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Enhanced anti-tumour immunity requires the
interplay between resident and circulating
memory CD8 T T cells
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The goal of successful anti-tumoural immunity is the development of long-term protective
immunity to prevent relapse. Infiltration of tumours with CD8 T cells with a resident
memory (Trm) phenotype correlates with improved survival. However, the interplay of
circulating CD8 1 T cells and Trm cells remains poorly explored in tumour immunity. Using
different vaccination strategies that fine-tune the generation of Trm cells or circulating
memory T cells, here we show that, while both subsets are sufficient for anti-tumour
immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central
memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge.
Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving
anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for
reactivation of circulating memory anti-tumour response. Our findings show the plasticity,
collaboration and requirements for reactivation of memory CD8 T T cells subsets needed for
optimal tumour vaccination and immunotherapy.
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eneration of optimal cancer immunotherapy involves

induction of effective memory against the primary

tumour able to prevent relapse metastases and recurrence.
Circulating memory cells patrol the blood and include central
memory T (Tcm) cells that retain the capacity to enter lymph
nodes (LNs). Conversely, tissue-resident memory T (Trm) cells
are confined to parenchymal non-lymphoid tissues!™”. Trm are
characterized by stable surface expression of CD69 and an
enhanced effector ability that functionally provides a tissue-wide
alert state against local reinfection®1!

In mice, cutaneous infection with recombinant vaccinia virus
(rVACYV) generates circulating memory CD8 ™ T cells and skin
Trm cells, whereas i.p. infection does not generate skin Trm
cells'?. Infected parabiotic mice with skin Trm cells are more
resistant to a rechallenge dermal infection than their
circulation-sharing partners lacking Trm cells'2. Optimal
generation of Trm cells requires Batf3-dependent dendritic
cells (DCs) during priming following VACV infection!3,
Batf3~/~ mice show impaired immunity against syngeneic
fibrosarcomas with marked intrinsic immunogenicity'%,
Tumour infiltration by CD103% Batf3-dependent DCs
correlates with tumour regression!®> and favours T-cell
infiltration in mouse models of melanoma'®. CD103* DCs
mediate antigen capture within the tumour and cross-prime
tumour-specific CD8 * T cells, whose therapeutic effects can be
amplified by immunostimulatory antibodies!”"!8.

The interplay between circulating CD8 * T cells and Trm cells
in anti-tumour immunity is largely unexplored. Previous studies
in human cancer show that the infiltration of tumours by T cells
with a Trm cell-like phenotype correlates with improved overall
survival in early stage non-small-cell lung carcinoma, pulmonary
squamous cell carcinoma and high-grade serous epithelial ovarian
cancer'®~2!, In addition, recent results suggest that vaccination
routes that promote generation of Trm cells could be more
effective for anti-tumour response?>?®. These findings prompted
us to analyse the relative contribution and plasticity of circulating
memory CD8V T cells and Trm cells in a model of anti-tumour
vaccination.

In the present study, we demonstrate that circulating CD8 * T
cells and Trm cells cooperate in anti-tumour immunity. The
circulating memory compartment retains enough degree of
plasticity to become cells with a Trm phenotype within the
grafted tumour and reside in the skin after tumour elimination.
Immunotherapy with anti-PD-1 synergizes with transfer of
tumour-specific Tem cells, increasing CD8 ' T-cell infiltration
of tumours. In addition, Batf3-dependent DCs are crucial for
reactivation of circulating CD8* T-cell memory, inducing anti-
tumour immunity. Knowledge on the generation of optimal
memory against tumour antigens is essential for improved cancer
immunotherapy.

