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Metacaspases versus caspases in development and
cell fate regulation

EA Minina*,1, NS Coll2, H Tuominen3 and PV Bozhkov*,1

Initially found to be critically involved in inflammation and apoptosis, caspases have since then been implicated in the regulation of
various signaling pathways in animals. How caspases and caspase-mediated processes evolved is a topic of great interest and hot
debate. In fact, caspases are just the tip of the iceberg, representing a relatively small group of mostly animal-specific enzymes
within a broad family of structurally related cysteine proteases (family C14 of CD clan) found in all kingdoms of life. Apart from
caspases, this family encompasses para- and metacaspases, and all three groups of proteases exhibit significant variation in
biochemistry and function in vivo. Notably, metacaspases are present in all eukaryotic lineages with a remarkable absence in
animals. Thus, metacaspases and caspases must have adapted to operate under distinct cellular and physiological settings. Here
we discuss biochemical properties and biological functions of metacaspases in comparison to caspases, with a major focus on the
regulation of developmental aspects in plants versus animals.
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Facts

� Metacaspases and paracaspases are ancestors of
caspases.

� Although both metacaspases and paracaspases possess
the caspase-hemoglobinase fold, they exhibit distinct
substrate specificity and activation mechanism from
caspases.

� Despite differences in substrate specificity, some targets of
C14 proteases seem to be evolutionary conserved across
kingdoms.

� In plants, metacaspases cooperate with autophagy to
regulate aging, immune responses, terminal differentiation
of cells and post-mortem cell clearance.

Open Questions

� Is the repertoire of metacaspase substrates larger than that
of caspases, considering that metacaspases have less
stringent substrate specificity than caspases?

� How did substrates and physiological functions of meta-
caspases evolve from bacteria to eukaryotes?

� Which molecular mechanisms determine the pro-death
versus the pro-survival functions of metacaspases?

� Howdometacaspases crosstalk with autophagy to regulate
cell fate?

� How do metacaspases act in the clearance of protein
aggregates and is it the only mechanism whereby
metacaspases can control aging?

“Nothing in Biology Makes Sense Except in the Light of
Evolution”
Theodosius Dobzhansky, 1973

The discovery of caspases in the early 90s1–3 gave a major
impetus to elucidating the biochemical mechanisms of apopto-
tic cell death in animals. However, it also became clear that
apart from apoptosis, caspases can control other develop-
mental processes, including cell proliferation, differentiation and
migration.4–7 As the early attempts to identify caspase
homologues in non-metazoan genomes were not successful,
it was assumed that caspase-dependent mechanisms were
relatively recent evolutionary innovations restricted to animals.
How then caspases and their functional divergence evolved?
The paradigm shift occurred in year 2000, when Uren and

colleagues8 reported the discovery of two groups of proteins
distantly related to caspases and named metacaspases and
paracaspases, in the genomes of various organisms spanning
about 4 billion years of evolution. To date, caspases,
metacaspases and paracaspases constitute a large family
(C14) within CD clan cysteine proteases, all sharing tertiary
structure but exhibiting variation in structural topology, sub-
strate specificity and activation mechanisms.9

The phylogenetic distribution of the family C14 proteases up
to date is best compatible with the idea that metacaspases
were acquired by eukaryotes through primary mitochondrial
and plastidic endosymbiosis.10–12 The origin of paracaspases
is more obscure, but considering that they could simply be a
subgroup of the metacaspase family, the possibility that
paracaspases evolved several times independently from
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metacaspases cannot be ruled out.13 Finally, canonical
caspases are thought to originate from ancient meta-
caspase-like proteins, conceivably through horizontal gene
transfer from α-proteobacteria to early multicellular
organisms.11

Clearly, evolution of the C14 family proteases encompassed
a long and complex series of speciation and duplication events
that resulted in significant variation in biochemical properties
and hence a high degree of functional divergence. This notion
is particularly true for metacaspases which exhibit broader
structural variation than caspases and paracaspases.9,14 In
this review we first compare the C14 proteases from structural
and biochemical point of view and then discuss their biological
functions. As plant biologists, we put a major focus on
metacaspase-dependent regulation of plant development,
aging and cell fate specification. We anticipate that comparing
caspase- and metacaspase-dependent processes across
kingdoms will increase understanding of the molecular and
functional evolution of these important enzymes.

