pivotal role in cortical dendritogenesis but may be less important for the establishment of dendrite
morphology in the hippocampus.

Wnt signalling has been shown to both positively and negatively regulate dendrite morphogenesis!! 1% %,
However, the identity of the Wnt receptors involved and their downstream effectors are poorly characterized. The
PCP pathway increases hippocampal dendrite growth and branching by prompting actin remodelling through
the activation of the Rac GTPase, whereas loss of the PCP effectors Dvl1 or Vangl2 reduces dendrite complexity'!.
Conversely, removal of the C-terminal domain of Vangl2 enhances the expansion of the dendritic tree®, sug-
gesting that a complex regulatory loop determines the outcome of PCP pathway activation in the dendrite. This
is exemplified in the navigating axon where both Vangl2 and Dvl2, a second member of the Dishevelled family,
antagonize Dvl1 in high Wnt concentrations®-*. Thus activation or inhibition of the PCP pathway is governed
by the relative concentration of its downstream effectors. Our results demonstrate that depletion of Ryk expands
the dendritic tree (Figs 2, 4 and 5), suggesting that it may antagonize the PCP pathway. Ryk is known to signal
through the PCP pathway and is able to bind both Dvl and Vangl2 via its C-terminal PDZ-binding domain®* 323,
Moreover, Ryk accumulates in dendrite filopodia (Figs 2e and 4a) where both Dvl and Vangl2 are concentrated.
Therefore, we first tested the hypothesis that Ryk inhibits dendrite morphogenesis through its interaction with
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Figure 4. Ryk suppresses cortical dendrite complexity in vitro. (a) When transfected into wildtype cortical
neurons, FL-Ryk accumulated in puncta along the dendritic shaft and was also localized to dendritic filopodia.
Dendrites were identified using anti-MAP2. Bottom panels 1 and 2 are enlargements of insets. Arrows point to
FL-Ryk clusters. (b,c,d) Dendrite morphogenesis was investigated in DIV5 cultures of cortical neurons isolated
from E18.5 Ryk~'~ and Ryk™'* cortices. There was a significant increase in dendritic length (b,c) and the number
of 2°/higher order branches (b,d) in Ryk™~ compared to Ryk™* neurons (6 embryos/genotype; 10 neurons/
embryo; *p=0.0480; **p =0.0039). (a,b) Arrowheads indicate the axon.

Dvl or Vangl2. Surprisingly, we found that the Ryk truncation mutants retained full suppressive activity despite
the removal of the PDZ-binding domain. This strongly argues that Ryk does not directly interact with Dvl or
Vangl2 to inhibit PCP signalling. Alternatively, Ryk may suppress the PCP pathway by modulating Fzd activity.
During axon navigation, Wnt/Fzd use the PCP pathway to promote attraction, whereas Ryk, acting as a Fzd core-
ceptor, converts Fzd-mediated attraction to repulsion via the Wnt/Ca*" pathway!”1°. This raises the possibility
that Ryk may suppress PCP pathway activity and hence the expansion of the dendritic tree by forming a complex
with Fzd.
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Figure 5. Ryk constrains layer 2/3 dendrite complexity in the somatosensory cortex. (a) Reconstruction of
layer 2/3 pyramidal neurons in the somatosensory cortex of Ryk*'* (left) and Ryk™~ (right) P14 pups. (b,c,d)
Sholl analysis of layer 2/3 neurons in the P14 Ryk*/~ and Rykt/'* somatosensory cortex. (b) Compared to Ryk*/*
neurons, there was a significant increase in the number of branches (number of intersections) within 50 pm

of the soma and a trend towards increased branching at greater distances in Ryk™'~ neurons (13 Ryk™'* and

12 Ryk*'~ animals; 4 neurons/animal; *p < 0.05; **p < 0.01). (c) The aggregate dendrite length within each
concentric radial segment was greater for Ryk*/~ than for Ryk*/+ neurons (*p < 0.05; **p < 0.01). (d) The mean
total length of dendrites/neuron was greater for Ryk™~ neurons compared to Ryk™* neurons (*p =0.0298).
Data are represented as the mean +s.e.m.

