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Abstract

Objective—Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic 

anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted 

metabolomics approach to identify pathways and metabolites that distinguished PCOS from 

metabolic syndrome (MetS).

Methods—Twenty obese women with PCOS were compared with 18 obese women without 

PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications 

that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the 

frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was 

performed on fasting plasma samples to identify differentially expressed metabolites, which were 

further evaluated by principal component and pathway enrichment analysis. Quantitative targeted 

metabolomics was then applied on candidate metabolites. Measured metabolites were tested for 

associations with PCOS and clinical variables by logistic and linear regression analyses.

Results—This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 

years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal 

component analysis of the nontargeted metabolomics data showed distinct group separation of 

PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were 

identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, 

including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted 

metabolomics identified many essential amino acids, including branched-chain amino acids 

(BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with 

BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the 

lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables 

representing technical variation in metabolites. No significant differences between groups were 

observed in concentrations of free fatty acids or vitamin D metabolites. Evaluation of the 

relationship of metabolites with clinical characteristics showed 1) negative associations of 

essential and BCAA with insulin sensitivity and sex hormone–binding globulin and 2) positive 

associations with homeostasis model of insulin resistance and free testosterone; metabolites were 

not associated with BMI or percent body fat.

Conclusions—PCOS was associated with significant metabolic alterations not attributed 

exclusively to androgen-related pathways, obesity, or MetS. Concentrations of essential amino 

acids and BCAA are increased in PCOS, which might result from or contribute to their insulin 

resistance.

Keywords

α-aminoadipic acid; branched-chain amino acids; insulin sensitivity; metabolic syndrome; vitamin 
D

1. Introduction

Polycystic ovary syndrome (PCOS), a condition of androgen excess and chronic 

anovulation, is the most common endocrine disorder among women of reproductive age (1, 

2). Insulin resistance is highly prevalent in PCOS, even among lean women (3), and it is 
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associated with a higher risk of type 2 diabetes mellitus and an increase in cardiovascular 

risk factors (4). Limited knowledge about the exact mechanisms underlying the 

pathophysiology of PCOS has resulted in few available or effective therapies that ameliorate 

symptoms of PCOS or improve fertility or the metabolic complications of insulin resistance. 

Genome-wide association studies have identified candidate genes associated with PCOS, but 

their role in the underlying pathophysiology of PCOS has not been delineated to date. In 

addition, the lower odds ratios of genetic associations suggest that candidate genes are likely 

relevant for only a subset of women with PCOS (5–8). Furthermore, heterogeneity in the 

diagnosis of PCOS, resulting from diagnostic criteria requiring 2 of 3 features, results in 

considerable phenotype overlap and variable response to antiandrogen therapies and 

metformin. This heterogeneity limits the progress of more traditional approaches to identify 

underlying causes and novel therapies for PCOS.

Genomic (9–11), proteomic (11, 12), and metabolomic (13–20) approaches to study the 

pathogenesis of PCOS have implicated various pathways, including oxidative stress, 

immune function, and lipid metabolism. However, the activation of these pathways might 

reflect the high prevalence of obesity in women with PCOS, rather than the underlying 

pathogenesis of insulin resistance associated with PCOS. Given the great potential for 

interaction or overlap of metabolic pathways in PCOS vs those of obesity, plasma 

metabolomics offers detailed profiling of small-molecule breakdown products downstream 

of genomic and proteomic expression to identify active metabolic pathways associated with 

specific PCOS phenotypes or response to therapy.

To date, metabolomic studies in PCOS have evaluated small samples of women or evaluated 

the effect of multidrug therapy on PCOS (14, 15, 17, 21). In addition, many studies could 

not examine or control for obesity or differences in insulin sensitivity (12–15, 18, 19). 

Therefore, any detected differences could have been due to obesity and obesity-related 

insulin resistance, rather than to PCOS. In addition, only 3 nontargeted metabolomics 

studies included a limited targeted quantitative approach (15, 17, 22) to further validate 

candidate pathways and correlations with PCOS characteristics.

In the current study, we sought to determine whether a metabolomics approach could 

identify a specific plasma metabolic fingerprint that could distinguish between obese women 

with PCOS and obese controls with metabolic syndrome (MetS). First, we conducted a 

nontargeted metabolomics analysis to determine candidate metabolic profiles and related 

pathways that were significantly altered between the two groups. Second, we completed a 

targeted metabolomics analysis of specific candidate pathways to explore metabolites that 

were quantitatively different between the two groups and to evaluate their association with 

clinical characteristics of PCOS.

