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Non-apoptotic functions of caspases in myeloid cell
differentiation

Stéphanie Solier1, Michaela Fontenay2,3, William Vainchenker1, Nathalie Droin1 and Eric Solary*,1,4

Subtle caspase activation is associated with the differentiation of several myeloid lineages. A tightly orchestrated dance between
caspase-3 activation and the chaperone HSP70 that migrates to the nucleus to protect the master regulator GATA-1 from cleavage
transiently occurs in basophilic erythroblasts and may prepare nucleus and organelle expel that occurs at the terminal phase of
erythroid differentiation. A spatially restricted activation of caspase-3 occurs in maturing megakaryocytes to promote proplatelet
maturation and platelet shedding in the bloodstream. In a situation of acute platelet need, caspase-3 could be activated in
response to IL-1α and promote megakaryocyte rupture. In peripheral blood monocytes, colony-stimulating factor-1 provokes the
formation of a molecular platform in which caspase-8 is activated, which downregulates nuclear factor-kappa B (NF-κB) activity
and activates downstream caspases whose target fragments such as those generated by nucleophosmin (NPM1) cleavage
contribute to the generation of resting macrophages. Human monocytes secrete mature IL-1β in response to lipopolysaccharide
through an alternative inflammasome activation that involves caspase-8, a pathway that does not lead to cell death. Finally, active
caspase-3 is part of the proteases contained in secretory granules of mast cells. Many questions remain on how these proteases
are activated in myeloid cell lineages, which target proteins are cleaved, whereas other are protected from proteolysis, the precise
role of cleaved proteins in cell differentiation and functions, and the link between these non-apoptotic functions of caspases and
the death of these diverse cell types. Better understanding of these functions may generate therapeutic strategies to control
cytopenias or modulate myeloid cell functions in various pathological situations.
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Facts

� Caspase-3 is transiently activated during erythroid differ-
entiation and cleaves proteins that may prepare expel of
mitochondria and enucleation by reticulocytes.

� The key erythroid transcription factor GATA-1 is protected
by the chaperone HSP70 that migrates to the nucleus at the
onset of caspase activation. The deregulation of this
process account for anemia in myelodysplastic syndromes
and β-thalassaemia.

� Caspase-3 activity could be differentially involved in a
thrombopoietin-dependent and a thrombopoietin-indepen-
dent mode of platelet production by megakaryocytes

� Colony-stimulating factor 1 activates in monocytes the
formation of a molecular platform in which caspase-8 is
activated. This protease and downstream enzymes con-
tribute to the generation of resting macrophages.

� Active caspase-3 is part of the proteases in mast cell
secretory granules.

Open Questions

� How caspases are activated in erythroid cells and mega-
karyocytes in response to erythropoietin and thrombopoie-
tin, respectively?

� What are the functions of proteins cleaved by caspases in
erythroid cells, megakaryocytes and CSF-1-treated mono-
cytes undergoing differentiation?

� Could we manipulate therapeutically caspase activity to
promote some lineage differentiation or modulate macro-
phage polarization?

The highly regenerative hematopoietic tissue, which produces
approximately one trillion cells every day within a human adult
bone marrow, is viewed as a hierarchical system with
hematopoietic stem cells (HSCs) at the apex. In addition to
self-renewing, these multipotent cells give rise to all blood cell
lineages through generating a pool of oligopotent progenitor
cells that undergo a gradual fate restriction and finally assume
the identity of a mature cell circulating in the blood.1 This
roadmap was recently challenged by the results of single cell
and family tracing analyses (Figure 1).2–5 Whatever the
detailed routes of lineage development, apoptosis is part of
the process as T-cell maturation includes the eradication of
~ 98% of thymocytes,6 autoreactive B-lymphocytes are
eliminated in the bone marrow7 and loss of function in the
apoptotic cascade alters hematopoietic tissue development
while increasing cancer susceptibility.8

The maintenance of homeostatic cell numbers implicates
that the continuous removal of ageing mature cells matches
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with the production of new cells. Apoptotic caspases are
involved in the removal of a number of aged or altered blood
cells, these dying cells being cleared by macrophages of the
liver, spleen and bone marrow. Apoptosis is the final stage of
the short neutrophil and eosinophil life span.9,10 Erythrocytes
typically undergo senescence and are cleared by the
reticuloendothelial system after 100–120 days.11 These cells
may also enter a suicidal death process called eryptosis that
could involve caspases despite the lack of mitochondria and
Apaf-1 adaptor molecule.12 Even platelets, which are anuclear
cytoplasmic fragments with a 10-days life span, are pro-
grammed to die through a caspase-dependent apoptotic
process that is activated when Bcl-XL expression declines.13