Our analysis of Ryk truncation mutants uncovered a membrane-proximal 56 amino acid region as a core
subdomain that is crucial for the regulation of dendrite morphogenesis. We found that the ability of the RykT299
truncation mutant to supress dendritic arborisation was equivalent to that of full-length Ryk. In contrast, removal
of the full ICD abrogated this inhibitory activity despite localization of the AICD mutant to dendritic filopodia
(Supplementary Fig. 3a,b). This differential response places the effector domain between amino acids 243 and 299
and adjacent to the transmembrane domain. To date, interrogation of this sequence has failed to identify known
protein-protein interaction motifs, and very few cytoplasmic interaction partners have been identified for Ryk.
However, a recent mass spectrometry-based affinity screen has provided clues to the identity of candidate Ryk
effectors that may interact with the 56 amino acid core subdomain?. Over 60 Ryk ICD binding partners were
isolated in this screen, including the PCP components CELSR, FAT and DCHS. Interactions between Ryk and any
of these proteins could negatively impact PCP signal transduction. In addition, several actin-remodelling proteins
were identified, suggesting that Ryk may directly modify the actin cytoskeleton.

The ability of Ryk to inhibit dendrite growth and branching closely parallels its function as an inhibitor of
axon regeneration®”**~*2, Wnt/Ryk interactions impede corticospinal axonal regeneration after spinal cord injury
by promoting axonal retraction®”*2. As seen for dendrites, silencing Ryk activity promotes axonal regrowth and
sprouting of collateral branches after spinal cord hemisection®”**. Therefore, delineating the downstream effec-
tors of Ryk may uncover viable targets for the design of novel therapeutic strategies to enhance axonal repair after
spinal cord injury.

Within the somatosensory cortex the architecture of the dendritic arbour dictates the size of a neuron’s recep-
tive field and is therefore the primary determinant of the sensory stimulus impinging upon the cell’. Here we
show for the first time that Ryk acts to constrain dendrite arborisation in layer 2/3 pyramidal neurons of the
somatosensory cortex. We therefore postulate that Ryk plays a central role in the establishment of the receptive
field of these neurons. Although the identity of the Wnts responsible for activating Ryk is currently unknown, the
primary Ryk ligand, Wnt5a, is expressed throughout the P7 cortex, including in layer 2/3 neurons**. Therefore,
Wnt5a may trigger Ryk-mediated inhibition of dendrite growth and branching when dendritic fields are being
established. This notion is supported by the finding that Wnt5a/Ryk interactions in Drosophila also limit dendrite
growth in order to confine dendritic territories”’, indicating that the ability of Ryk to restrict the expansion of the
dendritic tree is evolutionarily conserved. Loss of Ryk in the primary motor cortex of the mouse has recently been
shown to enhance the expansion of motor maps into adjacent cortical areas affected by spinal cord injury®. This
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raises the intriguing possibility that Ryk may influence the plasticity of neural circuits by modifying dendritic
structure.

Materials and Methods

Animals. All experiments involving animals were approved by the Anatomical Biosciences Animal Ethics
Committee of The University of Queensland and performed in accordance with the Australian Code of Practice
for the Care and Use of Animals for Scientific Purposes. C57Bl/6 pregnant dams were obtained from The
University of Queensland breeding facility. Ryk loss-of-function mice (C57Bl/6j x 129/Sv) were kindly provided
by Prof. Steven Stacker (Peter MacCallum Cancer Centre, Melbourne, Australia)**. Genotyping was performed as
previously described®. For timed-matings, males and females were placed together overnight, with the following
morning being designated as E0.5.

In situ hybridization. RNA probes. cDNAs were prepared from C57Bl/6 embryonic cortex mRNA using
the SuperScript III First-Strand Synthesis System (Invitrogen) according to the manufacturer’s instructions.
Gene-specific cDNA amplicons incorporating the T7 forward and SP6 reverse primer sequences were then gener-
ated by PCR using the iProof High-Fidelity PCR Polymerase Kit (Bio-Rad). Subsequently, 200 ng of amplicon was
used as the template for digoxigenin (DIG)-labelled RNA probe synthesis with either T7 or SP6 RNA polymerase
(Roche). Probes were purified by agarose gel electrophoresis followed by purification using the Wizard SV Gel
and PCR Clean-Up Kit (Promega).