Results

Trm and circulating memory promote anti-tumour response.
To investigate the potential interplay between circulating memory
and Trm CD8 ™ T cells in anti-tumour immunity we first infected
mice with rVACV-OVA by different routes and measured cir-
culating and resident memory at 30 d.p.i. Frequencies of endo-
genous OVA-specific circulating memory T cells were similar
regardless the infection route (Fig. 1a and Supplementary Fig. 1a).
Whereas intraperitoneal (i.p.) infection with rVACV-OVA was
inefficient for the generation of Trm cells in the skin or the lung,
skin scarification (s.s.) in the tail promoted Trm cells in the
infection site and in a distant cutaneous site, and intranasal (i.n.)
infection induced Trm cells in the lung (Fig. 1b-d and
Supplementary Fig. 1b-d).
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To address the contribution of circulating and Trm CD8 ™ T
cells to control tumour growth, mice were infected with rVACV-
OVA by ss. or ip. and, after generation of resident and/or
circulating memory from the endogenous repertoire 30 days
later'?, were inoculated intradermally (i.d.) with B16-OVA cells
(Fig. 2a). We used the S1P antagonist FTY720 to block egress of T
cells from LN into blood!? and, in this way, limit the contribution
of circulating memory T cells to the recall response. FTY720
administration at 30 days following rVACV-OVA ip. or ss.
infection significantly reduced the presence of blood OVA-
specific T circulating memory to the numbers observed in naive
mice (Fig. 2b,c). Circulating memory T cells generated by i.p.
vaccination with rVACV-OVA were sufficient to delay B16-OVA
melanoma growth and this effect was significantly impaired by
administration of FTY720 just before tumour inoculation and
during tumour growth (Fig. 2d), demonstrating that circulating
memory T cells protect against tumour development. However,
following s.s. with r'VACV-OVA, FTY720 treatment failed to
reverse the enhanced tumour rejection (Fig. 2e), suggesting that
Trm cells generated by this route are also sufficient for effective
anti-tumour immunity. Thus, both circulating memory and Trm
CD8 " T cells are sufficient for anti-tumour immunity, resulting
in delayed growth of B16-OVA-derived melanoma.

Trm improve anti-tumour immunity. To study the potential
contribution of Trm cells to control melanoma growth in the
presence of circulating memory T cells, we employed a parabiosis
strategy with mice sharing circulating memory, but with only one
of the parabionts bearing Trm (Fig. 3a). Accordingly, mice were
infected by s.s. with rVACV-OVA 30 days before surgical para-
biosis with naive mice and, after allowing a further 30-day period
to equilibrate circulating memory T cells (Fig. 3b), parabiont mice
were separated, allowed to recover and injected id. with B16-
OVA cells. When compared with tumour-challenged naive mice,
both infected or uninfected parabionts were significantly pro-
tected (Fig. 3c,d). However, when compared with uninfected
partners that shared circulating memory T cells, detectable
tumour onset was delayed in infected parabionts containing Trm
cells (Fig. 3c). The delayed tumour incidence in infected para-
bionts containing Trm cells also resulted in significantly reduced
tumour growth (Fig. 3d). Thus, the presence of Trm cells together
with circulating memory T cells improves anti-tumour immunity
in contrast to an environment containing only circulating
memory CD8 T T cells.

Plasticity of Tcm to become Trm upon viral challenge. Next, we
investigated the potential plasticity of circulating memory CD8
T cells to produce Trm cells. Naive OT-I (CD44l°CD621M) cells
are plastic and can become both circulating and skin-resident
memory T cells upon transfer to mice subsequently infected in
the skin with rVACV-OVA to favour Trm cell differentia-
tion'>?4, Mice transferred with naive OT-I cells and challenged
i.d. with rVACV-OVA were used as source for OT-I Tcm cells 30
d.p.i. (Fig. 4a). Using naive OT-I cells as a positive control, we
tested whether transfer of OT-I Tem cells (CD44M CDe2Lh)
could generate Trm cells in the skin 30 days or 60 days after
infection i.d. with rVACV-OVA along with Tcm or naive OT-I
transfer (Fig. 4a). Notably, Tcm cells generated Trm cells, defined
as OT-I T cells in the skin 30 days or 60 days after viral infection
and OT-I Tcm cell transfer, albeit with a lower efficiency than
naive T cells (Fig. 4b,c). The majority of skin OT-I Trm cells
derived from transferred OT-I Tcm cells showed stable CD69
expression with 50% of them co-expressing CD103 (Fig. 4d),
which is consistent with previous results'?13.
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Figure 1 | Generation of Trm cells after different routes of rVACV-OVA infection. (a) Frequency of endogenous OVA-specific circulating memory CD8
T cells in the draining LN (dLN) 30 days after i.p. (5 x 10% p.f.u.), s.s. (2 x 10° p.fu.) or i.n. (5 x 104 p.f.u.) infection with rVACV-OVA. (b-d) Frequency
(top) and numbers (bottom) of endogenous OVA-specific Trm cells in the tail (b) and in the ear (¢) 30 days after s.s. in the tail, and in the lung (d) 30 days
after i.n. infection with rVACV-OVA. (a-d) Pool of two independent experiments represented as individual data and mean = s.e.m. (n=4-5 per group).
NS, not significant, ***P<0.001; **P<0.01; *P<0.05 by one-way ANOVA, with Bonferroni post-hoc test.
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Figure 2 | Resident and circulating memory CD8 © T cells are sufficient for anti-tumour immunity. (a) Scheme for FTY720 administration. Mice were
s.s. or i.p. vaccinated with rVACV-OVA. Starting at day 30, mice were treated i.p. with 50 pg FTY720 every 4 days. At day 32, mice were inoculated (i.d.)
with B16-OVA (10° cells) in the flank. (b,c) Absolute numbers of CD8*CD44 T KbOVA T circulating memory T cells in the blood 32 d.p.i. and treated or
not with FTY720 at day 30. (d,e) B16-OVA growth curve plotted as tumour size (mm?3) over time. Simultaneous experiments compared to the same control
mice. Pool of two independent experiments represented as individual data and mean £ s.e.m. (b,c) and as tumour size mean = s.e.m. (d,e) (n=>5-6 per
control group and 7-8 per vaccinated group). NS, not significant, ***P<0.001 by one-way ANOVA (b,c), and two-way ANOVA (d,e) with Bonferroni
post-hoc test.
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Figure 3 | Trm cells improve circulating memory-mediated immunity to melanoma. (a) Scheme for parabiosis strategy. Mice were s.s. and i.d. vaccinated
with r'VACV-OVA. After 30 days, vaccinated mice were each surgically joined with a naive mouse. Thirty days after surgery, parabiotic pairs were separated
and allowed to recover for 30 days before i.d. inoculation of B16-OVA (10° cells) in the flank. (b) Frequency (top) and absolute numbers (bottom) of
CD8 1T CD44TKbOVA ™ circulating memory T cells in the blood after parabiosis and before tumour inoculation. (¢) Tumour incidence represented as the
frequency of detectable tumours incidence over time. The dashed line indicates 50% of tumour incidence. (d) Tumour growth curve plotted as tumour size
(mm?3) over time. Pool of two independent experiments represented as individual data and mean £ s.e.m. (b), as percentages (c) and as tumour size
mean * s.e.m. (d) (n=5-6 per control group and 8-9 per vaccinated group). NS, not significant, ***P<0.001; **P < 0.01 by two-tailed unpaired Student's t-
test (b), Cox mixed model (¢) and two-way ANOVA (d) with Bonferroni post-hoc test.