Behind apoptotic caspases, inflammatory caspases can be
activated in progenitors14 and mature15 hematopoietic cells

when pattern-recognition receptors interact with pathogen- or
damage-associated molecular patterns. This interaction pro-
motes the formation of inflammasomes in which the cytokines
interleukin-1β and interleukin-18 are cleaved to be activated
and released to eventually promote non-apoptotic inflamma-
tory cell deaths such as pyroptosis and necroptosis.16 These
events interfere with emergency hematopoiesis in response to
systemic infections and could drive clonal expansion in
myelodysplastic syndromes (MDS).17 Caspases are also
positive and negative regulators of T-cell, B-cell and NK-cell
proliferation and activation (Figure 1),18,19 as they contribute to
NF-κB activation,20 cytokine production and apoptosis.
Finally, caspases exert subtle non-apoptotic, non-inflamm-

atory functions in the differentiation of several myeloid
lineages. These functions are the focus of this review that

Figure 1 Currently prevalent scheme of hematopoiesis, showing in red the differentiation steps in which caspase activity is involved. CLP, common lymphoid progenitor; CMP,
common myeloid progenitor; GMP, granulocyte-monocyte progenitor; HSC, hematopoietic stem cell; MEP, megakaryocyte-erythroid progenitor; MPP, hematopoietic multipotent
progenitor
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shows that low-level and transient enzyme activity, chaperon-
ing of proteins whose cleavage would lead to cell death and
spatial restriction of activated caspases distinguish caspase
activation in differentiating and dying cells.

Caspases in Erythroid Cell Differentiation

According to the prevalent scheme of hematopoiesis, multi-
potent progenitors (MPP) derived from HSCs give rise to
intermediate lineage-restricted progenitors, including com-
mon myeloid progenitors (CMP) that generate both granulo-
cyte–macrophage (GMP) and megakaryocyte (MK)-erythroid
progenitors (MEP; Figure 1). The later progenitors give rise to
unipotent erythroid progenitors, with colony assays distin-
guishing early burst-forming unit – erythroid (BFU-E) from later
colony-forming unit – erythroid (CFU-E) progenitors.21 The
earliest morphologically recognizable erythroid precursor is
the proerythroblast, which undergoes successive mitosis,
each of them producing a morphologically distinct population
of erythroblasts, beginning with proerythroblasts and followed
by basophilic, polychromatic, and orthochromatic erythro-
blasts that expel their organelles and nuclei to generate
reticulocytes. This ordered differentiation process is accom-
panied by decreases in cell size, enhanced chromatin
condensation, progressive hemoglobinization and marked
changes in membrane.22

Synergistically with stem cell factor (SCF), erythropoietin
(Epo) regulates red cell production rate through rescuing a
number of erythroid progenitors and early precursors from
caspase-mediated apoptosis (Box 1). Epo also positively
regulates erythropoiesis by stimulating proliferation and
differentiation of erythroid progenitors through upregulation
of the zinc finger hematopoietic transcription factor, GATA-1
(GATA-binding factor 1). Neither SCF nor Epo are needed for
late steps of erythroid differentiation, from polychromatic
erythroblasts to reticulocytes.
While the apoptotic function of caspases is required for the

negative regulation of erythroid cell differentiation, the
transient activation of caspase-3 and possibly other caspases
is required for normal erythroblast maturation (Figures 1, 2a
and 3a,Table 1).23–26 This assertion is based on the ability
of pan-caspase inhibitors to block erythroid development at
the basophilic stage of maturation, the demonstration of
procaspase-3 cleavage in erythroid precursors, and the

cleavage of caspase-specific peptide substrates in differen-
tiating erythroid cells (Table 1).25–27 Caspase-3 knock-out
mouse models demonstrate distinct phenotypes, depending
on their genetic background28,29 and the ability of one of them
to reach adulthood without defective erythropoiesis ques-
tioned the role of caspase-3 in erythroid differentiation.29