In situ hybridization.  In situ hybridization was performed as previously described®. Briefly, paraffin-embedded
sections were dewaxed and rehydrated in PBS, post-fixed with 4% paraformaldehyde (PFA) for 10 min, per-
meabilized with proteinase K (10 pg/ml for 15 min, Roche), re-fixed in 4% PFA for 5 minutes and treated with
0.25% acetic anhydride for 10 min prior to hybridization with DIG-labelled probes (1:100 in hybridization buffer;
Amresco) overnight at 65 °C. Sections were washed twice at 65°C for 30 min (1 x SSC, 50% formamide, 0.1%
Tween 20) followed by treatment with 20 pg/ml RNase A (Roche) for 30 min at 37 °C. Slides were then incu-
bated with the anti-DIG antibody (1:2500, Roche) overnight at 4 °C. Probes were detected using NBT/BCIP
(Promega) according to the manufacturer’s instructions. Sections were counterstained with Nuclear Fast Red
(Sigma-Aldrich), dehydrated and cleared in xylene and mounted in DPX mounting medium (Ajax Finechem).
Slides were imaged using a Mirax digital slide scanner (Carl Zeiss) with a 20X objective.

Constructs and shRNAs. Full-length Ryk (FL-Ryk) tagged at its N-terminus with two consecutive
myc epitopes (EQKLISEEDL), a gift from Prof. Steven Stacker, was subcloned into pCAGIG*®. Ryk (NCBI:
NM_013649) truncation mutants were also cloned into pCAGIG. shRyk and shScr shRNAs were cloned into
pCA-B-EGFPmb5-Silencer 3, a gift from Assoc. Prof. Julian Heng (Harry Perkins Institute of Medical Research,
Perth, Australia). miRyk and miCo long-hairpin miRNAs*! were cloned into pcDNA6.2-GW-EmGFP-miR* using
the BLOCK-iT Pol II miR RNAi Expression Vector Kit (Invitrogen). The EnGFP-miR cassettes for each sequence
were then subcloned into the piggyBac vector, a gift from Prof. Joseph LoTurco (University of Connecticut,
USA)*, replacing the GFP sequence. The sequences were as follows: shRyk: GAAAGATGGTTACCGAATA,
shScr: GGGTCCAATCGATAATAGGA, miRyk: GCAGCTCAATCTGACAGTGAA, miCo:
AAATGTACTGCGCGTGGAGAC. To generate RNAi-resistant FL-Ryk cDNAs nucleotide changes in the shRyk
or miRyk binding site (shRyk-resistant FL-Ryk A1765G and T1771G; miRyk-resistant FL-Ryk C607T and G613T,
respectively; NCBI NM_013649) were introduced using the QuickChange XL Site-Directed Mutagenesis Kit
(Agilent Technologies).

Primary neuronal culture and transfections. Dissociated hippocampal and cortical neuronal cultures
were prepared from E18.5 mouse embryos as described previously®. Briefly, the tissue was trypsinized for 20 min,
dissociated by pipetting, and seeded at a concentration of 7.5 x 10* hippocampal neurons/well or 1 x 10° corti-
cal neurons/well on glass coverslips (12 mm diameter) coated with poly-L-lysine (Sigma-Aldrich) and laminin
(Gibco, Invitrogen). The neurons were cultured for 5 days in vitro in Neurobasal medium (Gibco) supplemented
with 2% B27 (Gibco), 0.25% L-glutamine (Gibco), penicillin (10 U/ml) and streptomycin (10 pg/ml) (Gibco). For
hippocampal cultures, neurons from all littermates were pooled before plating. For Ryk~'~ and Ryk™'* cortical
cultures, neurons derived from individual embryos were plated separately. Neurons were transfected at DIV3
with shRNAs (1.5 ug), miRNAs (1.5pg) or Ryk cDNAs (1.0 pg) using Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s instructions and PFA-fixed at DIV5.