Molecular Structure and Biochemical Properties of C14
Family Proteases

The name caspase stands for cysteine-dependent aspartate-
specific protease. It describes biochemical characteristics of
these enzymes, which require cysteine residue for their
proteolytic activity and cleave a polypeptide chain after an
aspartate residue. Metacaspases and paracaspases were
originally identified as cysteine proteases similar to
caspases,8 but were later discovered to lack aspartate
specificity,15 making the naming choice rather unfortunate.
According to the current MEROPS classification,16 all

known cysteine proteases are grouped into 14 different clans
based on their tertiary structure. Within each clan, proteases
are clustered into families according to their sequence
similarity. Caspases, metacaspases and paracaspases
belong to the same clan of proteases (CD clan) and also
to the same family (C14) based on the sequence similarity
(Figure 1a). The CD clan comprises cysteine-dependent
proteases with a unique α/β-fold called caspase-hemo-
globinase (CHF) fold which consists of a large (p20) subunit
containing the catalytic histidine/cysteine dyad and a small
(p10) subunit17 (Figures 1b and 2). The most conserved parts
of the CHF fold are three motifs: one at the N-terminal
β-strand, one before the catalytic histidine and one before the
catalytic cysteine.10,13

There are seven families of proteases belonging to the CD
clan: clostripains, C11;18 legumains, C13;19 caspases, C14;20

gingipains, C25;21 separases, C50;22 MARTX cytolysins,
C8023 and PrtH-like proteases, C85.24 Notably, only members
of the C14 family can be found in all taxonomic groups.16 Our
understanding of the phylogeny of the C14 protease family is
gradually changing with new members being discovered in
recently sequenced genomes.10,12–14 Caspases have been
found only in the genomes of animals and a few viruses;
paracaspases were detected in the genomes of bacteria,
slime mold (Dictyostelium) and metazoa, whereas metacas-
pases can be found in the genomes of virtually all pro- and
eukaryotic lineages, with a remarkable absence in animals
(Figures 1a and 3).

Most of the C14 protease family members are active
enzymes with a broad range of substrates, and many of them
are constitutively expressed and thus require tight regulation
of activity to prevent unwanted proteolysis. C14 peptidases
are expressed as zymogens and undergo structural modifica-
tions before activation (Table 1). Caspases and paracaspases
are activated upon dimerization. In the case of caspases,
dimerization presumably enables basal catalytic activity,
allowing autoprocessing of the zymogen and freeing the
unstructured loop regions for interaction with regions close to
active centers. This interaction stabilizes active centers and
yields a full protease activity.9,25–27 Unlike caspases, para-
caspases characterized up to date do not undergo autopro-
cessing upon dimerization. Dimerization per se seems to be
sufficient for stabilization of the active fold of the protease.25,28

Metacaspases, on the other hand, do not dimerize, but most of
them still undergo autoprocessing before activation.15,29–31

Autoprocessing activity of vast majority of metacaspases is
highly dependent on Ca2+ and thusmight be regulated by local
changes in the concentration of Ca2+ ions.15,29–32 Interest-
ingly, metacaspases contain an additional N-terminal
cysteine, which can take over proteolyitiyc activity after the
zymogen underwent autoprocessing of the zymogen15,33

(Table 1).
In addition to the p20 and p10 domains, caspases also have

an N-terminal prodomain, which is required for initiation of
dimerization and is removed upon activation of the enzyme.
Effector caspases have a short, 20–30 residue N-terminal
prodomain, while initiator caspases have large, over 90 amino
acid N-terminal domains called CARD (Caspase Recruitment
Domain) or DED (Death Effector Domain) (Figure 1b). The
short prodomains of effector caspases are required for
dimerization. Similarly, N-terminal domains of initiator cas-
pases are crucial for interaction with signaling proteins which
bring caspase monomers together, stimulating dimerization
and triggering thewhole cascade of caspase activation.27,34,35

Paracaspases are divided into two types based on their
domain structure: type I paracaspases contain a DED and
immunoglobulin-like domains, while type II paracaspases do
not contain them.13 Metacaspases are divided into three
types: type I contain N-terminal proline-rich domain with a
Zn-finger motif, type II metacaspases do not have an
N-terminal domain, but p20 and p10 subunits of their CHF
are separated by a long linker region; in type III metacaspases
the p10 subunit precedes the p20 subunit12 (Figures 1b and
3). The structural study of a trypanosomal type I metacaspase
revealed that N-terminal domain of metacaspases might be
inhibiting activity of the protease by folding over the active
center.36