However, redundancies exist between caspases and ablation
of caspase-3 by small interfering RNA could block erythropoi-
esis in a large fraction of the erythroblasts in culture.24

Several proteins are cleaved by caspases in differentiating
erythroblasts (Table 1), including the kinases ROCK-1 and
MEKK1, lamin B, Acinus, ICAD (Inhibitor of caspase-activated
DNase), and hnRNP K (heterogeneous nuclear ribonucleo-
protein K).25,26,30–33 ROCK-1 activating cleavage occurswhen
the SCF/c-KIT-mediated activation of the Rho/RACK signaling
pathway is fading, due to the downregulation of c-KIT, and
active ROCK-1 phosphorylates the light chain of myosin II.31

Another kinase cleaved and activated by caspase-3 is MEKK1
that, in turn, activates MEK6/p38α pathway.30 How these
kinases contribute to erythroid differentiation remains
unknown. Caspases may be involved in the timely controlled
lost of organelles that characterizes terminal erythroid
differentiation, for example the cleavage of hnRNP K induces
the synthesis of reticulocyte 15-lipooxygenase (r15-LOX)
that is needed for the degradation of mitochondria in
reticulocytes.33

One of the characteristic features of erythropoiesis in
mammals is a dramatic nuclear condensation observed in
orthochromatic erythroblasts and the subsequent extrusion of
the nucleus.34 shRNA knockdown of caspase-3 in human
erythroid cells significantly reduces the number of enucleated
cells.24 DNase IIα35 and Acinus26 could be the endonucleases
responsible for chromatin condensation. Recently, caspase-3
was shown to be required for transient and repeated nuclear
opening that occurs in differentiating erythroid cells until just
before enucleation, are tightly linked with the cell cycle and
permit the selective release of core and linker histones in the
cytoplasm where they aggregate around the nuclear opening
before being rapidly degraded by the proteasome
machinery.36 Pharmacologic or genetic loss of function of
caspase-3 blocks nuclear opening and nuclear condensation,
restores nuclear histone H2B, repairs nuclear openings and
abrogates new opening formation.37,38 Nuclei expelled from

Box 1 Epo regulates red cell production rate through rescuing erythroid progenitors and early precursors from
apoptosis

Induction of Bcl-XL expression by EpoR-activated STAT5 is a major survival pathway in erythroblasts,113–115 which is
associated with the ERK-induced degradation of the pro-apoptotic protein Bim.116 An intracellular Spi2A serpin, which
inhibits lysosomal cathepsins, is another Epo/STAT5 cytoprotective target that protects erythroblasts from radical oxygen
species toxic effects.117 Splenic early erythroblasts could also negatively regulate their own survival by co-expressing the
death receptor Fas and its ligand, FasL. This regulatory loop accelerates the response to hypoxic stress that otherwise
requires a delay for the maturation of Epo-responsive progenitors mature into red cells.118,119 Fas ligation results in the
activation of caspase-8, then caspase-3, and the cleavage of SCL/Tal-1120 and GATA-1118 transcription factors whose
inactivation induces a maturation arrest at the basophilic erythroblast stage and cell death by apoptosis.
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erythroid precursor cells quickly expose phosphatidylserine
on their surface and are engulfed by macrophages.39

Importantly, the transcriptional factor GATA-1, which is
degraded by caspases in erythroid cells undergoing apoptosis
upon cytokine starvation or exposure to death receptor
ligands,40 remains uncleaved in differentiating erythroblasts
(Figure 3a). GATA-1 plays a central role in Epo-mediated
upregulation of genes involved in erythroid cell differentiation,
including EpoR, α-globin and glycophorin A genes41 and in
erythroid cell survival, mainly Bcl-XL.

42 The chaperone protein
HSP70 translocates to the nucleus at the onset of caspase
activation to physically interact with, and protect GATA-1 from
caspase-mediated proteolysis (Figure 3a). GATA-1 is cleaved
by caspase-3 when HSP70 is downregulated in erythroid
precursors cultured in the presence of Epo, which leads to the
downregulation of Bcl-XL and cell death by apoptosis. Epo
starvation induces the nuclear export of Hsp70, exposing
GATA-1 to caspase-mediated proteolysis.43 Deregulation of
the interplay between HSP70, GATA-1 and caspases may
account for the anemia that develops in some MDS44,45 and
β-thalassaemia46 (Box 2). At the end of erythroid differentia-
tion, GATA-1 expression level and activity decrease.47 To fine-
tune GATA-1 expression, another chaperone, HSP27 binds in
its p38-phosphorylated form to acetylated GATA-1 to promote
its ubiquitination and proteasomal degradation.48