2. Research Design and Methods

The study protocol was approved by the University of Texas Southwestern Medical Center 

Institutional Review Board, and all participants provided written informed consent to enroll 

in the study.
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2.1. Study Participants

The plasma samples were previously collected for a study of PCOS comparing coronary 

function and cardiovascular performance in overweight or obese women with PCOS 

compared with overweight or obese women with MetS. Women with PCOS were recruited 

from an academic tertiary care center and county medical center. Controls with MetS were 

recruited from the same centers and from the Dallas Heart Study (23) to match PCOS 

participants by age and body mass index (BMI). The following inclusion and exclusion 

criteria were applied to both groups (women with PCOS and controls with MetS alone). 

Premenopausal women aged 30 to 50 years were required to have a BMI greater than 25 

kg/m2 and evidence of prediabetes (elevated fasting glucose, 100–125 mg/dL) or MetS. 

Participants could not have a previous diagnosis of diabetes mellitus or hypertension or be 

receiving medication to treat PCOS or hypertension or to improve insulin sensitivity. Current 

tobacco users also were excluded. The control group reported regular menstrual cycles since 

adolescence and had no evidence of hyperandrogenism. Women in the control group without 

PCOS were studied between days 7 and 14 of the midfollicular phase.

2.2. Variable Definitions for the Diagnosis of PCOS and MetS

PCOS was diagnosed by using the Rotterdam criteria (24), requiring specifically the 

presence of both oligomenorrhea and hyperandrogenism. Oligomenorrhea was defined by 

fewer than 9 periods per year since menarche or since the age of 20 years when not 

pregnant, breastfeeding, or taking oral contraceptives. Hyperandrogenism was defined 

biochemically by an elevated total testosterone or dehydroepiandrosterone or symptoms of 

severe acne, androgenic alopecia, or Ferriman-Gallwey score ≥8.

MetS was defined according to the National Cholesterol Education Program Adult 

Treatment Panel criteria (at least 3 of 5 criteria): 1) high-density lipoprotein (HDL) 

cholesterol <50 mg/dL; 2) triglyceride ≥150 mg/dL; 3) impaired fasting glucose ≥100 

mg/dL and <126 mg/dL; 4) hypertension or systolic blood pressure ≥130 mm Hg or diastolic 

blood pressure >85 mm Hg; and 5) waist circumference >88 cm (25).

2.3. Insulin Sensitivity

The Bergman minimal model (26) was used to calculate insulin sensitivity (SI), acute insulin 

response to glucose, disposition index, and glucose effectiveness from serum insulin and 

plasma glucose concentrations, obtained during the insulin-modified version of the 

frequently sampled intravenous glucose tolerance test. After obtaining fasting blood 

samples, dextrose (600 mg/kg; delivered as a 50% solution) was administered through an 

antecubital vein over a 2-minute period. During the next 3 hours, blood samples were 

obtained at 21 time points from an “arterialized” vein in a hand placed in a hot box warmed 

to approximately 60°C.

As a surrogate measure of insulin resistance, we also calculated the index of homeostasis 

model of insulin resistance (HOMA-IR) from the following formula (27):

Chang et al. Page 4

Metabolism. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. Body Composition

Percent body fat was calculated from measurement of body density from underwater weight, 

as previously described (28).

2.5. Assays

Venous blood was collected in standard blood collection tubes containing ethylene diamine 

tetra-acetic acid for plasma and in serum separator tubes for serum. Plasma samples were 

immediately processed and aliquoted into 2-mL screw-top cryovials (Phoenix Research 

Products) and stored at −80°C. Samples from baseline fasting time points were thawed only 

once for the nontargeted and targeted metabolomics analyses.

2.6. Nontargeted Metabolomics

Plasma nontargeted metabolomics profiling was performed using liquid chromatography/

time-of-flight mass spectrometry (6220 ToF MS; Agilent, Inc) operated both in positive and 

negative electrospray ionization modes, using a scan range of m/z 100–1200 at a resolution 

of 10,000, as described previously (20, 29). Small-molecule metabolites were extracted from 

100 μL of plasma by deproteinization with 80% methanol. Before deproteinization, an 

internal standard solution (4 μL) of 13C6-phenylalanine (250 ng/μL) was added to each 

sample and plasma quality control (QC) samples to monitor recovery and reproducibility in 

metabolite extraction (29). Dried samples were stored at −20°C until analysis. Samples were 

reconstituted in running buffer and analyzed within 48 hours of reconstitution. A small 

fraction of supernatant from each sample was combined into a pool (pooled QC), and the 

remaining supernatant was split into 2 fractions to be used for polar hydrophilic interaction 

liquid chromatography and reverse-phase C18 ultra performance liquid chromatography 

separation. A separate plasma QC sample was analyzed with pooled QC to account for 

analytic and instrumental variability. Each QC sample was analyzed in duplicate, and 

chromatographic separation was achieved using hydrophilic interaction liquid 

chromatography and reverse phase (C18) liquid chromatography separately. The instrument 

settings were as follows: nebulizer gas temperature, 325°C; capillary voltage, 3.5 kV; 

capillary temperature, 300°C; fragmenter voltage, 150 V; skimmer voltage, 58 V; octapole 

voltage, 250 V; cycle time, 0.5 seconds; and run time, 15.0 minutes (20, 29).