Activity of C14 proteases is also regulated by post-
translational modifications, such as phosphorylation, ubiqui-
tination, nitrosylation as well as by direct interaction with
other proteins;27,33,37 by the presence of ions15,29,38 and by
pH15,29,30,39 (Table 1). An interesting example of evolutionarily
conserved mode of C14 protease regulation is by suicide
inhibitors serpins, which remain bound to the active sites of
proteases upon cleavage.40–43

The most crucial biochemical difference between caspases
and other members of C14 peptidase family is substrate
specificity. While caspases cleave polypeptides after an
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acidic aspartate residue,44 paracaspases cleave after a basic
arginine residue28 and metacaspases after basic arginine or
lysine residues15,29–31,39 (Table 1). Requirements for measur-
ing proteolytic activity of distinct subfamilies of C14 proteases
have been described previously.45

Cellular Substrates of Metacaspases

The evolutionary conservation of C14 protease family
members across all taxonomic groups indicates conserved
function of these enzymes, but the differences in substrate
specificity of caspases, para- andmetacaspases suggests the
opposite. This juxtaposition spurred a hot debate about
clustering of the metacaspases and caspases into different
groups.46–51 Current evidence implies that functional con-
servation of the C14 proteases is only partial and that
establishment of the different molecular machineries for
programmed cell death (PCD), immunity and cell differentia-
tion either led to or originated from diversification of the
specificity and activity regulation of C14 proteases. In some
cases the question about functional conservation of the C14

proteases might be better addressed following the approach
adopted by Hulpiau and colleagues,13 which takes into
consideration not only a protease and its individual target,
but also the whole functional complex of its targets.
Identification of natural substrates of C14 proteases is

essential for verifying their proposed phylogeny from the
functional perspective. Caspases can be separated into
several groups according to their preferences for certain
amino acids in the P4 position,52,53 which reduces redundancy
of their activity. So far paracaspases have been shown to have
strict preference for arginine in the P1 position and to have
restrictions for the minimal length of a potential substrate.28

Metacaspases display arginine- or lysine-P1 specificity, but
have loose specificity to amino acids in other positions.14

Although best known for their role in dismantling cells during
apoptosis, caspases have key roles in remodeling cells during
cell differentiation, synapsis formation, triggering inflammation
response and so on.52,54,55 Thus known substrates of
caspases include a very broad spectrum of targets,
several hundreds of which have already been identified.56

Much less information is available about substrates of

Figure 1 Domain structure and representation of C14 proteases in various taxonomic groups. (a) CD clan of cysteine-dependent proteases comprises endopeptidases
containing CHF. Based on their primary structure members of CD clan can be clustered into 7 families with various substrate specificity: C11 peptidases cleave their substrates
after Arg; C13- after Asn; C14- after Asp, Arg or Lys; C25 -after Arg or Lys; C50- after Arg; C80- after Leu; C84- after Arg. Members of the C14 family can be further divided into
two subfamilies C14A, consisting of caspases (Asp-specific cysteine proteases); and C14B consisting of paracaspases (Arg-specific cysteine proteases) and metacaspases (Arg
or Lys-specific proteases). C14 proteases are present in all taxonomic groups. Caspases have been so far identified only in Eu- and Parazoa and viruses, albeit most of viral
caspases do not have proteolytic activity. Type I paracaspases have so far been identified only in Eumetazoa, while type II paracaspases have been found in a large variety of
taxonomic groups spanning both eu- and prokaryotic domains. The most wide-spread type of C14 proteases is type I metacaspases, which so far have not been identified only in
genomes of viruses and Eumetazoa. Up to date type II metacaspases are known to be specific for green plants (Viridiplantae), while type III metacaspases have been found only
in phytoplankton species (Heterokontophyta, Haptophyta and Cryptophyta) (b) Caspases, paracaspases and metacaspases can be divided into several types according to their
typical domain architecture. All C14 proteases contain the typical C14 peptidase domain (pfam00656) that forms the CHF and consists of a large (p20) and a small (p10) subunits.
The p20 subunit carries the catalytic His/Cys dyad (annotated with red stripes and H/C letters, correspondingly). The additional catalytic Cys is capable of carrying out proteolytic
activity of an activated processed metacaspase. C14 peptidases are produced as zymogens and undergo modifications for activation. Initiator and inflammatory caspases contain
a CARD (caspase recruiting domain) or DED (death effector domain) that are necessary for interaction with activating molecules, oligomerization and activation of these enzymes;
these domains are removed upon activation. Effector caspases contain a short N-terminal prodomain that is important for stabilizing the zymogen, inhibiting its activity and
initiation of dimerization; this domain is removed upon caspase activation. All characterized type II metacaspases, most of caspases, some of the type I metacaspases also need
to undergo autocleavage of the loop connecting p20 and p10 subunits. Paracaspases do not require autoprocessing for activation. Paracaspases of type I contain an N-terminal
DED domain, and several Ig-like domains, while only C14 peptidase domain was predicted to be present in type II paracaspases. Metacaspases type I have an N-terminal
domain, often containing a Zn-finger motif and Pro-rich motif. For type II metacaspases it is typical to have a large linker separating p20 and p10 domain and no
N-terminal domain. Metacaspases of type III are unique among C14 peptidase, as they have a reversed positioning of p10 and p20 subunits
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Figure 2 C14 proteases have poor conservation of primary structure, but all possess a highly conserved fold (CHF). (a) Alignment of C14 peptidase domains of caspase-3
(Homo sapiens), paracaspase type I, MALT1 (Homo sapiens) and metacaspase type I, YCA1 (Saccharomyces cerevisiae) reveals low level of amino acid identity. Amino acids
forming the large (p20) subunit are marked with dark grey rectangle; small (p10) subunit is marked with light grey rectangle. Position of β-sheets and α-helices are represented
with green arrows and red rectangles, respectively. Catalytic His and Cys are marked with red rectangles. (b and c) Ribbon diagrams of crystal structures of the same enzymes as
in (a) displayed from two perspectives with 90 °C difference: (B), side view; (c), top view. Surfaces of the catalytic His/Cys are denoted with light blue and red colors. The main
structural difference of type I metacaspases is presence of two additional β-sheets within the p20 subunit
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paracaspases57–60 and metacaspases.40,61–64 Interestingly,
while genomes of some organisms contain only one C14
protease gene, the best example being metacaspase YCA1
(also known as MCA1) of budding yeast,65 others have
multiple copies,13,14,52 suggesting that C14 proteases might
be multifunctional and/or redundant.14,66,67