Caspases in Proplatelet Formation and Platelet Release

Thrombopoietin (TPO) interacting with its receptor MPL
promotes the conversion of HSCs and multipotent progenitors
into MK progenitors2,4 (Table 1) whose terminal differentiation
includes a switch from mitosis to endomitosis to generate
polyploid cells. At the end of polyploidization, MK undergo
cytoplasmic maturation with important changes in cytoskele-
ton organization leading to the release of 1011 platelets per day
in the bloodstream. Platelet biogenesis involves the fragmen-
tation of the MK cytoplasm through cytoplasmic extensions
called proplatelets that arise from the elongation of the internal
membrane powered bymicrotubule forces. These proplatelets

brake into the vascular space due to the blood shear forces
and further fragment into preplatelets and platelets in the
bloodstream. These cells repair vascular injuries and prevent
excessive bleeding. Their generation is tightly controlled by
exogenous and endogenous factors.
The role of caspases in MK differentiation remains a

controversial issue (Figures 1, 2b and 3b,Table 1).49 It was
initially reported that MK died by apoptosis and that the peak of
platelet production by MK corresponded to the onset of
apoptosis.50 The thrombocytopenia observed in mice over-
expressing Bcl-251 or deficient in Bim52 further argued for an
apoptotic component in proplatelet formation. Furthermore,
proplatelet formation is impaired in murine MKoverexpressing
Bcl-XL under control of the platelet factor 4 (PF4) promoter53

and in human MK cultured with the pan-caspase inhibitor
Z-VAD-fmk.54,55 Finally, the presence of active caspase-3 in
discrete parts of maturing MK cytoplasm suggested that
spatially restricted apoptosis could facilitate platelet shedding
(Figure 2b). This punctuated distribution of active caspase-3
contrasted with the diffuse staining observed in apoptotic MK
(Table 1).55

Amplification of this spatially restricted caspase activation
could have explained thrombocytopenia that occurs in
patients exposed to toxic, infectious or immune insults as well
as in MDS, leading to MK apoptosis before platelet release.56

Accordingly, an autosomal dominant form of thrombocytope-
nia was detected in a family with a constitutive variant of
cytochrome c (G41S) with enhanced ability to activate
caspases, which could accelerate the release of platelets in
the bone marrow rather than the bloodstream.57 In a cell-free
system, G41S-increased caspase activation was observed
only at low cytochrome c concentrations, suggesting that
differentiation-induced caspase activation involves the release
of low cytochrome c concentrations in the cytosol, with higher
concentrations released in stressful conditions triggering MK
apoptosis. However, caspase-9 may be dispensable for these
processes, which questions the target of cytochrome c when
released in the cytosol of mature MKs.58

Figure 2 Caspase activation during differentiation of the indicated lineages. Active caspase-3 (green; Cell Signaling antibody 9664; 1:250 dilution) and nuclear chromatin
(DAPI, blue) staining of (a) K562 human leukemic cells treated with 30 μM haemin for 4 days; (b) Megakaryocytes sorted on CD41a and CD42 expression from cultures of
primary human CD34+ cells in serum-free medium with 10 ng/ml TPO and 5 ng/ml Stem Cell Factor for 5 days; (c) CD14+ peripheral blood monocytes treated with 100 ng/ml
Colony-Stimulating Factor 1 for 3 days. Confocal images were acquired on a Leica SPE Confocal system. The immunofluorescence staining protocol details are found in Solier
et al.112 Scale bar, 5 μm
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Both Mcl-1 and Bcl-XL are required to keep Bak and Bax in
check in MK.59–61 The simultaneous deletion of Bak and Bax,
which protects MK from apoptotic stimuli, does not alter
thrombopoiesis at steady state or under conditions of
stress.60,62 It remains unclear how a restricted or localized
apoptosis-like process that activates caspases is activated in
mature MK and used for platelet shedding, independently of
Bak and Bax.
A role of the extrinsic pathway to caspase activation has

