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Poorly known microbial taxa dominate the
microbiome of permafrost thaw ponds
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In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial
activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial
succession across a gradient of recently emerged to older ponds using three molecular markers: one
universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the
thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community.
Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our
results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their
microbes, with potential implications for carbon and nutrient cycling in this increasingly important
class of freshwaters.
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Introduction

As the warming climate pushes the southern border
of permafrost northwards, carbon that has been
trapped in the permafrost for thousands of years
becomes available (Tranvik et al., 2009; Vonk et al.,
2012). Thaw ponds emerge as a characteristic feature
of thawing permafrost, creating microbial hotspots of
carbon cycling (Roiha et al., 2015) and comprising
significant sources of greenhouse gas emissions
(Abnizova et al., 2012; Negandhi et al., 2013).

The environmental importance of these habitats
together with the impact of microbial community
composition on carbon degradation (Logue et al.,
2016) make it essential to understand the microbial
processes and communities in these ponds. Several
studies have assessed the underlying microbial com-
munities and their assembly processes (Crevecoeur
et al., 2015; Comte et al., 2016; Przytulska et al.,
2016). These studies found a bacterial community
that resembled the bacterioplankton communities
of temperate and boreal lakes but enriched with

methanotrophic lineages (Crevecoeur et al., 2015).
Still, while the taxonomic composition of thaw pond
communities is characterized by these functional
groups, it varies significantly across individual thaw
ponds, potentially driven by stochastic processes
and environmental filtering (Comte et al., 2016). As
thaw ponds increase in size with age, often growing
from a puddle to a pond within a decade, the age of
the pond is likely to be an additional deterministic
factor associated with the microbial community
composition.

We hypothesize that emerging thaw ponds are
initially colonized by a pioneer community, which
then undergoes a progressive succession as the pond
ages. In this study, we investigated thaw pond
communities across a gradient of age classes. To
extend previous thaw pond characterization focused
on bacterial communities, we used three ribosomal
markers (universal SSU, bacterial 16S rRNA gene,
and fungal ITS2) to characterize a greater spectrum
of the microbial community. We were specifically
interested in fungi as they are known to be superior
degraders of high molecular weight carbon (Harms
et al., 2011), which is the main carbon pool in thaw
ponds (Roiha et al., 2015).

Study implementation
The 12 thaw ponds targeted represent three different
age categories (emerging, middle-aged, and old) and
are located in the Canadian sporadic permafrost area
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Figure 1 Study location and characteristics of the microbial communities. (a) Map of the thaw ponds. The emerging and middle-aged
ponds are located around still existing palsa formations while the old ponds have replaced their respective palsas completely. Palsas are
frost heaves containing permanently frozen ice lenses, consisting of an ice core with overlying soil. At the study site, the height of palsas is
up to 3 m. Colors depict different age groups, and asterisks indicate ponds that we sampled also vertically. (b) Two-dimensional NMDS
(stress = 0.11) showing the beta-diversity within the ponds with shapes illustrating pond age and colors sampling depth. Both age and
depth were found to influence the universal community assembly (Adonis, R2 = 0.25, Po0.001 (for age, excluding hypolimnion samples)
and R2 = 0.20, Po0.001 (for depth)). (c) Universal, (d) bacterial and (e) fungal community composition in the epilimnia of ponds
representing different stages of succession. The composition is shown at the phylum level for bacteria and fungi and at the domain level
for the universal community, except that fungi have been separated from Eukaryota due to their central role in the study. For bacteria, the
group ‘Other’ is the sum of phyla containing less than 0.1% of the total community. For the bacterial and universal communities also the
taxonomic composition in the hypolimnion of the old ponds is shown. The hypolimnion is the anoxic bottom layer present only in the old
ponds. A more detailed taxonomic overview can be found in Supplementary Figure S3.
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(Figure 1a, Supplementary Methods). The ponds
were also sampled vertically according to their
thermal stratification (oxic epilimnion, transition
zone (metalimnion), and suboxic/anoxic hypolim-
nion). We extracted DNA from water samples
concentrated on 0.22 μm filters and PCR amplified
and sequenced three ribosomal markers (the uni-
versal V6-8 region, the bacterial V4 region, and the
fungal ITS region; Supplementary Methods). We also
measured a set of indicators for carbon quantity and
quality; and methane and carbon dioxide concentra-
tion (Supplementary Figure S1, Supplementary
Methods).