The most well studied substrates of the C14 proteases are
the proteases themselves. All known caspases,25 and most of
the metacaspases,15,29–31 excluding some of the type I
metacaspases30,68,69 require autoprocessing for maturation
of the enzyme. Caspases and some type I metacaspases
undergo removal of the N-terminal prodomain and cleave the
linker between the large and small subunits of the catalytic
domain, while type II metacaspases only cleave the linker
between the large and small subunits of the catalytic domain
(Figure 1b). Caspases can undergo both intra- and inter-
molecular autocleavage, which is crucial for tuning caspase
response according to the strength of the activation
stimuli.20,70 To our knowledge themechanism of metacaspase
autoprocessing has not yet been published. Likewise,
possibility for the existence of cascade activation of different
metacaspases in a fashion similar to that of caspases remains
elusive. Maturation of paracaspases does not seem to involve
autocleavage of the zymogen.71 Notably, at least in some
cases, autoprocessing is not required for activity of the
caspases or metacaspases, but instead has a role in
stabilizing the activated protease.72,73

Despite the differences in the morphology and molecular
machinery of PCD74 several of the cell death-related C14
protease substrates are conserved across kingdoms. For
example, Tudor Staphylococcal Nuclease (TSN), a protein
involved in maintaining cell viability, regulation of gene
expression and stress response75,76 has been found to be a
substrate of caspase-3 during apoptosis in animal cells and a
substrate of a type II metacaspase during vacuolar PCD in
plants.61 Poly (ADP-ribose) polymerase, a classical substrate
of caspase-3 during apoptosis77 has been demonstrated to
undergo metacaspase-dependent proteolysis during PCD in
fungi.63 GAPDH, glyceraldehyde 3-phosphate dehydro-
genase, a substrate of caspase-1 during infection or septic
shock78 was shown to be cleaved in an NO-dependent
manner by YCA1metacaspase upon H2O2-induced cell death
in yeasts.79 Actin, a typical substrate of caspases during

apoptosis80 has been found among targets of Arabidopsis
thaliana metacaspase AtMC9.62

Another striking common feature of C14 proteases is their
involvement in regulating the innate immune responses.
Nucleotide-binding leucine rich proteins, NLR, is a large family
of intracellular immune receptors found in animals, plants and
fungi and involved in defense against microorganisms.81–83 In
mammalian cells NLR proteins trigger an inflammatory
response mediated by caspases and nuclear factor κB
(NFκB).54 The mammalian paracaspase mucosa-
associated-lymphoid tissue lymphoma-translocation gene 1
(MALT1), has essential role in activating the NFκB.84