To functionally demonstrate that OT-I Trm cells derived from
Tem cells following viral infection were truly resident, we tested
their ability to migrate via blood or lymph once they were
established (Fig. 4e). Mice were transferred with OT-I Tcm cells
one day before infection with rVACV-OVA. After 30 d.p.i,
surgical parabiosis of infected and naive mice was performed,
leaving 30 days to equilibrate circulating memory compartments.
Infected and non-infected parabionts were subsequently analysed
for the presence of OT-I circulating memory cells in the spleen
(Fig. 4f) and Trm cells in the ear (Fig. 4gh). Only the infected
parabionts exhibited OT-I Trm cells in the ear skin, functionally
demonstrating that Trm derived from Tcm cells are unable to
migrate via blood or lymph.

Tcm give rise to Trm cells upon tumour inoculation. To analyse
whether Tcm cell plasticity to generate Trm cells is also found in
the tumour setting, OT-I Tcm cells were transferred to recipient
mice that were subsequently inoculated i.d. with B16-OVA cells or
injected subcutaneously (s.c.) with MC38-OVA (Fig. 5a). Follow-
ing 20 days of B16-OVA tumour development, OT-I cells with a
Trm cell-like phenotype, with most OT-I T cells expressing CD69
and 50% of them co-expressing CD103, were found in the tumour
mass (Fig. 5b-d). In addition, since Tcm transfer resulted in
elimination of MC38-OVA (Fig. 5e), we analysed the presence of
Trm cells in the skin that was in the proximity of the rejected
tumour. Skin OT-I Trm cells expressing CD69 and CD103 were
found 20 days and 45 days after tumour inoculation (Fig. 5f,g and
Supplementary Fig. 2a,b). These data support the notion that Tcm
retain potential to generate Trm cells upon tumour challenge. Such
plasticity also contributes to explain that circulating memory T
cells are sufficient for anti-tumour immunity.

