
OPEN

SHORT COMMUNICATION

Animal-like prostaglandins in marine microalgae
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Diatoms are among the most successful primary producers in ocean and freshwater environments.
Deriving from a secondary endosymbiotic event, diatoms have a mixed genome containing bacterial,
animal and plant genes encoding for metabolic pathways that may account for their evolutionary
success. Studying the transcriptomes of two strains of the diatom Skeletonema marinoi, we report,
for the first time in microalgae, an active animal-like prostaglandin pathway that is differentially
expressed in the two strains. Prostaglandins are hormone-like mediators in many physiological and
pathological processes in mammals, playing a pivotal role in inflammatory responses. They are also
present in macroalgae and invertebrates, where they act as defense and communication mediators.
The occurrence of animal-like prostaglandins in unicellular photosynthetic eukaryotes opens up new
intriguing perspectives on the evolution and role of these molecules in the marine environment as
possible mediators in cell-to-cell signaling, eventually influencing population dynamics in the
plankton.
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Prostaglandins (PGs) are considered ‘local hormones’
participating in intercellular signaling, sustaining both
homeostatic functions and mediating pathogenic
mechanisms (Wiktorowska-Owczarek et al., 2015).
They are enzymatically derived from 20-carbon
polyunsaturated fatty acids (PUFA) and together with
oxylipins constitute a unique class of lipid derivatives
known as eicosanoids (Wolfe, 1982).

PGs are present in all vertebrates, in some
terrestrial (Stanley, 2006) and aquatic invertebrates
(Rowley et al., 2005; Varvas et al., 2009), and have
also been identified in some macroalgae of the
genera Gracilaria and Laminaria (Sajiki and
Kakimi, 1998; Ritter et al., 2008).

Here we report, for the first time, the presence of
PGs in marine microalgae, specifically in two strains
of the diatom Skeletonema marinoi (FE7 and FE60),
known to differ for the production of oxylipins, high
in FE7 and low in FE60 (Gerecht et al., 2011).

Analysing the transcriptomes of the two strains,
we have identified the sequence of three main
enzymes involved in PG biosynthesis (Figure 1a,
Supplementary Figure S1), prostaglandin-endoperoxide

G/H synthase 1 or cyclooxygenase-1 (COX-1), micro-
somal prostaglandin E synthase 1 (PTGES) and
prostaglandin-H2 D-isomerase (PTGHI or PTGDS),
and of a prostaglandin transporter (PTGT). Interest-
ingly, we found that the FE60 transcriptome lacked
the annotation for the enzyme COX-1 that initiates
PGs synthesis.

Real-time-qPCR experiments confirmed the expre-
ssion of these transcripts in both strains, revealing
the presence of COX-1 also in the FE60 strain.
Expression levels varied slightly in different
phases of growth for each strain (Figures 1b–d;
growth curve in Supplementary Figure S2). In
particular, in strain FE7 COX-1 was down-regulated
(DR) in the senescent phase with respect to the
exponential phase, while in strain FE60 PTGDS and
PTGT were DR in the stationary phase (Figures 1b
and c). Overall, there was a lower expression level of
the PG pathway in the FE60 strain compared to FE7
(Figure 1d).

The presence of prostaglandin metabolites asse-
ssed by liquid chromatography/mass spectrometry
(LC/MSMS) analyses (Supplementary Figures S3 and
S4) confirmed qPCR results. The identified metabo-
lites derived not only from the main PUFA pre-
cursors eicosapentaenoic acid (EPA), the most
abundant in diatoms (Stonik and Stonik, 2015), but
also from eicosatrienoic (ETE) and arachidonic (AA)
acids, both found in very low amounts in diatoms
(d’Ippolito et al., 2004). In accordance with the qPCR
results, quantitative analysis revealed an overall
lower production of prostaglandins in the FE60
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Figure 1 The Prostaglandin pathway: expression and abundance of the prostaglandin metabolites synthesized by Skeletonema marinoi
FE7 and FE60 strains. (a) Schematic representation of prostaglandin synthesis pathway, starting from the three main precursors:
eicosatrienoic, arachidonic and eicosapentaenoic acids. The most abundant precursor PUFAs in diatoms is shown in red. Square box
contains the prostaglandins identified in our study in relation to their respective PUFA precursors. Colored rectangles or ovals indicate
presence of each enzyme in the annotation table of Skeletonema marinoi strains FE7 or FE60 (see legend). (b–d) Expression levels of
enzymes responsible for PGs synthesis and of the prostaglandin transporter measured by Real-time qPCR in exponential, stationary and
senescent phases of growth. Results were analysed with the REST software and reported as 2 log expression ratio in the exponential phase
(control) ± s.d. (b, FE7 strain; c, FE60 strain) or as 2 log expression ratio of FE60 with respect to FE7 strain (d). Statistical analysis (N=3)
was performed using the Pair Wise Fixed Reallocation Randomization test by REST. Relative expression ratios above two fold were
considered significant. (e) Abundance of the prostaglandin metabolites identified in our Skeletonema marinoi strains, quantified with LC/
MSMS in the three different phases of growth (N=3). Results are means of three technical replicates (b–e) for each biological replicate
(N=3).
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Figure 2 Phylogenetic analysis of the enzymes involved in the prostaglandin pathway. (a–c) Bayesian mid-point routed phylogenetic
trees of COX-1 (a), PTGE Synthase (b), PTGD Synthase (c) proteins from pennate and centric diatoms. Sequences from other organisms are
also included as outgroup. Sequences used for phylogenetic analyses are listed in Supplementary Table S3. The trees were built on scale
in the branch length (scale bars reported). Sequences are identified by the species name and annotation (where applicable), followed by
their MMETSP ID deprived of the taxon ID for simplicity or GenBank accession number. Posterior probability (PP) values are represented
with symbols at the nodes: star represents PP above or equal to 0.95; square PP between 0.75 and 0.95; triangle below 0.75. Branch coloring
refers to PP, color code is reported in figure. (a) COX and COX-like proteins (2 000 000 generations, split frequency standard deviation
(s.d.) = 0.002); (b) PTGE synthase proteins (5 000 000 generations, split frequency s.d. = 0.01 (c) PTGD synthase (10 000 000 generations,
split frequency s.d. = 0.04). For simplicity, large sequence clusters were condensed and identified by numbers and the nine main clades
were identified by letters highlighted with vertical bars on the right side of the picture. Numbers do not correspond to a rank (see details in
Supplementary Information and Supplementary Figure S7).
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strain, even considering the biological variability
among replicates (Figure 1f, Supplementary Table
S1). Molecule quantity decreased during the station-
ary and senescent phases of growth, especially
in the FE7 strain, coherently with the DR of
COX-1 transcript expression. Interestingly, the major
EPA metabolite expected, prostaglandin E3 (PGE3),
is at least two and six times more abundant in the
FE7 strain with respect to FE60 during both
exponential and senescent phases, respectively,
while in the stationary phase the amounts are
comparable.