Arabidopsis metacaspase AtMC9 cleaves the AtCDC48A,62

a negative regulator of NLR-dependent immunity,85 while
AtMC1 and AtMC2 have antagonistic roles in establishing an
NLR-dependent immune response to pathogen infection68

(Figure 4). Interestingly, fungal homologue of cdc48 was
predicted to be also a substrate of metacaspase during
farnesol-induced cell death.86

In the past decade high throughput studies provided
valuable insights on how strict is substrate specificity of C14
proteases,62,87 redundancy of proteases,88 and what is the
quantitative efficacy of cleavage for individual substrates.89

Mahrus et al.90 demonstrated that during apoptosis, caspases
target complexes and networks of proteins. Data from these
studies has been used to develop in silico tools to predict
caspase substrates.53,91 Prediction of meta- and paracaspase
substrates in silico has been less efficient due to the lower
specificity of these proteases and the very sparse information
about their preferences to the tertiary structure of substrates,
as well as subcellular localization. To our knowledge, up to
date only one example of a high throughput identification of
metacaspase substrates is available for Arabidopsis meta-
caspase AtMC9.62

Metacaspases in Terminal Cell Differentiation and Death

The key role of caspases in initiation and execution of
apoptosis together with the fact that other members of the
C14 family are conserved in all kingdoms of life, makes a
compelling case for evolutionary conservation of themolecular
mechanism of PCD.8,10 However, unlike caspases, metacas-
pases and paracaspases cleave their substrates after the
basic residues arginine and/or lysine (Table 1). If the PCD

Table 1 Biochemical characteristics of C14 proteasesa

Active
form

Autocleavage between
p20 and p10 subunits

Removal of N-terminal
prodomain

Optimal
pH

Ca2+
dependency

Additional
catalytic Cys

P1 substrate
specificity

Caspases
Initiatorb Dimer Yes Yes Neutral No No Asp
Effector Dimer Yes Yes Neutral No No Asp

Paracaspases
Type I Dimer No No Neutral No No Arg

Metacaspases
Type I Monomer Some Some Neutral Yes Yes Arg or Lys
Type II Monomer Yes Not applicable Neutralc Yesc Yes Arg or Lys

aNo information is yet available about biochemical characteristics of type II paracaspases and type III metacaspases.bInitiator and inflammatory caspases.cWith the
exception of AtMC9.
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machinery would be conserved in distant taxonomic groups, it
would mean that the cleavage sites in the PCD-related targets
coevolved in non-animal species to fit specificity of meta- and
paracaspases. Alternatively, the role of caspases in these
species might be executed by proteases not belonging to the
C14 family. Indeed, during PCD in fungi and plants, caspase-
like activity was shown to originate from proteases not
belonging to the C14 family.74,92 At the same time, multiple
studies with yeasts and plants link PCD to metacaspase
activity.14,93,94 Growing evidence indicates that PCD regula-
tion in plants, fungi and protozoa drastically differs from PCD
regulation in animal organisms,74 with a few interesting
examples of coincidence or conservation (see the previous
section of this review).
Genomes of both budding yeast and Dictyostelium encode

for only one proteolytically active member of C14 proteinase
family, metacaspase YCA1 and paracaspase PCP,
respectively.65,95 Interestingly, multiple studies confirm invol-
vement of YCA1 in yeast PCD,65,66,96 while PCD of
Dictyostelium does not seem to depend on PCP activity.95

Genomes of plants encode for multiple, potentially redundant,
metacaspase members;14 thus, investigating their involve-
ment in PCD is more challenging.
Plant metacaspases have been shown to have an important

role in some cases of terminal cell differentiation.29,93,97–99 In
most cases, overexpression of plant metacaspases does not
lead to ectopic cell death phenotype, indicating requirement of

an upstream PCD activation signal40 (our unpublished
observations on Arabidopsis and spruce).
Plant cells are surrounded by a rigid polysaccharide cell wall,

which is often not degraded upon execution of developmental
PCD, but is left as a structural component of a tissue (for
example, wood, bark, embryo suspensor, seed coat and so on).
Developmental PCD in plants coincideswith extensive remodel-
ing of cellular architecture, for example, vacuolization, modifica-
tion of the cell wall, deposition of secondary cell wall structures,
gradual removal of organelles and nuclear disassembly. Thus, in
contrast to animal cells undergoing apoptosis, terminally
differentiated plant cells are maintained in a metabolically active
state until remodeling is accomplished and the desired structure
is achieved and then degraded from within the cell using lytic
vacuoles, without involving extracellular resources.74,97,98

Superficially this type of cell death resembles the cornification
death typical for epidermal keratinocytes of animals.100