2.6.1. Data Analysis—Metabolite peak intensities and differential regulation of 

metabolites between groups were determined as described previously (19, 28). Each sample 

was normalized to the median of the baseline and log2 transformed. Data alignment, 

filtering, and univariate and multivariate statistical and differential analysis were performed 

using Mass Profiler Professional software (Agilent Inc). Default settings were used, with the 

exception of the signal-to-noise ratio threshold, mass limit (0.0025 units), and time limit (9 

seconds). Each metabolite was putatively identified on the basis of accurate mass (m/z) 

against the METLIN database using a detection window of ≤7 ppm. The identified 

metabolites are annotated as Chemical Abstracts Service, Kyoto Encyclopedia of Genes and 

Genomes, Human Metabolome Project database, and LIPID MAPS identifiers. Identification 

of selected metabolites was validated using the standards described in Supplemental Table 1.
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2.6.2. Statistical Analysis—Metabolites detected in >50% of the samples in any of the 

study groups were selected for differential expression analyses (20). After normalization, 

univariate statistical analysis (unpaired t test analysis) was performed to compare the 

differentially expressed metabolites between PCOS and MetS (with false-discovery rates 

[FDRs] of ≤ 0.05) and was estimated by Q values (20, 29). Unsupervised principal 

component analysis (PCA) was performed to display variation between PCOS and MetS 

study groups for data visualization and whether group variation could be explained by these 

metabolite variables reducing the dimensionality of the qualitative data.

2.6.3. Pathway Analysis—Identified metabolites that were differentially expressed 

between groups were used for pathway enrichment using MetaCore (GeneGo) (14, 16). 

Metabolite identifiers (Chemical Abstracts Service and Kyoto Encyclopedia of Genes and 

Genomes) were used for each metabolite; identifiers included name, molecular weight, fold 

change, and differential P value. The P value from the hypergeometric test, generated by 

MetaCore, represents the enrichment of certain metabolites in a pathway. A P value <.05 

indicates significant enrichment. The FDR of 0.15 was applied in the assessment of pathway 

enrichment to allow a greater number of pathways to be reviewed because of the smaller 

sample size of metabolites entered into the pathway analysis (20, 29). The issue of multiple 

testing is accounted for in the programming of the MetaCore tool (30).

2.7. Targeted Metabolomics

2.7.1. Quantitation of Free Fatty Acid and Amino Acids—Quantitative 

measurements of free fatty acid and 45 amino acid metabolites were performed by tandem 

mass spectrometry against 12-point calibration curves that underwent the same 

derivatization with internal standard as described previously (20, 29).

2.7.2. Quantitation of Vitamin D Metabolites—25-Hydroxyvitamin D2 [25(OH)D2], 

25-hydroxyvitamin D3 [25(OH)D3], 1,25-dihydroxyvitamin D2 [1,25(OH)2D2]), and 1,25-

dihydroxyvitamin D3 [1,25(OH)2D3] were extracted from serum samples by using 

deuterated stable isotopes (31). After derivatization, they were analyzed by liquid 

chromatography–mass spectrometry/mass spectrometry with multiple-reaction monitoring 

(31).

2.7.3. Statistical Analysis—To address technical variation in the metabolomics 

measurements, surrogate variables were created by using the R package sva (32). Briefly, 

variation in metabolites was compartmentalized into variation due to interperson variability 

and technical variation. The surrogate variables were created as principal components of the 

residual error of a linear model of the metabolites, adjusted for variables that would account 

for interperson variation (eg, PCOS, age, race, BMI, and 11 other measured characteristics) 

(33). These are then used in future analyses to account for any technical variation of the 

assay, assuming that this residual error is due to technical variation.

Because several metabolites had concentrations below the lower limit of quantification 

(LLOQ), the relationship of clinical variables and metabolites was modeled as 1) a linear 

regression of the van der Waerden rank–transformed metabolite on each clinical variable, 
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individually adjusting for 2 surrogate variables for technical variation; and 2) a logistic 

regression of the metabolite concentration being above the LLOQ on each clinical variable, 

individually adjusting 2 surrogate variables for technical variation. To test the effect of a 

clinical variable on a metabolite, the minimum P value is observed between these 2 models, 

and the null distribution of the minimum P value is created empirically by randomly sorting 

the metabolite 1,000 times. For metabolites with quantifiable concentrations, Spearman 

partial correlation coefficients were calculated between the metabolites and clinical 

variables, including SI, HOMA-IR, fasting glucose, free and total testosterone, estrogen, 

progesterone, steroid hormone–binding globulin (SHBG), low-density lipoprotein (LDL) 

cholesterol, BMI, percent body fat, and age.