Anti-PD-1 boosts Trm cells in the tumour after Tcm transfer.
Next, we wondered whether anti-PD-1 would synergize with Tcm
cell transfer for improved tumour immunotherapy. Indeed, Tcm
cells in the tumour draining LN and, particularly, Trm-like cells
infiltrating B16-OVA or MC38-OVA grafted tumours showed

4

high PD-1 expression (Fig. 6a,b and Supplementary Fig. 3a,b),
suggesting that their function could be enhanced by PD-1
blockade. We thus administered anti-PD-1 antibody con-
comitantly to Tcm transfer in a tumour therapy setting (Fig. 6¢).
The combination of Tcm and anti-PD-1 delayed the development
of i.d. B16-OVA tumour (Fig. 6d) and s.c. MC38-OVA tumour
(Fig. 6e) when compared to the treatment with Tcm cells alone.
Notably, tumour-infiltrating lymphocytes with a Trm phenotype
were increased in numbers and frequencies within CD45 " cells
more than tenfold in average upon anti-PD-1 treatment in both
tumour settings (Fig. 6f,g and Supplementary Fig. 3¢). In contrast,
anti-PD-1 treatment did not affect the numbers or frequencies of
OT-I Tem cells in LNs draining B16-OVA (Supplementary
Fig. 3d) or MC38-OVA (Supplementary Fig. 3e) tumours. These
data show that anti-PD-1 treatment increases Trm-like tumour
cell infiltrate and improves anti-tumour immunity following
adoptive immunotherapy with Tcm cells.

Anti-tumour memory response is impaired in Batf3 ~/~ mice.
The generation of Trm cells but not circulating memory T cells by
VACV infection is dependent on Batf3-dependent cross-pre-
senting DCs'3. Consistent with this, we found that generation of
endogenous repertoire OVA-specific Trm cells induced by s.s.
with rVACV-OVA (Fig. 7ab), but not circulating memory
CD8™F T cells (Fig. 7c), was impaired in Batf3~/~ mice. We
therefore hypothesized that impaired Trm cell generation in
Batf3~/~ mice could lead to a defective anti-tumour response.
We found that Batf3 significantly contributed to anti-tumour
immunity following s.s. of mice with rVACV-OVA (Fig. 7d).
Batf3 was also required for effective anti-tumour response after
in. infection with rVACV-OVA and subsequent intravenous
(iv.) challenge with B16-OVA cells (Fig. 7e). These results
supported our initial hypothesis, as both s.s. and in. routes of
infection generate Trm cells. However, Batf3 was also required to
control tumour growth following routes that do not produce
Trm, such as i.p. infection with rVACV-OVA and i.d. challenge
with B16-OVA cells (Fig. 7f) or following i.p. infection with
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Figure 4 | Plasticity of central memory T cells to become Trm cells upon viral infection. (a) Scheme for testing Tcm cells plasticity. For generation of Tcm
cells, mice were transferred with OT-1 CD45.1F Tcells (1-3 x 10° cells) and subsequently i.d. infected with r'VACV-OVA (5 x 10% p.f.u.) in the ear. After 30
days, Tcm cells were sorted and transferred as indicated. (b-d) Mice were transferred with naive OT-I CD45.1% Tcells or OT-I CD45.1F Tcm cells one day
before i.d. challenge with rVACV-OVA in the ear. (b) Representative FACS dot-plots showing OT-I cells in the CD45* population in the ear at the indicated
days p.i. (¢) Frequency within CD45* cells (left) and absolute numbers (right) of CD69 T CD8 ' T cells in the ear at the indicated day p.i.

(d) Representative FACS dot-plots (left) and frequency (right) of Trm expression markers in OT-I cells 30 d.p.i. (e) Scheme showing the parabiosis strategy.
Mice were transferred with OT-I CD45.17 Tcm cells before i.d. ear infection with the rVACV-OVA. After 30 days, transferred and vaccinated mice were
each surgically joined with a naive mouse. Thirty days after surgery, the ears of parabiont pairs were analysed for Trm detection by FACS. (f) Frequency
(top) and absolute numbers (bottom) of CD8 T CD44 T KbOVA T circulating memory T cells in the spleen after 30 days of parabiosis. (g) Representative
FACS dot-plots for OT-I cells identification in CD45* population in the ear (left top, infected parabiont; left bottom, uninfected parabiont) with a Trm
phenotype (right, infected parabiont). (h) Frequency (top) and absolute number (bottom) of CD69 ¥ CD8* T cells in the ear of the indicated parabiont.
Pool of two independent experiments represented as mean +s.e.m. (¢) (n=5-6 per group), as individual data and mean = s.e.m. (d,fh) (n="5-6 per
group). NS, not significant, ***P<0.001; **P<0.01; *P<0.05 by two-tailed unpaired Student’s t-test (c,d,f) and two-tailed nonparametric Mann-Whitney
test (h).

rVACV-OVA and iv. challenge with B16-OVA cells (Fig. 7g). Reactivation of Tcm cells is mediated by Batf3-dependent DCs.
Collectively these results demonstrate that Batf3-dependent DCs  We next examined the possible mechanisms underlying the
contribute to the anti-tumour CD8 " T-cell memory response crucial need for Batf3-dependent DCs in anti-tumour memory
independently of their role in the generation of Trm cells. response. To rule out the possibility that circulating memory
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(bottom) of OT-I cells in skin-derived cell suspensions with the indicated phenotype, in MC38-OVA-free mice after 20 days (f) and 45 days (g) of tumour
inoculation. Pool of three (b,d) and two (e-g) independent experiments represented as individual data and mean = s.e.m. (b,d f,g) (n=3-5 per group) and
as growth curve of individual tumours (e) (n=>5 and 11 per control group and n=10 and 7 per Tcm transferred group).