Immunocytochemistry and antibodies. Neuronal cultures were fixed with 4% PFA. Coverslips were
then rinsed x 3 in PBS and incubated at room temperature for 1 h in PBS, 0.2% Triton X-100, 4% donkey serum
(Sigma-Aldrich), followed by primary antibody (1 h, PBS, 0.2% Triton X-100) and then secondary antibody
before mounting in ProlongGold Antifade Reagent (Molecular Probes). Primary antibodies: mouse anti-Myc
(1:500; Sigma-Aldrich, #M4439, clone number 9E10), rabbit anti-Myc (1:500; Millipore, #06-549), rat anti-Ctip2
(1:500; Abcam, #ab18465), rabbit anti-MAP2 (1:500; Millipore, #AB5622), goat anti-GFP-FITC (1:1000; Abcam,
#ab6662). Secondary antibodies were conjugated to Alexa Fluor 488, 546, 568, or 647 (1:1000; Molecular Probes).
Images were acquired on a Diskovery spinning disk microscope with a 60X objective, numerical aperture: 1.4
(Nikon), with a z-step of 130 nm (xy pixel size: 93 nm) and deconvolved using Huygens Professional v16.10 soft-
ware (Scientific Volume Imaging).

Quantification of dendrite length and branching. Images were acquired on a Zeiss Axiolmager micro-
scope with a 20X objective, numerical aperture: 0.5 and customized filter sets. Cultured neurons with equivalent
GFP expression were chosen for quantitative analyses of dendritic length and branch number using the Neuron]
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plugin of Image]. All dendrites were semi-manually traced and labelled as primary (dendrite originating from
the soma), secondary (extending from the primary dendrite) or higher-order dendrites. Filopodia shorter than
10 pm were excluded from the analysis. Statistical analysis was performed using GraphPad Prism (version 7,
GraphPad Software Inc.). Gaussian distribution was assessed using the D’Agostino and Pearson normality test.
An unpaired Student’s t-test was used for normally distributed data from two groups. A Mann-Whitney test was
used for non-Gaussian data. For more than two groups, Gaussian data were analysed using one-way ANOVA
followed by Tukey’s post hoc test. For non-Gaussian data a Kruskal-Wallis test was used followed by a Dunn’s post
hoc test. Finally, dendrite type was analysed using 2-way ANOVA followed by a Tukey’s post hoc test. Statistical
significance was considered to be p < 0.05. The sample size was calculated for an alpha of 0.05 and a power of 0.8.

Golgi staining and Sholl analysis. Thick vibratome sections (coronal plane, 150 um) were cut from the
brains of P14 Ryk*/~ and Ryk*'* littermates and Golgi stained using a sliceGolgi Kit (Bioenno) according to the
manufacturer’s protocol. Briefly, brains were fixed for 5h at room temperature in the sliceGolgi Kit fixative and
then rinsed in 0.1 M phosphate buffer (20 mM NaH,PO,-H,0, 80 mM Na,HPO,-7H,0) for 2 h at room tempera-
ture. Sections were then incubated in the dark in impregnation solution for 5 days at room temperature. Finally,
sections were stained for 5min in staining solution and post-stained for 3 min before mounting on gelatin-coated
Superfrost microscope slides (Menzel-Gléser).

Brightfield images were taken with a 20X objective on a Zeiss AxioImager in three dimensions with a z-step
of 0.5 pm. Fully labelled neurons located within layer 2/3 of the somatosensory cortex were traced using the
user-guided dendrite tracing tools of Neurolucida 360 software (MBF Bioscience). Sholl analysis was performed
in Neurolucida Explorer using a radius of 10 um. Statistical analysis was performed in GraphPad Prism using
2-way ANOVA followed by Sidak’s multiple comparison test. For total length, the Gaussian distribution was
determined with the D’Agostino and Pearson Normality test and statistical significance was determined using the
Mann-Whitney test. Statistical significance was considered to be p < 0.05. The sample size was calculated for an
alpha of 0.05 and a power of 0.8.
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