Again, because the concentrations of several metabolites were below the LLOQ, the effect of 

these metabolites on PCOS was modeled using logistic regression adjusted for 2 surrogate 

variables, with metabolites being modeled with 2 effects: 1) metabolite concentration above 

LLOQ and 2) an indicator of metabolite concentration being above LLOQ. To test the effect 

of the metabolite on PCOS, a likelihood ratio test with 2 degrees of freedom was used to test 

the 2 metabolite effects while simultaneously adjusting for the surrogate variables.

Groups of metabolites were tested for association with PCOS simultaneously by using 

random effects models implemented using the globaltest package (eg, essential amino acids, 

branched-chain amino acids [BCAAs], etc). Because of the small sample size, the effect of 

the metabolites could be tested in association with either the group term of PCOS vs MetS 

or individual clinical variables (described below). Additionally, because prior information 

indicated that phenylalanine and tyrosine were positively correlated, we conducted the more 

powerful test of summing phenylalanine and tyrosine and testing for the association in the 

same manner as for individual metabolites above. All metabolites tested in groups had no 

values below the LLOQ.

For the purposes of exploratory analysis, metabolites were further reviewed that had a P 
value <.05. Due to sample size, a limited number of covariates could be included in 

modeling PCOS (at most 2 to enable stable statistical modeling). It appeared that the largest 

source of variation in the measured metabolites was not explained by the measured variables 

in this study (these are assumed to contribute to the majority of interindividual variation in 

the actual metabolites, not the measured metabolites). Thus, these metabolite technical 

variation variables were included as the only covariates prioritized above the clinical 

variables. A stratified analysis of the metabolites and clinical variables by PCOS diagnosis 

would not be possible because the sample size would be cut in half, further exacerbating the 

sample size issue. Clinical variables were selected on the basis of known and observed 

differences between women with and without PCOS (age, BMI, insulin sensitivity, acute 

insulin response, HOMA-IR, fasting glucose, free testosterone, total testosterone, estradiol, 

progesterone, SHBG, LDL, percent body fat, and race/ethnicity). Therefore, metabolites 

were tested in association with clinical variables by pooling together women with PCOS and 

women with MetS only. In terms of association with clinical variables, using the Bonferroni 

correction, statistical significance was set at 0.004 for the evaluation of the 14 clinical 

factors.
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Group comparisons for baseline characteristics and vitamin D concentrations were made 

using Wilcoxon rank-sum test. Statistical analyses for these specific analyses were 

performed using JMP statistical software (SAS Institute Inc).

3. Results

3.1. Baseline Characteristics

Anthropometric characteristics and baseline biomarkers for the PCOS (n = 20) and MetS (n 

= 18) cohorts are shown in Table 1. Both groups were matched by age and BMI, and we 

observed no statistical difference in percent body fat or fasting glucose concentrations. 

Insulin sensitivity was more impaired in PCOS compared with MetS (P = .02), along with 

the disposition index, which is the product of insulin sensitivity and the acute insulin 

response (Table 1). As expected, total testosterone was significantly higher in PCOS (P = .

04). Lipid concentrations (total cholesterol, triglycerides, and HDL cholesterol) were not 

statistically different between groups. The only exception was LDL cholesterol, which was 

higher in PCOS (P = .05).

3.2. Nontargeted Metabolomics Analysis

As shown in Figure 1, PCA showed PCOS and obese controls with MetS were distinctly 

separated on the basis of plasma metabolite differences. The first and second components in 

PCA explained 19.51% and 9 1% of variations, respectively. From the subset of 385 

metabolites that significantly differed between PCOS and MetS, 85 (22%) were identified by 

accurate mass. Identification of 82 metabolites was validated by using standards 

(Supplemental Table 1). The identified metabolites characterized 19 significantly altered 

canonical pathways (P < 05; FDR, < 0.15) between PCOS and MetS controls (Figure 2), and 

metabolites were involved in networks for lipid, steroid, amino acid, carbohydrate, and 

vitamin metabolism (Supplemental Table 2). Among the significantly altered pathways were 

those for vitamin D, N-acylethanolamine, N-acyltransferase, prostaglandin biosynthesis and 

metabolism, regulation of cystic fibrosis transmembrane conductance regulator gating, 

BCAAs, and saturated fatty acids metabolism. Supplemental Table 3 demonstrates 

reproducibility of replicate sample values for components 1 and 2.