been suspected as the number of cultured MK that form
proplatelets increased when exposed to Fas Ligand or
agonistic Fas antibodies or TNF-related apoptosis-inducing
ligand (TRAIL), or delivery of a recombinant active form of
caspase-8.54,63 Accordingly, decreased TRAIL expression in
the context of immune thrombocytopenia could reduce

proplatelet formation.64 However, some of these results were
obtained in megakaryoblastic cell lines exposed to the poorly
specific caspase inhibitor Z-VAD-fmk and further studies
showed that, if a FasL-responsive caspase-8-mediated
extrinsic apoptosis pathway was operative in MK, this pathway
was dispensable for platelet production.65 Altogether, the
restricted or localized apoptosis-like process that may activate
caspases in mature MK to promote platelet shedding is
independent of the extrinsic pathway.
If there is no strong argument to sustain the initial hypothesis

that mature MK may undergo classical apoptosis to promote
platelet shedding, caspases could be activated in mature MK
and promote platelet release independently of any cell death
program, defining a new, non-apoptotic function of these
enzymes. A recent report suggested that endoplasmic

Figure 3 Schematic representation of the role of caspases during erythroid differentiation (a), proplatelet formation (b) and CSF-1-induced macrophage differentiation (c)
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reticulum stress could be responsible for their activation.66

Identification of caspase targets that are cleaved in mature MK
would be a convincing evidence to support the hypothesis that
caspase activation is required for platelet shedding and
provide insights on how the localized activation of caspases
contributes to platelet formation. One of these targets could be
the antiapoptotic protein livin that belongs to the inhibitor of
apoptosis proteins (IAP) family.67 Cleavage of gelsolin and
poly adenosine diphosphate (ADP)-ribose polymerase
(PARP) was also detected.55

Importantly, MK maturation and platelet biogenesis can
occur independently of TPO in situations of acute platelet
need.68 This interleukin-1 alpha driven, TPO-independent
mechanism of platelet production, which yields the rapid
release of ∼ 20-fold higher numbers of platelets as compared
with the classical mechanism of proplatelet formation, involves
the activation of caspase-3 that reduces plasma membrane
stiffness through dysregulating tubulin expression, with an
oversupply of β1-tubulin.68 This mechanism is clearly distinct
from the tightly regulated changes in the cytoskeleton that lead
to TPO-dependent platelet formation. The balance between
TPO and IL-1αmay determine the cellular programming of MK
for thrombopoiesis in response to acute and chronic
platelet needs.
Platelets themselves are anuclear cytoplasmic fragments

that activate a cell autonomous, intrinsic caspase-dependent
apoptotic program when Bcl-XL expression declines with
ageing.13,49 The major dose-limiting toxicity of the BH3
mimetic drug Navitoclax that inhibits several antiapoptotic
proteins including Bcl-XL is thrombocytopenia69 while ABT-
-199, a Bcl-2-specific BH3mimetic, has no significant effect on
platelet counts.70

Finally, platelets demonstrate hemostatic and prothrombotic
functions through their ability to adhere and aggregate at sites
of vascular injury and to support blood coagulation. The
conversion of activated platelets to a procoagulant state is
associated with specific biochemical and morphologic
changes, some of which being similar to those occurring in
apoptotic cells, including exposure of phosphatidylserine at
the cell surface, membrane contraction, blebbing and micro-
vesiculation. Upon stimulation with various physiological
agonists, the formation of procoagulant platelets involves a
calcium-dependent but caspase-independent pathway.71 In
murine platelets, caspase-12, an enzyme localized at the
cytoplasmic surface of the MK endoplasmic reticulum was
involved in agonist-induced integrin activation in platelets,
suggesting a non-apoptotic function of the enzyme that would
need further investigation.72