Cell death or remodeling during differentiation often
includes changes in the cytoskeleton. Apoptosis involves
caspase-dependent cleavage of actin and myosin leading to
blebbing.101 Remodeling of the sub-membranous cytoskele-
ton of trophoblasts during syncytialization and of lens fiber
cells during aging require caspase activity.102,103 Similarly,
drastic changes in cytoskeleton morphology were observed
during differentiation of plant embryo suspensor cells, coin-
ciding with an increase in metacaspase activity.29,104,105

Nuclear disassembly during PCD in Norway spruce embryos
depends on the activity of type II metacaspase mcII-Pa, which

Figure 4 Crosstalk between metacaspases and autophagy. Metacaspase and autophagy are known to be involved in regulating execution of developmental PCD. Depending
on the type of tissue and model organism, they may have different roles in the pathway. For instance, type II metacaspase of Norway spruce, mcII-Pa, was demonstrated to be
crucial for gradual disassembly of terminally differentiated cells of embryo suspensor via vacuolar PCD. mcII-Pa acts upstream to autophagy, and both metacaspase and autophagy
prevent dying cells from early collapse and necrosis. Arabidopsis type II metacaspase AtMC9 is required at the very last stage of vacuolar PCD, post-mortem clearance of root
xylem cells. It also has role in suppressing necrosis-inducing signaling from terminally differentiated cells to the surrounding cells by downregulating autophagic activity in the dying
cells. Both plant metacaspases and autophagy are activated via NLR-dependent pathway upon pathogen infection. In both cases signaling leads to a hyper-sensitive response (HR)
andmight result in local lesion or runaway necrotic cell death. Interestingly, autophagy has antagonistic role in developing HR response: it is important for transducing the signal from
NLR proteins in infected cells and at the same time aging-related autophagy is important for preventing the spread of runaway death of cells adjacent to the infection site. Likewise,
metacaspases do not have a single function in HR response. Different metacaspases have antagonistic roles upon pathogen infection, for example, AtMC1 and AtMC9 have a pro-
death role, while AtMC2 in complex with LSD1 acts as an AtMC1 inhibitor. AtMC9 might be involved in stimulating HR on different levels: by processing of cell death inducing peptide
GRIM REAPER (GRI) upon oxidative stress and by cleaving cdc48a protein, which is important for removing excess NLR proteins from cells. Aging is associated with accumulation
of damaged and/or misfolded proteins that tend to aggregate. Both metacaspases and autophagy participate in removing these aggregates. YCA1 metacaspase of Saccharomyces
cerevisiae has been demonstrated to localize to protein aggregates and stimulate their proteasome-dependent degradation. A similar mechanism was proposed for the type I plant
metacaspase AtMC1 (dashed arrow). Autophagy removes protein aggregates by delivering them to lytic compartments, such as lytic vacuole. Autophagic flux compensates for a
decreased proteasomal activity (and vice versa), linking impacts of autophagy and metacaspase-dependent pathways on aging control
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translocates from the cytoplasm to the nucleus in the
terminally differentiated cells.29

Based on the combination of phenotypic features and
biochemical and cellular markers, most types of plant cell
death can be classified as either vacuolar type or a necrotic
type.74 Interestingly, depleting activity of metacaspase mcII-
Pa in the embryos of Norway spruce switches the type of cell
death in the terminally differentiated cells from vacuolar to
necrotic (Figure 4),98 indicating that this metacaspase has a
pro-survival role at least at the early stages of cell death.
Similarly, caspase-8 is essential for preventing keratinocytes
committed to cornification cell death from switching to
necrosis.106

Post-Mortem Role of Metacaspases

Both caspases and metacaspases operate mainly in cells that
are alive, but post-mortem functions have been reported as
well. Caspases can have post-mortem roles if they are
secreted into the extracellular space or if they stay intact after
phagocytosis. Several studies reported extracellular activities
of caspases. For instance, caspase-1 is secreted from dying
cells into the extracellular space to propagate inflammation to
neighboring cells.107–109 Caspase-3 is released from apopto-
tic cells into the extracellular intestinal lumen during Escher-
ichia coli infection to undermine the integrity of the intestinal
epithelial cells.110 Common to these extracellular caspase
activities is that they affect the fate of the neighboring cells in a
non-cell autonomous manner. Recent studies indicate that
plant metacaspases might have a cell autonomous, post-
mortem role in the clearance of cellular contents. Examples of
such processes are cell death in the lateral root cap and in
xylem elements. These cells maintain high metabolic activity
and intact organelle morphology until the loss of the tonoplast
integrity and vacuolar burst (a moment of cell death), after
which cellular contents are rapidly hydrolysed post mortem by
enzymes released from the intracellular compartments.111–114