We also verified if a nutrient stress condition
(Supplementary information), such as silica starvation
(36 μM Si(OH)4), might affect the expression levels of
prostaglandin-synthesizing enzymes in the FE7 strain.
Results showed a high variability of expression levels
of the three enzymes with no significant differences in
silica starvation versus standard growth conditions
(Supplementary Figure S5).

The effect of stress conditions was extended
to all other diatom transcriptomes in the Marine
Microbial Eukaryote Sequencing Project database
(Keeling et al., 2014) through a bioinformatic
analysis. Results (Supplementary Table S2) revea-
led a huge variability among species and among
different culture conditions with only a few species
expressing all the genes of the pathway. For the
majority of species, COX-1 was not annotated.
Moreover, different treatments (nutrient depriva-
tion, temperature, CO2 levels) did not have the
same effect on different species (see COX-1 Frag-
ments Per Kilobase of transcript per Million
mapped reads-FPKM value, where present, in
Supplementary Table S2). This new data disclose
similarities with previous studies showing high
genetic and metabolic variability among species
and clones in diatoms (Gerecht et al., 2011; Lamari
et al., 2013).

Alignment of SmCOX-1 with representative
COX-1 sequences showed conservation of the
aminoacidic residues involved in peroxidase
and cyclooxygenase activity (Supplementary
Figure S6).

A Bayesian phylogeny carried out with all COX-1
proteins from diatoms and other organisms
(Figure 2a) presented three main clades: one cluster-
ing most of the diatom species, including our strains,
together with the cyanobacterium Nostoc sp. and the
red alga C. truncates; a second clade, sister to the
first (posterior probability, PP=1.00) clustering
animals (crustaceans, Ciona intestinalis and mam-
mals); a third basal clade grouping only a small
portion of both pennate and centric diatom
sequences (PP= 1.00). This topology may suggest
that in diatoms at least two different proteins can
exert the function of COX-1: the first in the large
diatom clade, confirmed to be a COX-1 protein due
to its phylogenetic proximity to red algal and
cyanobacterial COX-1 (Varvas et al., 2013; Brash
et al., 2014); the second was found only in four

genera: Skeletonema, Pseudo-nitzschia, Fragilariopsis
and Nitzschia, possibly representing a different
protein sharing common domains with the first one.
Indeed, Skeletonema and Pseudo-nitzschia genera are
also present in the first clade, revealing that the two
proteins may coexist.

Figure 2 also shows the Bayesian tree for the
other enzymes required for PGs synthesis: PTGES
(Figure 2b) and PTGDS (Figure 2c). PTGES tree
showed a clear distinction between centric and
pennate diatoms clustering separately in two sister
clades (PP = 0.59 for pennates and 0.97 for centrics).
Two exceptions were recorded, the two pennates
Cyclophora tenuis and Licmophora paradoxa clus-
tered with centric diatoms. PTGDS phylogeny
showed at least nine clades with nodes that were
variably supported statistically (PP from 0.53 to
1.00); five of these contained only diatom
sequences. All but one clade contained both centric
and pennate diatoms, suggesting that the nine
clades cluster different proteins present in both
diatom classes. This most likely indicates that in
diatoms different proteins can have the same
function or be expressed only in specific conditions
(see Supplementary Material for details and
Supplementary Figure S7). The relative PTGT
Bayesian tree was complex since its sequence
belongs to the broad family of ABC transporters.
Results are described in Supplementary Information
(Supplementary Figure S8).

Our findings show the existence of a canonical
animal pathway synthesizing most of the known
prostaglandins and their metabolites in a marine
unicellular eukaryote. This discovery may contribute
to unravel important aspects of the evolutionary
history of eukaryotes and the conservation of this
cell-signaling pathway from unicellular algae to
humans.

Future studies are needed to shed light on the
physiological and ecological role of PGs as chemical
mediators in diatoms and their possible influence on
plankton population dynamics.
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