Caspases in Monocyte Differentiation into Macrophages

The development of circulating blood monocytes involves the
growth factor receptor CSF-1 R (colony-stimulating factor-1
receptor, also known as M-CSFR / CD115) at the surface of
hematopoietic stem cells and myelomonocytic cells. Two
CSF-1 R ligands have been identified, CSF-173 and
interleukin-34 (IL-34).74 IL-34 directs the differentiation of
myeloid cells in the skin epidermis and central nervous
system.75 CSF-1 is a monocytic lineage-specific cytokine that
directly acts on a hematopoietic stem cell in the bone marrowTa
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to instruct a change of cell fate through activation of the
endogenous Ets family transcription factor PU.1.76 Monocytes
develop from HSCs via several commitment steps and
intermediate progenitor stages that pass through the CMP,
the GMP, and the macrophage/dendritic cell progenitor stages
(Figure 1). PU.1 controls cell fate decisions by engaging in
antagonistic interactions with other transcription factors, for
example, with GATA-1 to shut down the MK/erythroid pathway,
with GATA-2 to inhibit mast cell development, and with C/EBPα
to block granulocytic differentiation.77 An official nomenclature
subdivides mature monocytes into subsets with a suspected
gradual developmental relationship between them.78 Over
one billion monocytes are produced daily, with a fraction
differentiating into macrophages while the others are deleted
through a process that may involve the Fas pathway as
spontaneous monocyte apoptosis in culture is inhibited by
neutralizing antibodies to the death receptor Fas or its cognate
ligand FasL79 and mice deficient in Fas display increased
numbers of circulating monocytes.80

In some tissues such the epidermis (Langerhans cells) and
the brain (microglia), macrophages derive from embryonic
progenitors and self-maintain by local proliferation during
adulthood with no or minimal input from circulating
monocytes.81 In other tissues such as intestinal lamina propria
(LP) and dermis, macrophages are replaced from monocytes
and many other tissue-resident macrophages reflect an
intermediate situation.82 Monocyte recruitment might occur
under conditions of stress and inflammation that deplete the
local population and also under homeostatic conditions to
maintain the pool of macrophages in a given tissue when local
self-renewal capacity becomes gradually exhausted with
age.81

In ex vivo culture, CSF-1-induced differentiation of mono-
cytes into macrophages is associated with caspase activation
in the absence of any cell death (Figure 1, 2c and 3c,
Table 1),83 and this differentiation can be prevented by the
pan-caspase inhibitor Z-VAD-fmk or expression of the
viral pan-caspase inhibitor p35, or overexpression of the
anti-apoptotic protein Bcl-2. Caspase-8 deletion in mouse

bone marrow cells also results in arrest of monocyte
differentiation into macrophages.84 Caspase activation is not
detected when circulating monocyte differentiation is induced
by granulocyte macrophage colony-stimulating factor (GM-
CSF). CSF-1 and GM-CSF are the apex macrophage survival
cytokines, with a strong role of GM-CSF in the function of
alveolar macrophages and a broader effect of CSF-1. It was
therefore paradoxical to detect caspase activation in mono-
cytes treated with a cytokine that is essential for their survival.
CSF-1 interaction with CSF-1 R at the surface of human and

murine peripheral blood monocytes in culture provokes the
oscillatory activation of phosphatidylinositol-3-kinase and the
kinase AKT (Figure 3c).85 After several waves of activation,
within 2–3 days, a molecular platform is generated. This
platform includes the adaptor protein FADD (Fas-associated
death domain), RIPK1 (receptor-interacting serine/threonine-
protein kinase 1), FLIP (cellular FLICE inhibitory protein) and
procaspase-8 (Figure 3c).86 The formation of this platform and
the subsequent activation of caspase-8 may not require a
death receptor as it is not prevented by the expression of a
dominant negative mutant of FADD that cannot interact with
death receptors.86 Active caspase-8 may directly cleave
RIPK1, which turns down NF-κB activity (Figure 3c).86

Caspase-8 also activates downstream caspase-3 and
caspase-7 that cleave a series of selected substrates.
Identified targets of caspases in CSF-1-treated monocytes
include nucleophosmin (NPM1), the serine/threonine-protein
kinase PAK-2 (p21-activated kinase 2), α-tubulin, PAI-2
(plasminogen activator inhibitor-2), several mRNA binding
proteins of the hnRNP family (H and C) and vinculin
(Table 1).87 Several of these targets are involved in cytoske-
letal regulation, suggesting a role of their proteolysis in the
cytoskeleton reorganization associated with differentiation.
Many other typical caspase targets in cells undergoing
apoptosis are not cleaved, phosphatidylserine is not exposed
at the cell surface, and no DNA fragmentation is detected.83,87

The tight regulation of the proteolytic process asso-
ciated with differentiation is illustrated by the proteolysis of
NPM1, a ubiquitously and abundantly expressed 38-kDa

Box 2 Deregulated interplay between GATA-1, HSP70 and caspases as a pathogenic mechanism of anemia in
myelodysplastic syndromes (MDS) and β-thalassaemia