Complete clearance of xylem vessel elements is crucial to
allow unobstructed water transport in the empty pipes of the
vessels, while clearance of the root cap cells is required for
normal root development and especially root branching.115

AtMC9 is the only Arabidopsismetacaspase that is strongly
transcriptionally upregulated during xylem and lateral root cap
PCD,116 and it is therefore a likely candidate to operate in post-
mortem processes. While the role of AtMC9 remains to be
established in the lateral root cap cells, it was shown to be
required for the rapid autolysis of the xylem vessel elements.97

Considering that complete clearance of xylem vessels is
crucial for optimal water transport, it was surprising that the
delay in vessel clearance of the AtMC9 mutants did not affect
plant growth negatively, and therefore the biological relevance
of the AtMC9-mediated post-mortem autolysis remained
unclear. Bollhöner et al.97 demonstrated that the AtMC9
mutants are more sensitive to the xylem vessel resident
pathogen Ralstonia solanacearum, suggesting that the
AtMC9-dependent, efficient autolysis of xylem vessel ele-
ments prevents spreading of pathogens in the vasculature.
Functional redundancy of AtMC9 with other metacaspases is
unlikely considering sequence divergence and unique bio-
chemical properties of AtMC9. The optimal pH of AtMC9

catalysis has been reported to be 5.5 15 and it is around 7 for
the Arabidopsis AtMC4, AtMC5 and AtMC8 and the spruce
mcII-Pa,29,30,117 and most probably for the other type II
metacaspases. The low pH optimum of AtMC9 is in line with
the low pH of the cells after vacuolar burst and therefore the
post-mortem role of this enzyme. Noteworthy, AtMC9 is the
only known metacaspase that does not require calcium for its
activity.15

Crosstalk Between Metacaspases and Autophagy

Autophagy is a catabolic process, during which the cell
content is selectively or in bulk degraded and recycled by the
cell. It has a crucial role in maintaining functionality of cells by
removing damaged or superfluous molecules and organelles.
Autophagy is conserved in all eukaryotes and controlled by
the AuTophaGy-related (ATG) genes.118–120 Autophagy is
known as a pro-survival mechanism, but a ‘runaway’
autophagy might lead to the degradation of the whole cell
although evidence of existence of such cell death is rather
scarce.121 On the contrary, there is ample evidence of
crosstalk between autophagy and PCD in various taxonomic
groups.121–125

Suspensor cells of Norway spruce embryos undergo a
typical vacuolar cell death,74,126 which requires both meta-
caspase mcII-Pa29,93 and autophagy.98 Interestingly, in this
pathway metacaspase acts upstream to autophagy, inducing
formation of autohagosomes in terminally differentiated cells
and preventing occurrence of early necrotic cell death
(Figure 4). It still remains to be identified whether catalytic
activity of the metacaspase is required for activation of
autophagy and whether the metacaspase cleaves an
unknown inhibitor of autophagy upon induction of cell
death.98 Recently it was demonstrated that caspase-9 forms
a complex with ATG7 protein promoting formation of autopha-
gosomes. This interaction does not depend on caspase-9
proteolytic activity and it does not only promote autophagic
flux, but also titrates out caspase-9 from the pool of pro-
apoptotic enzymes, thus potentially having a pro-survival
role.127

Another plant type II metacaspase, AtMC9 was shown to
suppress autophagic activity during development of tracheary
elements in Arabidopsis cell cultures99 (Figure 4). As
mentioned above, mcII-Pa and AtMC9 differ in the ranges of
optimal pH and dependency on Ca2+ for their activity and
localization.15,29,97 Therefore different modes of their relation-
ship with autophagy are not surprising.
Plant autophagy machinery and metacaspases team up

during PCD to compensate for the lack of macrophages, which
in animal organisms execute the final step of PCD eliminating
the remnants of dead cells.128 Multiple studies indicate that
autophagy is involved in vacuolar type of cell death in different
organisms98,99,129,130 probably having various functional
roles: delivering cell content to the lytic compartment for
degradation, ensuring lack of toxic waste upon cell collapse
and maintaining cell viability until cell differentiation is
completed. Metacaspases, on the other hand, regulate
autophagic activity98,99 and degrade the remnants of dead
cell after its collapse.97 Interestingly, up-regulation of autop-
hagy in terminally differentiating cultured plant cells results in a
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runaway cell death,99 presumably caused by an improper
disassembly of the dying cell and functionally resembling
secondary necrosis occurring in animals in the absence of
phagocytosis of apoptotic bodies.128