3.3. Targeted Metabolomics Analysis

Targeted metabolomics analysis was performed to confirm associations of PCOS with 

leading candidate pathways: 1) amino acids and their metabolites and 2) fatty acids and their 

metabolites. Vitamin D concentrations were also quantitatively measured with mass 

spectrometry. Essential amino acids (histidine, methionine, threonine, lysine, valine, 

isoleucine, leucine, phenylalanine, tryptophan) (Figure 3A) and the subgroup of BCAA 

(valine, isoleucine, leucine) (Figure 3B) were most strongly associated with PCOS. Within 

these groups, further analysis of individual amino acids, adjusted for surrogate variables, 

showed that the metabolites significantly elevated in PCOS were BCAAs, lysine (median 

PCOS vs control, 167.7 vs 154.1 μM; P = .02) (Supplemental Table 4), and the lysine 

metabolite α-aminoadipic acid (α-AA) (median PCOS vs control, 0.9 vs 0.7 μM; P = .02). 

When we analyzed the sum of the concentrations of phenylalanine and tyrosine (aromatic 

amino acids), they were higher in PCOS compared with MetS (median PCOS vs control, 
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109.5 vs 104.2 μM; P = .0497). Individually, phenylalanine and tyrosine were not 

significantly associated with PCOS (P = 16 and .06, respectively).

Free fatty acids and lipid metabolites, when evaluated individually or after grouping by 

specific characteristics (eg, saturated fatty acids, unsaturated fatty acids, ceramides), were 

not significantly different between PCOS and MetS. Linoleic acid was the only lipid 

metabolite associated with PCOS (P = .04). Vitamin D concentrations were not significantly 

different between PCOS and MetS (Table 2).

3.4. Association of Amino Acids and Lipid Metabolites With Clinical Characteristics

Because of the differences in SI and androgens between PCOS and MetS, we questioned 

whether the observed associations with amino acid metabolites could be associated with 

measures of SI, body composition, or sex hormones among the entire participant cohort. SI 

was negatively associated with essential amino acids, including lysine, α-AA, and the 

BCAAs valine and leucine (Table 3). α-AA was also positively associated with fasting 

glucose and HOMA-IR. Among the remaining amino acid metabolites measured, asparagine 

and glycine were negatively associated with SI and positively associated with HOMA-IR, 

and tyrosine was positively associated with HOMA-IR (Supplemental Table 5).

BCAAs and essential amino acids were not associated with BMI or percent body fat. 

Isoleucine was the only amino acid positively associated with LDL cholesterol (P = .02). No 

associations were identified between these groups of amino acids and hormones such as 

estradiol, progesterone, and total testosterone. However, free testosterone was positively 

associated with BCAA (Table 3). SHBG was inversely correlated with lysine, α-AA, valine, 

leucine, and tryptophan (Table 3).

Among the lipid metabolites, linoleic acid was negatively associated with SI and LDL, and 

stearic acid was positively associated with BMI and percent body fat. Among the ceramides, 

C16-ceramide was negatively associated with SI and SHBG and positively associated with 

fasting glucose; C18-ceramide was positively associated with LDL, total and free 

testosterone, and estradiol; and C22-ceramide was positively associated with fasting glucose 

and total testosterone (Supplemental Table 5).

4. Discussion

In the current study, we identified 385 metabolites and 19 metabolic pathways that 

distinguished PCOS from age- and BMI-matched controls with MetS. We extended this 

nontargeted approach by performing a confirmatory, quantitative, targeted metabolomics 

analysis and showed that PCOS is strongly associated with groups of amino acid metabolites 

compared with obese women with MetS. Specifically, greater concentrations of BCAA and 

essential amino acids seemed to distinguish PCOS from MetS.

Comparisons to previous studies of plasma metabolomics profiles in PCOS are limited by 

small sample sizes, further diluted by subgroups of BMI and insulin resistance status (14, 

15, 21), as well as by different analytic techniques, including less-sensitive nuclear magnetic 

resonance or nontargeted metabolomics and lack of BMI matching in control groups (13, 14, 
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16, 18). Most prior studies used the Rotterdam criteria for PCOS and did not restrict study 

participants to those with the more severe phenotype of oligomenorrhea and anovulation. 

Consequently, those studies might include women with a milder metabolic phenotype and 

less insulin resistance than this cohort (34). Together, these factors may account for the 

conflicting findings of prior studies that reported varying increases and decreases in fatty 

acid and amino acid metabolites in PCOS vs controls (35). Our results share the greatest 

agreement with the largest previously published study that confirmed significantly different 

metabolites from its nontargeted analysis with standards and reported increased BCAA and 

lysine in PCOS compared with controls (18). However, this group also described changes in 

other amino acids that were not corroborated by our data; these discordant findings could be 

attributable to their PCOS group not being overweight and to using a control group with a 

markedly lower BMI than our controls. None of the prior studies performed subsequent 

quantitative targeted analysis of amino acid profiles, as was done in this study.