CD8™1 T cells raised in Batf3~/~ mice were not functional for
anti-tumour immunity, we i.d. infected WT and Batf3 ~/~ mice
with rVACV-OVA following OT-I cells transfer, and then
transferred purified OT-I Tcm cells to WT recipients (Fig. 8a).
Following i.d. challenge with B16-OVA cells, Tcm cell transfer
was equally effective in delaying tumour growth irrespective of
whether they were generated in WT or in Batf3~/~ mice
(Fig. 8b). We thus hypothesized that recipient Batf3-deficient
DCs would mediate inefficient reactivation of the transferred Tcm
against the tumour. To test this, we generated OT-I Tcm cells in
WT (Fig. 8¢c) or Batf3 /= (Fig. 8d) donor mice and transferred
them to WT or Batf3 ~/~ recipient mice that were i.d. challenged
with B16-OVA cells. Independently of the origin of Tem cells,
transfer to Batf3 ~/~ recipients resulted in impaired anti-tumour
immunity with respect to transfer to WT recipients (Fig. 8c,d).

6

These data demonstrate that Batf3-dependent DCs are requisite
for reactivation of Tcm cells promoting anti-tumour immunity.

Discussion

Optimal tumour immunotherapy should generate a potent
memory CD8' T cell to prevent local relapse and metastasis.
Memory CD8 ™ T cell can be either circulating or resident in the
tissues (Trm) exhibiting different priming and differentiation
requirements>>®13, Circulating memory and Trm cells also show
different effector behaviour®, but their interplay in tumour
immunity remains poorly characterized. In the present study, we
demonstrate that circulating memory CD8 ™ T cells and Trm
cells cooperate in anti-tumour immunity, with the circulating
memory compartment retaining enough degree of plasticity to
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Figure 6 | Anti-PD1 boosts Trm-like cells in the tumour after Tem transfer. (a,b) Untreated mice or mice injected i.d. with B16-OVA (@) or s.c. with
MC38-0OVA (b) were transferred with OT-1 Tcm cells. Expression of PD-1in OT-I cells was analysed 7 days later in draining LNs (dLN) or tumours. (¢) Mice
were injected with the indicated tumours, transferred i.v. with OT-1 CD45.1% Tcm cells, and treated with anti-PD-1. (d,e) tumour weight at the time of killing
following B16-OVA (d) or MC38-OVA (e) inoculation. (f.g) Frequency (top) and numbers (bottom) of OT-1 CD69 * infiltrating B16-OVA (f) or MC38-OVA
(g) tumours in mice treated as indicated (c). Pool of four (d) and three (a,b,e-g) independent experiments represented as individual points and

mean * s.e.m. (a,b) (n=2-3 per control group, 3-4 per tumour group), (d-g) (n=3-5 per group). NS, not significant, ***P<0.001; **P<0.01; *P<0.05 by
one-way ANOVA (a,b) with Bonferroni post-hoc test, two-tailed unpaired Student’s t-test (f top) and two-tailed nonparametric Mann-Whitney test

(d-f bottom, g).

become resident memory cells within the grafted tumour or in the
proximal skin following tumour elimination. Notably, anti-PD-1
therapy synergizes to improve anti-tumour immunity following
Tcm transfer. Moreover, Batf3-dependent DCs are crucial for
reactivation of circulating CD8* T-cell memory for anti-tumour
immunity.