Results and Discussions

The emerging thaw ponds were significantly differ-
ent from the older ponds in their environmental
parameters. In particular, they differed in their lower
pH and higher concentration of dissolved C02,

dissolved organic carbon (DOC), refractory carbon,
and total nitrogen. Although the methane concentra-
tions were high in hypolimnia of the old ponds,
epilimnetic methane was not significantly different
between emerging and old ponds. (Supplementary
Table S1, Supplementary Figure S1). The organism
beta-diversity was significantly correlated with pond
age (Figure 1b; Adonis: R2 = 0.25, Po0.001). The
successional progression of thaw ponds was also
visible in the relative abundance of the taxonomic
groups (Figures 1c–e, Supplementary Figure S2; for a
detailed inspection of taxonomic groups, see
Supplementary Figure S3). Overall, bacteria consti-
tuted the most abundant microbial group followed
by Eukarya and Archaea (Figure 1d), both of which
can be expected to account for important functional
aspects at different depths in the ponds (for example,
archaeal methane production at the bottom
(Supplementary Figure S4); or algal primary produc-
tion at the surface). The fungal community ranged
between 1 and 3% of the total community and
harbored typical freshwater lineages such as Chy-
tridiomycota (Figure 1e; Monchy et al., 2011), but
especially in the emerging ponds, which possessed
the highest carbon loads, a large part of the
community was composed of fungal lineages whose
taxonomic resolution could not be resolved with
certainty (Figure 1e, Supplementary Table S1). In
fact, around 25% of all fungi could only be assigned
to kingdom level, and 9% of the fungal reads
matched the enigmatic, undescribed fungal lineages
identified by Nilsson et al. (2016). In all the pond
stages, both the universal and the bacterial markers
identified members of candidate phylum Omnitro-
phica (candidate division OP3) and taxa from the
‘candidate phyla radiation’ (CPR, Brown et al., 2015),
in particular Parcubacteria (candidate division OD1)
as dominant taxa. These phyla also exhibited the
greatest alpha-diversity (Table 1). Typically, these
candidate phyla are found in anoxic environments

(Peura et al., 2012; Wrighton et al., 2012; Probst
et al., 2016), and we can only speculate on their
ecological roles in aerobic layers of thaw ponds.
The previous thaw pond studies did not recover
these poorly known lineages, but instead reported
typical freshwater lineages as the dominant bacter-
ioplankton (Crevecoeur et al., 2015, Supplementary
Figure S2). Some of the ponds studied here are the
same as those examined in the earlier studies (here
assigned SAS2 A-B, also sampled in the same
season; for example, Crevecoeur et al., 2015). This
excludes geographical and seasonal variation as the
primary cause for this discrepancy—leaving annual
variation or methodological biases as explanations.
For example, Rossi et al. (2013) have speculated that
previously used primers may have had mismatches
within the candidate phyla. We analyzed primer
matches in silico and could confirm mismatches of
previous primers for at least Omnitrophica and
Parcubacteria (Supplementary Table S2).

Although our study is somewhat restricted geo-
graphically and may not represent the complete
circumpolar permafrost border, it shows that perma-
frost thaw ponds undergo a progressive succession
over time with respect to both microbial community
composition and the composition of carbon com-
pounds. Given the observation that the carbon pool
especially in the emerging and middle stages of pond
development is dominated by carbon compounds of
terrestrial origin (see HI- and FI-indices and CDOM
concentration in Supplementary Figure 1), we
hypothesize that the cryptic microorganisms are

Table 1 Diversity measures of the total bacterial community in
the ponds, excluding hypolimnion samples, representing different
phases of the succession (in italics, ± standard deviation), median
of all phyla, and the median diversity of each individual phylum

Phylum/age class Inverse Simpson Pielou´s evenness

All ponds 66.1 0.70
Emerging 56.9±44.9 0.75±0.07
Middle-aged 87.8±55.9 0.80±0.05
Old 87.8±79.0 0.79±0.08
Median of all phyla 11.6 0.80
Actinobacteria 6.9 0.67*
Alphaproteobacteria 11.7 0.66**
Bacteroidetes 8.7 0.68*
Betaproteobacteria 6.0 0.58***
Chlamydiae 34.6*** 0.87*
Chlorobia 1.7** 0.42**
Cyanobacteria 3.0 0.44***
Gammaproteobacteria 3.8 0.52**
Omnitrophica 32.8** 0.82
Parcubacteria 75.9*** 0.83
Planctomycetes 25.8*** 0.89*
SM2F11 5.0** 0.73
Unclassified Bacteria 32.2** 0.91
Verrucomicrobia 9.9 0.68**

Only phyla that differ significantly from the median of all phyla are
shown (two-sided Wilcoxon signed rank test). Phyla that are
considered to be poorly known are highlighted in bold. The results
have been corrected for multiple comparisons using Bonferroni
correction, and statistical significance is indicated with asterisks;
*, o0.05; **, o0.005; ***, o0.0005.
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likely to be involved in the processes associated with
thawing permafrost soils.

Conclusions

Our study site, located at the edge of the permafrost
line, represents an area central to the global warming
discussions due to its sensitivity to temperature
change (Abnizova et al., 2012). The microbial
diversity in permafrost thaw ponds is to a large
extent composed of microbes with enigmatic ecolo-
gical roles and taxonomic affiliations. Although
these ponds share some ecosystem features with
lakes, they form a distinct ecosystem type in terms of
environmental parameters, organism composition,
and slow pond progression. Our findings render
thaw pond microbiology unique among surface
waters and may establish permafrost thaw ponds as
a new ecosystem category. The fact that the ecology
of their microbiome cannot be assessed at present
only further hints at our incomplete understanding
of the processes underlying the carbon and nutrient
cycling, both of which lie at the very heart of climate
change discussions.
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