Extensive evidence from non-PCOS studies suggest that increased BCAAs and essential 

amino acids are associated with obesity, insulin resistance, and type 2 diabetes mellitus (36, 

37). Multiple cohort studies using metabolomics have demonstrated a stronger association of 

obesity and insulin resistance with BCAA and related metabolites than with lipid 

metabolites (38–40). Furthermore, elevated essential and BCAAs predict the development of 

diabetes mellitus in the Framingham and Malmo cohorts, even after adjusting for insulin 

resistance (7).

With our detailed characterization of insulin sensitivity and percent body fat, we have 

demonstrated that obese women with PCOS have greater impairment of insulin sensitivity 

than obese women with MetS, and this difference could not be explained by percent body fat 

or androgens. These results suggest that greater insulin resistance, rather than obesity or 

elevated androgens, is a key factor for the altered metabolomic consequences of PCOS.

To date, the proposed models for increased BCAA concentrations in obesity, insulin 

resistance, and type 2 diabetes mellitus suggest decreased BCAA catabolism due to 

decreased expression or action of BCAA catabolic enzymes in adipose and skeletal muscle 

tissue (36). Increases in BCAA might also contribute to glucose intolerance by increasing 

the supply of BCAA metabolites glutamate and alanine for gluconeogenesis. Although we 

did not observe significant differences in glutamate and alanine concentrations between 

PCOS and MetS controls, our controls were matched by BMI and had similar percent body 

fat; possibly, the previously observed differences in obese cohorts might have been 

attributable to differences in adiposity (38). Increases in circulating BCAA might interfere 

with insulin signaling in skeletal muscle and further promote insulin resistance, especially in 

the context of obesity and a high-fat diet (36, 38, 41). Interestingly, improved glucose 

homeostasis has been reported for animals fed a diet specifically enriched in leucine (42). In 

a cohort of healthy adults, leucine ingested with glucose acted synergistically to stimulate 

insulin secretion (43). In our cohort of obese individuals, leucine concentrations were not 

associated with the acute insulin response during the intravenous glucose tolerance test 

(Supplemental Table 5).
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In the present study, we observed greater circulating concentrations of lysine and α-AA in 

PCOS compared with MetS. The essential amino acid lysine and its metabolite α-AA were 

negatively associated with SI and positively associated with HOMA-IR. α-AA was also 

positively associated with fasting glucose. Consistent with these findings, previous studies 

have identified α-AA as a novel biomarker for type 2 diabetes mellitus and a potential 

modulator of β-cell function. In the Framingham cohort, individuals in the highest quartile 

for α-AA concentrations had greater than a 4-fold increase in risk for type 2 diabetes 

mellitus during a 12-year period, even in individuals with normal glucose tolerance (44). A 

previous interventional study in PCOS identified lysine as a metabolite with marked changes 

after polytherapy that included insulin sensitizers and an antiandrogen (15). In adults with 

glucose intolerance, plasma concentrations of lysine and α-AA were significantly reduced in 

response to metformin and pioglitazone treatment (45). Although the mechanisms are not 

well understood, experimental data have shown that α-AA increased insulin secretion from 

pancreatic β cells in cell culture and lowered fasting plasma glucose in mice (44). 

Hyperglycemia also increased α-AA production in endothelial cell culture (46). Future 

human studies are needed to better understand the mechanisms for increased lysine and α-

AA and their potential role in glucose homeostasis.

The aromatic amino acids phenylalanine and tyrosine have also been implicated in insulin 

resistance and metabolic disease (7, 36, 45), as well as in PCOS (18). Although we did not 

observe a strong association with phenylalanine, plasma concentrations of tyrosine were 

associated with PCOS, and the sum of phenylalanine and tyrosine concentrations was 

greater in PCOS compared with MetS.

Our nontargeted metabolomics analysis identified the saturated fatty acid biosynthesis 

pathway as being significantly altered in the PCOS group. However, when we examined free 

fatty acid metabolites in the plasma, only linoleic acid was associated with PCOS. Escobar-

Morreale et al (15) demonstrated that obese women with PCOS had a different profile of 

fatty acid metabolites suggestive of increased lipolysis compared with nonobese women 

with PCOS who demonstrated suppression of lipolysis. When comparing obese women with 

PCOS to nonobese women with PCOS or to BMI-matched controls without PCOS, long-

chain fatty acids such as linoleic acid were elevated only in the obese women with PCOS 

(15); this finding was corroborated by other groups that did not match control groups by 

BMI (19, 21). The lack of significant differences in the lipid metabolite profile in the current 

study may be attributable to matching our control group for both obesity and MetS. In the 

present study, linoleic acid was also positively associated with SI and negatively associated 

with LDL cholesterol; these clinical variables were both different in the women with PCOS 

compared with controls.