Trm cells are generated following most viral infections
affecting the skin or mucosae® and are broadly distributed in
tissues’. Trm cells respond faster to stimulation than circulating
memory T cells, and they are equipped with a more potent
effector response than their circulating counterparts'!. Moreover,
Trm cells provide superior protection upon viral reinfection in
skin or mucosae and are sufficient to control viral reinfection in
the presence of FIY720, which prevents the contribution of
circulating memory T cells!2. Our experiments using FTY720
showed that Trm were potentially sufficient for anti-tumour
immunity. However, we also found that circulating memory
CD8 T T cells mediate effective anti-tumour immunity, in
agreement with previous results®>. Using a parabiosis strategy,
we demonstrate that melanoma tumour growth is slower in mice
containing both Trm and circulating memory T cells than in
parabionts containing only circulating memory T cells, thus
supporting the notion that resident and circulating memory
subsets cooperate for enhanced anti-tumour immunity. The

differential kinetics in the effector response of resident and
circulating memory subsets has been shown in other
experimental settings, such as cutaneous hypersensitivity, where
Trm mediate rapid responses, whereas circulating memory T cells
mediate delayed hypersensitivity?®. Conceivably upon viral
rechallenge, Trm cells trigger a local alarm state that promotes
immunity”!%27. Our data showing delayed tumour incidence and
growth in the presence of Trm suggest that these cells could be
particularly efficient in preventing metastasis.

The plasticity of Tcm cells to generate Trm cells had not been
previously addressed. Tcm and Trm cells have a clonal origin,
sharing TCR repertoires®®, but display distinct priming
requirements in the LN!3, Optimal generation of Trm cells
following rVACV infection requires unique priming signals
provided by Batf3-dependent DCs that favour T-bet expression
and LN retention!?. Subsequently, Trm cells migrate to the tissue,
where the local microenvironment conditions Trm cells
differentiation®”?8, Tcm cells exhibit more stem-like and
proliferative capacities after re-exposure to antigen, whereas
Trm cells have a higher effector capacity and trigger a local alarm
state®"10, We found that adoptive transfer of Tcm cells generates
skin Trm cells upon rVACV infection. Moreover, following
tumour challenge, transferred Tcm convert to cells with Trm
phenotype within the tumour or in the proximal skin following
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Figure 7 | Anti-tumour memory response is impaired in Batf3~/~ mice.

(a-c) Frequency (left) and absolute numbers (right) of endogenous

OVA-specific Trm cells in the tail (a) and in the ear (b), and frequency of Kb-OVA* circulating memory T cells in the draining LNs (dLN) (c) 30 days after
s.s. infection with rVACV-OVA in the tail of WT and Batf3 =/~ mice. (d-g) WT and Batf3~/~ mice were infected with rVACV-OVA by s.s. in the tail
(d) i.n. (e) or i.p. (Fg). After 30 days, mice were i.d. inoculated with B16-OVA in the flank (d,f) and B16-OVA growth curve plotted as tumour size (mm3)
over time (right). Alternatively, B16-OVA was injected i.v. (3 x 10° cells) 30 days later (e,g) and number of lung B16-OVA nodules after 20 days

since intravenous tumour challenge (right). (g) Representative images of lung B16-OVA metastatic nodules (bottom left). Pool of two independent
experiments represented as individual data and mean £ s.e.m. (a-c,e,g) (n=5-7 per group) and as tumour size mean = s.em. (d,f) (n=6-8 per group).
NS, not significant, ***P<0.0017; *P<0.05 by two-tailed unpaired Student's t-test (a-c), two-way ANOVA (d,f) and one-way ANOVA (e,g) with Bonferroni

post-hoc test.

tumour rejection. The capacity to generate Trm cells subsets upon
reinfection or tumour challenge supports at least partial stemness
properties of Tcm cells, which do not convert into Trm under
steady-state conditions in the absence of viral infection or tumour
implantation!2.

DCs are essential for anti-tumour immunity by adoptively
transferred T cells, since transfer of preactivated OT-I cells to
DC-depleted mice leads to impaired protection against tumour
cells expressing OVA!®. In the tumour context, recent studies
show that Batf3-dependent CD103 ™ DCs play a crucial role in
anti-tumour immunity!>~'$2°, Batf3-dependent DCs cross-
present tumour antigens and generate a baseline anti-tumour
response that can be potentiated by immunostimulating

8

antibodies in synergy with expansion and activation of this DC
subset using Flt3L and poly I:C (refs 17,18). Batf3-dependent
DCs are also major producers of IL-12, not only in infectious
settings’*~32, but also in the context of tumours, where IL-12
contributes to CDS8 effector function?. In addition, Batf3-
dependent DCs are required for the recruitment of naive
CD3 " T cells to the tumour site'® in a spontaneous melanoma
model. Here we show that Batf3-dependent DCs are needed
for effective reactivation of Tcm cells to promote
anti-tumour immunity, which further supports the crucial role
of this DC subset in tumour immunology and immunotherapy,
not only for the primary response, but also for the memory
response. Our data in the tumour context concur with previous
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mice. Pool of two independent experiments represented as tumour size mean £ s.e.m. (b-d) (n=6-8 per group). NS, not significant, ***P<0.001;