Metacaspases and Aging

In the last few years a role for metacaspases in the control of
aging has started emerging. Initial reports came from the
single metacaspase of the budding yeast YCA1, which was
shown to contribute to fitness and adaptability through its
ability to remodel protein insoluble aggregates.131 YCA1 was
shown to target protein aggregates, co-localizing with aggre-
gate remodeling chaperones. Δyca1 mutants were enriched
for stress response proteins, vacuolar peptidases and
autophagic bodies and had an increased content of insoluble
protein aggregates in comparison to wild-type yeast.
These seminal findings were reinforced by the work of Hill

et al.,66 who demonstrated that overexpression of YCA1
extended replicative lifespan of yeast and reduced the
accumulation of protein aggregates formed during aging or
stress. This lifespan extension and aggregate remodeling
mediated by YCA1was dependent on the proteasome and the
disaggregase Hsp104. Interestingly, the catalytic YCA1
mutant retained residual lifespan extension132 and aggregate
remodeling131 activity, indicating involvement of both proteo-
lytic and non-proteolytic mechanisms in the YCA1 anti-aging
function.
In plants, metacaspases can also regulate the process of

aging, linked to protein aggregate remodeling. Similar to
YCA1, the Arabidopsis type I metacaspase AtMC1 has been
shown to localize to insoluble protein aggregates and
participate in their clearance during aging133 (Figure 4).
AtMC1 protein aggregate localization depends on its N-term-
inal prodomain, but an intact catalytic site is not strictly
required for this localization. The N-terminal domain of AtMC1
contains a zinc finger domain that has been suggested to act
as a scaffold to assemble different death regulators.68,94

Interestingly, protein aggregate localization in yeast was also
dependent on the N-terminus of YCA1,131 a prion domain
containing a polyQ region, which was previously linked to the
aggregate localization propensity of the protein.134 This
N-terminus-dependent aggregate targeting of type I metacas-
pases could represent an ancestral form of the mechanism
activating apoptotic initiator caspases. Interestingly, knocking
out AtMC1 resulted in accelerated aging. Genetic interaction
studies proved that AtMC1 acts additively to autophagy in the
control of aging, both acting as protein quality control/
homeostatic mechanisms to ensure its correct timing and
optimal resource redistribution for seed set.133

In light of the findings in yeast, YCA1 was proposed to
contribute to cellular homeostasis in the following contexts:66

(i) the catalytic activity of YCA1 could contribute to cleave
proteasomal substrates, making them more accessible for
degradation; (ii) the N-terminal domain of YCA1 could facilitate
the action of disaggregating chaperones; (iii) YCA1 could aid
in the recruitment of certain proteins that contributed in
refolding or degradation in protein control compartments.
Considering the functional analogies of YCA1 and AtMC1,
these scenarios could also apply during plant development.

In contrast to the life-extension functions described above,
other plant and fungal metacaspases have been shown to act
as catalysts of aging. In the woody fruit tree Litchi chinensis
knocking out the type II metacaspase LcMCII-1 results in
delayed leaf senescence, whereas its overexpression accel-
erates the process.135 Similarly, deletion of PaMCA1 or
PaMCA2, two metacaspases of the filamentous fungus
Podospora anserina, results in lifespan extension.136

Concluding Remarks

Compared with a vast body of knowledge about caspase-
dependent processes and numerous examples of translation
of this knowledge to medicine, mechanistic understanding of
metacaspases remains largely fragmented. This in turn
hampers evolutionary analysis of pro-survival and pro-death
signaling controlled by C14 proteases. Although it is clear that
metacaspases can perform both cytoprotective and cell death
functions, it remains an open question whether the assigned
pro-death functions are merely compensatory responses to
their primordial role as cytoprotective agents.
Cleavage of protease targets can lead not only to the loss of

function, as in case of metacaspase-dependent cleavage of
TSN during PCD,61 but also to the gain of function62,64 or even
to the change of function.137 Importantly, readiness of caspase
substrates for being cleaved has been shown to be greatly
influenced by their post-translational modifications138,139 and
ability to form complexes.90 Finding new natural substrates of
metacaspases and understanding both structural determi-
nants and functional outcomes of their cleavage is crucial for
deciphering mechanistic role of metacaspases in signaling
pathways that control cell fate specification, organismal
development and aging.
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