MDS are clonal disorders of the HSC in which ineffective hematopoiesis is responsible for peripheral blood cytopenias.
Anemia is the consequence of a dyserythropoiesis that associates defectivematuration and excessive apoptosis of erythroid
precursors. The decreased GATA-1 expression observed in MDS erythroblasts correlates with a defect of HSP70
accumulation in erythroblast nucleus. GATA-1 expression can be restored by addition of pan-caspase inhibitors to erythroid
cultures and erythroid differentiation is restored by expression of a mutated GATA-1 that cannot be cleaved by caspases or a
mutated HSP70 targeted to the cell nucleus.44 It remains to be determined if defective Epo signaling is responsible for the
abnormal shuttling of HSP70 to the nucleus or other pathways that regulate HSP70 localization are altered as a
consequence of somatic mutations that accumulate in the HSC. Of note, caspase inhibition does not restore erythroid colony
formation in early stage MDS, possibly because it blocks erythroid differentiation.45 In β-thalassaemia, HSP70 is
sequestrated in the cytoplasm as it interacts with free α-globin chains of hemoglobin that accumulate as a consequence of
the quantitative defect in the synthesis of β-globin chains. Again, the maturation of human β-thalassaemia major
erythroblasts with a nuclear targeted HSP70 or a mutated GATA-1 that resists to caspase-3-mediated cleavage restores
terminal erythroid maturation.46 In these two diseases, alteration of the GATA-1/ HSP70 interplay suggests therapeutic
approaches that could restore the nucleocytoplasmic shuttling of HSP70.
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phosphoprotein that shuttles between the granular region of
the nucleolus and the cytoplasm, especially during the S
phase of the cell cycle.88 This chaperone protein and
transcription co-regulator is a caspase substrate in cells
undergoing apoptosis.88 In CSF-1 treated monocytes,
caspase-7 cleaves NPM1 at D213 to generate a 30-kDa
N-terminal fragment, and the protein is further cleaved into a
20-kDa fragment by cathepsin B.89 NPM1 fragments con-
tribute to the limited motility, migration and phagocytosis
capabilities of resting macrophage and the proteolysis of
NPM1 by caspase-7 and cathepsin B participates in the
establishment of a mature macrophage phenotype. TLR4-
mediated activation of macrophages inhibits the proteolytic
processes and restores expression of the full-length protein
that negatively regulates the transcription of cytokines genes
implicated in inflammation. In mice with heterozygous NPM1
gene deletion, cytokine production in response to lipopoly-
saccharide is dramatically enhanced.89

Macrophage polarization plays an important role in the
pathogenesis of diverse human diseases.90 In a bleomycin-
induced lung fibrosis model, a caspase inhibitory molecule
was shown to prevent the development of lung fibrosis,91 but
additional studies are needed to determine if a change in the
polarization of lung macrophages account for this effect.
In addition to activating caspases, engagement of CSF-1 R

in monocytes elicits typical autophagy.92–94 In the absence of
ATG7, differentiation of monocytes into macrophages is
severely impaired with perturbed acquisition of specific
macrophage functions such as bacteria phagocytosis.93 On
the contrary to caspase activation however, accumulation of
LC3-II, increased expression of SQSTM1/p62 and enhanced
activity of cathepsins that characterize autophagy are
observed in monocytes treated with GM-CSF.95

Many stress pathways induce autophagy, and apoptosis
within the same cell, usually in a sequence in which autophagy
precedes apoptosis.96 These processes cross-regulate each
other, mostly in an inhibitory manner, that is, autophagy blocks
the induction of apoptosis until caspase activation shuts off the
autophagic process. Mitophagy and the interaction of seques-
tosome 1 (SQSTM1 or p62) with ubiquitylated proteins are two
ways for autophagy to prevent apoptosis, but the dialogue
between autophagy and caspase-dependent cell death is
context-dependent. CSF1-induced differentiation of mono-
cytes into macrophages may represent a unique model in
which autophagy efficiently restrains caspase activation to
prevent cell death. Both ATG5 and SQSTM1, which are
involved in autophagy, were co-localized with caspase-8,
FADD, FLIPandRIPK1, suggesting that initiation of autophagy
and caspase activation could occur in the same cell
compartment.97