**P<0.01 by two-way ANOVA (b-d) with Bonferroni post-hoc test.

data on the role of Batf3-dependent DCs in reactivation of
memory CD8" T-cell recall response upon infection with
Listeria monocytogenes, vesicular stomatitis virus or vaccinia
virus®>>, We cannot rule out, however, that the role of Batf3-
dependent DCs in generation of Trm!3 is also important in the
context of tumours or that additional DC subsets may activate
Trm34,

Our results suggest that CD8-mediated anti-tumour immunity
arises from the interplay between resident and circulating
memory CD8 T T cells. Circulating memory cells show enough
plasticity to generate Trm cells upon tumour challenge and they
both express PD-1, similarly to CD103+ T cells infiltrating high-
grade serous epithelial ovarian cancer®®. Thus, anti-PD-1 therapy
synergizes with transfer of Tcm cells for improved anti-tumour
immunity, increasing the infiltration of Trm-like cells expressing
PD-1 within the tumour. These results concur with previous data
showing that anti-PD-1 expands intratumoural memory T cells in
patients®®. Within samples of melanoma, immune checkpoints
are particularly enriched within T cells with phenotype and
genomic features of Trm cells, suggesting that the Trm subset of
TILs may be the major target of immune checkpoint blockade®’.
Moreover, other immunostimulatory antibodies, such as anti-
CD137, could also enhance the resident memory response’®. In
conclusion, our results support the notion that anti-tumour
vaccination strategies should aim at the generation of both
circulating and resident memory CD8F T-cell subsets???>3,
which could synergize with checkpoint antibody therapy for
improved cancer immunotherapy.

Methods

Mice. Mice were bred and housed at the CNIC animal facility in specific pathogen-
free conditions. Batf3 ~/~ mice on the C57BL/6 background were kindly provided
by Dr KM. Murphy (Washington University, St Louis, MO, USA)'. OT-I
transgenic mice (C57BL/6-Tg (TcraTcrb)1100Mjb/]) were mated with B6-SJL
(Ptprca Pepcb/Boy]) mice expressing the CD45.1 allele, both from The Jackson
Laboratory (Bar Harbor, ME, USA). We used 7- to 10-week-old animals (males or
females) for all experiments. Experiments were repeated 2-3 times to reach
statistical significance. No blinding or randomization strategy was used and no
animal was excluded from analysis. The local ethics committee approved all animal
studies. All animal procedures conformed to EU Directive 2010/63EU and
Recommendation 2007/526/EC regarding the protection of animals used for
experimental and other scientific purposes, enforced in Spanish law under Real
Decreto 1201/2005. Mice were allocated randomly in the different experimental
procedures.

Viral infection and tumour challenge. Recombinant vaccinia virus expressing
full-length ovalbumin (OVA) protein (rVACV-OVA) was a gift from J.W. Yewdell
and J.R. Bennink (NIH, Bethesda, MD, USA) and was kindly provided by M. del
Val (CBMSO, Madrid, Spain). Growth of viral stocks and titration was performed
as described in CV1 cells*’. Mice were infected with r'VACV-OVA by the following
routes: s.s. at the base of the tail (1-2 x 10° p.fu.) or in the back (10° p.fu.), i.d. in
the ear pinnae (5 x 10* or 10° pfu), in. (5% 104 p.fu) or ip. (5% 10% or