4.1. Vitamin D

In the nontargeted metabolomics analysis, the vitamin D2 (ergocalciferol) metabolism 

network was the most significantly altered pathway in PCOS compared with MetS (Figure 

2). The 25(OH)D2 concentrations measured in PCOS and MetS were indicative of vitamin D 

deficiency (<20 ng/mL), as defined by the Institute of Medicine (47) and seen in other 

studies of PCOS (21, 48, 49). Vitamin D deficiency has also been associated with metabolic 
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disturbances such as obesity, insulin resistance, and dyslipidemia (50, 51). Although 

25(OH)D2 has been associated with insulin resistance in PCOS, as measured by HOMA-IR, 

these associations were not significant after adjusting for BMI (49, 52). In agreement with 

other studies (53, 54), we did not find any differences in plasma concentrations of vitamin D 

[25(OH)D2 or 1,25(OH)2D2] between PCOS and BMI-matched controls with MetS. This 

finding suggests that low vitamin D might be associated with obesity, rather than with 

PCOS. Although we did not quantify all the intermediate vitamin D metabolites, it is 

unlikely that we had the power to detect these smaller changes if 25(OH)D2 and 

1,25(OH)2D2 concentrations already were similar. Another explanation for the discrepancy 

between the pathways analysis and the quantitative measurements relates to the analytic 

technique. Pathway analysis represents the enrichment of certain metabolites in a metabolic 

pathway. The P value from the hypergeometric test in pathway analysis is generated from 

the number of metabolites present in a given pathway, instead of from significantly changing 

metabolites in the pathway. In this manner, the vitamin D pathway might be selected due to 

enrichment of vitamin D metabolites and its derivatives that are putatively identified by 

accurate mass but cannot be measured quantitatively because of the lack of availability of 

standards. The quantitative analysis targeted clinically relevant and routinely tested 

metabolites of vitamin D, which did not confirm the nontargeted analysis. This illustrates the 

importance of follow up targeted analysis.

4.2. Strengths and Limitations

Because of the limited number of participants, our results should be considered exploratory 

until they can be confirmed in a larger cohort. Recognizing the limitations of the sample 

size, strengths of this study include model development for the targeted analysis, which 

accounted for technical and interindividual variation. The approach of validating the 

nontargeted analysis results with quantitative targeted metabolomics is another strength of 

this study. However, because of the limited sample size, we could not further evaluate the 

associations of clinical variables with specific metabolites. Here, we reduced the 

confounding effects of obesity, dyslipidemia, and insulin resistance by choosing obese 

women with MetS as the control group. However, the obesity and MetS in our cohort might 

explain the lack of differences between PCOS and controls in free fatty acids, ceramides, 

and sphingolipids that have been previously reported with insulin resistance (38) and obesity 

(15, 18). A few ceramide metabolites were associated with SI but among the entire sample of 

women, irrespective of PCOS status. Sample size may have limited our ability to discern 

associations of BCAA metabolites glutamate, glutamine, and alanine that were described 

previously (36, 38). Participants were studied after a 12-hour overnight fast as outpatients. 

They did not have a standardized diet before samples were obtained for metabolomics 

analysis, which could increase variability in the measured metabolites and decrease our 

ability to observe differences. However, these limitations should not have affected the 

observed associations with PCOS or correlations with clinical variables. Although women 

with PCOS did not have an induced withdrawal period for timing of blood samples, they 

were selected because they had a higher likelihood of anovulatory cycles. Because the 

women without PCOS were studied in the midfollicular phase, differences in estrogen and 

progesterone concentrations should be minimized. Estradiol and progesterone concentrations 

were also evaluated and were not associated with the metabolites (Supplemental Table 5).
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Although it would be desirable to examine the PGE2 and N-acyltransferase pathways, 

because of the lack of availability of standards, we could not measure these metabolites. 

Experiments in the future might explore the functional aspects of these important pathways 

in PCOS and offer new insights regarding the pathophysiology of PCOS.

In this cross-sectional study, we were unable to determine causality (ie, were metabolic 

changes caused by PCOS or did they cause the development of PCOS features). As 

discussed above, the selection of an obese comparison group with MetS and detailed 

phenotyping suggests that impaired insulin sensitivity is a key factor in the metabolic 

consequences or contributors to PCOS.

4.3. Conclusions

In summary, PCOS was associated with significant metabolic alterations when compared 

with age- and BMI-matched controls with MetS. Although we used a relatively small group 

of subjects, we observed that greater concentrations of BCAA, essential amino acids, and the 

lysine metabolite α-AA seemed to distinguish PCOS from MetS. How these specific amino 

acid elevations in PCOS might contribute or result from PCOS remains to be determined. 