Monocytes are key actors of innate and adaptive immune
responses through the production of IL-1β. The proteolytic
activating cleavage of pro-IL1β is most commonly executed by
caspase-1 whose activity is controlled by the formation of the
inflammasome. Typically, this process leads to pyroptosis
through caspase-1-mediated cleavage of the effector mole-
cule GSDMD (Gasdermin-D). Human monocytes can secrete
mature IL-1β in response to lipopolysaccharide through
an alternative inflammasome activation that relies on

TLR4-TRIF-RIPK1-FADD-CASP8 to propagate activation to
NLRP3, a pathway that does not lead to cell death.15

Active Caspase-3 in Mast Cell Granules

Active caspase-3 was recently identified in human mast cells
in the absence of apoptosis. GMP give rise to basophil-mast
cell progenitors (BMCP, CD34+, CD13+, FcεRI−, KIT+) in the
bone marrow. These progenitors circulate in the peripheral
blood as agranular mononuclear leukocytes and complete
their maturation into peripheral tissues where they acquire
phenotypic diversity. SCF is the most important cytokine
involved in mast cell development, driving their homing,
proliferation, survival and differentiation. Different mast cell
phenotypes finally develop in vascular tissues and organs,
containing tryptase alone or both tryptase and chymase along
with other proteases in their lysosome-like secretory
granules.98 These cells are important effector cells of the
immune system that, like many other bone-marrow-derived
hematopoietic cells, die through a caspase-dependent apop-
totic process.99,100 Enzymatically active caspase-3 was not
detected in BMCPs but appeared to accumulate during the
process of mast cell maturation (Table 1). The enzyme was
located in subcellular fractions containing secretory granule-
localized proteases and rapidly released into the cytosolic
compartment after permeabilization of the secretory granules
upon mast cell activation.101,102

Concluding Remarks

Non-apoptotic functions of caspases contribute to the differ-
entiation of erythroid cells, the maturation of proplatelets, the
release of platelets and the functions of mast cells and CSF-1
induced macrophages, suggesting fine-tuned adaptive
processes triggered by cytokines and chemokines. A non-
apoptotic function of caspase-3 was also detected in bone
marrow stromal stem cells103 and hematopoietic stem cells,104

suggesting that this enzyme could be a gatekeeper of stem
cell functions. The loss of caspase-3 favors HSC proliferation
while decreasing their differentiation, in part throughmodifying
their response to exogenous signals provided by their
environment,104 a phenotype partially rescued by the deletion
of p21cip1/waf1.105 Caspase-2 knock-out also affects mouse
HSC behavior by promoting their myeloid differentiation but
the molecular pathway involved remain unknown.106 The
relevance of these observations in healthy and diseased
human HSC his unclear.
The non-apoptotic functions of caspases raise compelling

questions of how the activity of these death-associated
enzymes is controlled to maintain cell integrity. Much of the
regulation of apoptotic functions of caspases may be carried
out by IAPs, but there is still little evidence that these ubiquitin
ligases are involved in the regulation of their non-apoptotic
functions.107 Some cells resist caspase-mediated cell death
by sequestering caspase activity in specific subcellular
regions, as described in Drosophila spermatids,108 insect
neuronal dendrites,109 and megakaryocytes.55 Caspase
activation can also be very transient and coordinated with
the chaperoning of key proteins for cell survival and
differentiation, as observed in the erythroid lineage. Finally,
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the biochemical mechanisms leading to caspase activation
could differ during differentiation and cell death, for example,
conformational changeswithout cleavage could activate these
enzymes.110 The dynamics of caspase activation in differ-
entiating cells is still poorly understood. While the signaling
cascade activated by CSF-1 in monocytes has been partially
identified, going through waves of PI-3 K signaling with
increasing duration and amplitude to finally promote the
formation of a cytosolic multimolecular platform in which
caspase-8 is recruited and activated, it remains unclear how
TPO and Epo activate non-apoptotic caspases in differentiat-
ing MK and basophilic erythroblasts respectively. With some
exceptions, the contribution of most of the caspase substrates
cleaved in these non-apoptotic settings remains poorly
explored. Finally, with the ermergence of clinically tested
caspase inhibitors,111 a central question will be to determine if
these enzymes could be therapeutically manipulated to
restore or inhibit specific differentiation pathway, for example,
to modulate immune cell polarization.
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