1-2 x 10° p.fou.). T cells were considered memory cells 30 d.p.i (ref. 12). Mice were
inoculated with the OVA-expressing B16 melanoma cell line (B16-OVA)'7 i.d. in
the flank (10° cells) or OVA-expressing MC38 tumour cell line (MC38-OVA)Y s.c.
in the flank (2 x 10 cells), and tumour growth was monitored for 20-30 days.
Tumour volumes were calculated using the following formula: V=D x d?/2, where
V is volume (mm?), D is larger diameter (mm) and d is smaller diameter (mm).
Alternatively, mice were injected i.v. with B16-OVA (3 x 10° cells) and killed 20
days later. Lungs were fixed in Fekete’s solution and tumours were counted.
FTY720 (Cayman Chemical) was administered ip. at a dose of 2.5 mgkg~! in
aqueous solution every 4 days. All cell lines used were tested for mycoplasma
routinely.
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Generation and analysis of OT-1 Tcm and Trm cells. To generate OT-I Tcm cells,
mice were transferred i.v. with 1-3 x 10> naive OT-I cells 1 day before i.d. ear
infection with rVACV-OVA (5 x 10* p.fou.). Tem cells were FACS-sorted (Sy3200,
Sony) from spleens and draining LNs 30 d.p.i. Mice were transferred with 10* naive
OT-I or 1-2 x 10* OT-I Tcm cells 1 day before virus challenge, with 2 x 10* OT-I
Tcm cells 1 day before B16-OVA inoculation and 3 x 10% or 2 x 10* OT-I Tcm
cells 1 day before MC38-OV A inoculation. For virus challenge, mice were infected
with rVACV-OVA (5 x 10 p.fu.) i.d. in the ear, and the memory response was
analysed at 30 days or 60 d.p.i. Tumour inoculation (B16-OVA cells, i.d.; MC38-
OVA cells, s.c.) was performed as indicated above. For analysis of tumour-infil-
trating lymphocytes, mice were killed 20-23 days after tumour inoculation. For
analysis of skin-infiltrating lymphocytes, mice were killed 20 or 45 days after
tumour inoculation. For anti-PD-1 antibody treatment, mice were transferred with
1-2 % 10* OT-I Tcm cells when the tumour reached 100-150 mm? (day 7, for B16-
OVA; day 15-18, for MC38-OVA), and inoculated i.p. the same day of the Tcm
transfer and 3 days later, with 100 pg of anti-PD-1 antibody (RMP1-14, BioXcell).
For FACS analysis mice were killed at day 7 after Tcm transference.

Parabiosis. Parabiosis was performed as described!?. For tumour inoculation,
wild-type (WT) mice were infected with rVACV-OVA (10° p.f.u.) by s.s. in the tail
and in the back and i.d. in the ear 30 days before surgical joining with naive mouse
to create parabionts. After 30 days, mice were separated and kept for recovery after
surgery for 30 days. Finally, both parabiont mice were i.d. challenged with B16-
OVA cells as indicated. To analyse the migratory capacity of Trm cells that derive
from Tem cells, WT mice were transferred with 2 x 10* OT-I Tem cells i.v. one day
before i.d. infection with rVACV-OVA (5 x 10* p-fu.) in the ear. After 30 days,
infected mice were joined with naive mice and kept in parabiosis for 30 days.
Finally, ears and spleens of both parabionts were analysed by FACS.

Flow cytometry. Allophycocyanin-labelled dextramers specific for OVA H-2Kb
(257-SIINFEKL-264) were purchased from Immudex (Copenhagen, Denmark).
Samples for flow cytometry were stained with the appropriate antibody cocktails in
ice-cold PBS supplemented with 2mM EDTA and 1% FBS. Anti-mouse CD45
(clone 30F11), CD8a (clone 53-6.7), CD103 (clone 2E7), CD44 (clone IM?7),
CD45.1 (clone A20) and CD45.2 (clone 104) antibodies were obtained from
eBioscience. Anti-mouse CD62L (clone MEL-14) and CD69 (clone H1.2F3) anti-
bodies were obtained from BD Biosciences. Anti-mouse CD279 (PD-1, clone
29F.1A12) was obtained from Biolegend. Events were acquired using an LSRFor-
tessa SORP (Becton Dickinson) flow cytometer or Spectral Cell Analyzer SP6800
(Sony) and data were analysed using FlowJo V10 software (Tree Star).

Statistical analysis. Statistical analysis was performed using Prism v6 (GraphPad
Software Inc., La Jolla, CA, USA). We estimated a priori that minimal informative
differences are 1 SD, and estimated sample sizes using software ‘Gpower 1.3’,
taking into account the following considerations. (a) The differences to be detected,
1 SD comparing each group of mice. Ratio (effect size) differs to detect/SD = 1. (b)
Taking into account the above data, the number of animals in total for a contrast
t-test of mean differences between two independent groups with two tails is 17.
Power = 0.8 and significance level = 0.05. Variance equality among groups was
determined using F-test. Statistical significance for comparison between two groups
of samples showing a normal distribution (Shapiro-Wilk test for normality) was
determined using the unpaired two-tailed Student’s t-test. For comparison between
two groups with a no normal distribution, two-tailed Mann-Whitney nonpara-
metric test was used. For comparison of more than two groups, one-way or two-
way ANOVA with Bonferroni post-hoc test was used. For Fig. 3¢, Cox mixed model
was applied when comparing tumour incidence of two groups, keeping the
information about the experimental groups. We used the coxme function of the R
package with the same name, to the cohort between day 0 and day 17, where two
parabiont groups reach 50% of incidence. A P value <0.05 was considered
significant.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or
available from the authors on request.
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