The translational implication is that further study of amino acid metabolism in PCOS might 

determine the underlying pathophysiology of insulin resistance in PCOS and target the 

development of new therapies. Because BCAA and lysine metabolism is increased in other 

insulin-resistant individuals without PCOS, future study might also be relevant for the 

prevention and treatment of type 2 diabetes mellitus. Finally, the current study indicates that 

a nontargeted metabolomics approach is feasible for identifying candidate pathways 

characterizing PCOS, and it highlights the importance of a targeted approach for follow-up 

in the discovery of biomarkers.
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Figure 1. 
Two-dimensional Score Plot of Principal Component Analysis Showing Group Separation 

Between PCOS and MetS. Each person is represented by 2 replicate data points. PCOS and 

MetS groups can be seen in clusters separated on 2 components. The first and second 

components explained 18.51% and 9.67% of variations, respectively. MetS indicates 

controls with metabolic syndrome (green squares); PCOS, polycystic ovary syndrome (red 

triangles).
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Figure 2. 
Metabolic Pathways Significantly Different in PCOS vs MetS. The significance of the 

pathways was evaluated using P values and a false-discovery rate <0.05. CF indicates cystic 

fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; HETE, hydroxyl 

eicosatetraenoic acid; HPETE, hydroperoxy eicosatetraenoic acid; PPAR, peroxisome 

proliferator-activated receptor.
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Figure 3. 
Concentrations of Amino Acids Normalized to Account for Technical Variation in 

Metabolites. A, Essential amino acids as a group were higher in PCOS (P = .03). Among the 

individual essential amino acids, aside from the observed differences in branched-chain 

amino acids, only the lysine concentration was higher in PCOS (P = .02). B, Branched-chain 

Chang et al. Page 20

Metabolism. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



amino acid concentrations as a group were higher in PCOS (P = .02). Concentrations of 

individual branched-chain amino acids were also higher in the PCOS group compared with 

MetS controls: isoleucine (P = .03), leucine (P = .02), and valine (P = .03). The asterisk 

indicates P < 05; MetS, metabolic syndrome; PCOS, polycystic ovary syndrome.
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Table 1

Baseline Patient Characteristics, Stratified by PCOS vs MetS Status (N = 38)

Characteristic PCOS (n = 20) MetS (n = 18) P Value

Physical characteristics

 Age, mean (SD), y 37 (6) 40 (6) .06

 Body mass index, mean (SD), kg/m2 34.6 (5.1) 33.7 (5.2) .57

 Body fat, mean (SD), % 39.0 (6.8) 37.4 (6.2) .44

Race/ethnicity, No. (%) .44

 White 8 (40) 5 (28)

 Black 7 (35) 10 (55)

 Hispanic 5 (30) 3 (17)

Glucose metabolism, mean (SD)

 Fasting glucose, mg/dL 97 (6) 95 (12) .54

 Fasting insulin, μIU/mL 11.1 (6.9) 8.6 (8.5) .08

 SI, min−1 × (μU/mL)−1 × 10−4 1.9 (1.0) 3.0 (1.2) .02

 AIRg, min × (μU/mL) 701.6 (539.5) 764.5 (388.6) .68

 Disposition indexa 1135.1 (643.4) 2146.9 (1388) .01

 Sg, min−1 × 100 1.7 (0.5) 1.9 (0.98) .36

 HOMA-IR 2.8 (1.5) 2.2 (2.7) .45

Sex steroid hormones, mean (SD)

 Total testosterone, ng/dL 45.6 (23.3) 32.1 (15.3) .04

 Free testosterone, ng/dL 8.9 (6.4) 5.6 (4.2) .10

 Estradiol, pg/mL 107.4 (70) 118.4 (78) .64

 Sex hormone-binding globulin, mcg/mL 28.4 (15.6) 35.4 (17.7) .21

Lipids, mean (SD), mg/dL

 Total cholesterol 191 (26) 175 (39) .15

 Low-density lipoprotein cholesterol 120 (22) 103 (30) .05

 High-density lipoprotein cholesterol 50 (8) 51 (12) .73

 Triglycerides 105 (45) 110 (53) .78

Abbreviations: AIRg, acute insulin response to glucose; HOMA-IR, homeostasis model of insulin resistance; MetS, metabolic syndrome; PCOS, 

polycystic ovary syndrome; Sg, glucose effectiveness; SI, insulin sensitivity index.

a
Disposition index = SI × AIRg
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Table 2

Vitamin D Concentrations in PCOS vs MetS

Vitamin
PCOS, median

(IQR)
MetS, median

(IQR) P Value

25(OH)D3, ng/mL 19 (14–24) 14 (9–21) .11

25(OH)D2, ng/mL 0 (0–4.5)a 0 (0–53) .97

1,25(OH)2D3, pg/mL 46 (41–61) 47 (37–54) .42

1,25(OH)2D2, pg/mL 0 (0–15)a 0 (0–36) .83

Abbreviations: 1,25(OH)2D2, 1,25-dihydroxyvitamin D2; 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; 25(OH)D2, 25-hydroxyvitamin D2; 

25(OH)D3, 25-hydroxyvitamin D3; MetS, metabolic syndrome; PCOS, polycystic ovary syndrome.

a
The entire range reported here.
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