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Abstract

Neuroinflammation due to glial activation has been linked to many CNS diseases. We developed a 

computational model of a microglial cytokine interaction network to study the regulatory 

mechanisms of microglia-mediated neuroinflammation. We established a literature-based cytokine 

network, including TNFα, TGFβ, and IL-10, and fitted a mathematical model to published data 

from LPS-treated microglia. The addition of a previously unreported TGFβ autoregulation loop to 

our model was required to account for experimental data. Global sensitivity analysis revealed that 

TGFβ- and IL-10-mediated inhibition of TNFα was critical for regulating network behavior. We 

assessed the sensitivity of the LPS-induced TNFα response profile to the initial TGFβ and IL-10 

levels. The analysis showed two relatively shifted TNFα response profiles within separate 

domains of initial condition space. Further analysis revealed that TNFα exhibited adaptation to 

sustained LPS stimulation. We simulated the effects of functionally inhibiting TGFβ and IL-10 on 

TNFα adaptation. Our analysis showed that TGFβ and IL-10 knockouts (TGFβ KO and IL-10 

KO) exert divergent effects on adaptation. TFGβ KO attenuated TNFα adaptation whereas IL-10 

KO enhanced TNFα adaptation. We experimentally tested the hypothesis that IL-10 KO enhances 

TNFα adaptation in murine macrophages and found supporting evidence. These opposing effects 

could be explained by differential kinetics of negative feedback. Inhibition of IL-10 reduced early 

negative feedback that results in enhanced TNFα-mediated TGFβ expression. We propose that 

differential kinetics in parallel negative feedback loops constitute a novel mechanism underlying 

the complex and non-intuitive pro- versus anti-inflammatory effects of individual cytokine 

perturbations.
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Introduction

Neuroinflammation is implicated in the pathophysiology of many disease conditions 

including Alzheimer’s disease, epilepsy, stroke, traumatic brain injury, and infection. 

Microglia are the resident macrophages of the central nervous system (CNS) and these cells 

are key regulators of immune functions of the brain such as responses to bacterial infection, 

injury, or neurodegeneration. 1 Following an injury or inflammatory stimulus, microglia 

often adopt a non-ramified morphology and release a number of pro- and anti-inflammatory 

substances including cytokines and chemokines.2–5 At the extreme end of this continuum, 

microglia acquire an ameboid phenotype that supports mobilization to the lesion site for 

phagocytosis of damaged cellular material or pathogen.6–8 Microglia also express receptors 

for many secreted factors such that autocrine and paracrine signaling coordinate the 

inflammatory microenvironment in CNS parenchyma following glial activation.9 The 

morphological and neurochemical effects of glial activation can lead dysregulation of 

synaptic physiology and intrinsic neuronal excitability,10–15 thus highlighting the important 

functional implications of microglial activation. Furthermore, given the well established role 

of microglia in the development and maintenance of synaptic function,16–18 acute infection- 

or injury-driven microglial inflammation during development exerts chronic deleterious 

effects on CNS functions.19–21

It is well known that neuroinflammation often entails a complex panoply of interactions 

amongst neurons, astrocytes, endothelial cells, and various immune cells.22,23 However, 

microglia-mediated coordination of the inflammatory microenvironment is integral to the 

regulation of neuroinflammation.24,25 Despite the critical role of microglia in CNS 

homeostasis, the mechanisms regulating microglial inflammation are not well understood. 

Microglial secretion of pro-inflammatory cytokines is often considered to be harmful, 

although prevention of microglial activation has been shown to yield pathological 

consequences. For instance, antibodies directed against tumor necrosis factor-α (TNFα) 

have been shown to exacerbate multiple sclerosis, and mutations in a TNFα receptor gene 

have been shown to be associated with this disease.26 Further, antiinflammatory cytokine 

interleukin-10 (IL-10) has been shown to produce inflammatory effects in the periphery.27 

Hence, understanding how dynamic interactions amongst cytokines coordinate the 

inflammatory microenvironment is an outstanding goal in neuroinflammation research.

It is clear thatmicroglia both secrete and respond to a number of inflammatory cytokines.9 A 

expansive intracellular cytokine signaling network has been utilized in computational studies 

of microglia in Alzheimer’s disease.28,29 However, a comprehensive network of microglial 

cytokine/chemokine autocrine/paracrine inter-cellular interactions has not been assembled to 

our knowledge. The elucidation of this network structure is necessary for defining the roles 

of secreted cytokines in coordinating processes such as cellular adaptation. Cells often adapt 

to a sustained stimulus by responding briefly and then returning to baseline, and this 

adaptation is supported by signaling network architectures involving negative feedback.30 

Bacterial toxin lipopolysaccharride (LPS) elicits TNFα release from cultured microglia 

followed by response adaptation in the continuous presence of the stimulus.31 TNFα has 

also been shown to stimulate negative feedback from IL-10 and transforming growth factor-

β (TGFβ).31–33 While TNFα is an important component of the microglial innate immune 
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response, its adaptation to LPS is likely to be equally important for restraining inflammation 

and preventing unnecessary tissue damage. However, the mechanistic basis for TNFα 
adaptation, and the relative contributions of feedback inhibitors such as TGFβ and IL-10 to 

adaptation, has not been established. Computational analyses have provided useful insight as 

to the mechanisms of adaptation.30,34 For instance, in a model of TLR-4-mediated NFκB 

responses to LPS, occlusion of an anti-inflammatory negative feedback loop was counter-

intuitively shown to enhance adaptation.35 Such results highlight the value in studying the 

mutual influences of network structure and kinetics on system dynamics.36

Many investigations of cytokine signaling in microglia examined the pairwise interactions 

between two cytokines, or the effects of one cytokine on a set of others.37,38 More 

comprehensive examinations of microglial phenotypic properties under varied inflammatory 

conditions, accomplished using next generation sequencing technologies,39,40 were limited 

to studies of few time points. Hence, we do not currently understand how the interplay 

amongst secreted cytokines, to which microglia are responsive, is coordinated to render 

physiological response characteristics such as adaptation. Furthermore, defining the 

interactions of the microglial cytokine network, as has been accomplished for astroglia,41 is 

necessary but insufficient for providing insight as to the control mechanisms that govern the 

physiological responses of the integrated network and the coordination of such responses 

over time.

Computational modeling approaches have provided valuable insights into the mechanisms of 

peripheral and CNS inflammatory regulation. Such models vary according to level of 

analysis, cell type specificity, and model formulation. Levels of analysis include intracellular 

biochemical signaling,42 autocrine/paracrine regulation of cell signaling, intercellular 

interactions, 43 global tissue level inflammatory regulation,44,45 and various multiscale 

models incorporating integrated levels of analysis.46–49 Intracellular signaling models are 

generally cell type-specific, where cell types include microglia28,42,50 and peripheral 

macrophage,51,52 as well as other cell types.53,54 Modeling formalisms range from Boolean 

logic representations28 to differential equations42,51,54 and agent based models.46–48,55 We 

employed a novel computational approach to study microglial autocrine/paracrine cytokine 

interactions with a model characterized by differential equations. We focused on studying 

the LPS response in microglia. Simulations and analyses of our model revealed that TGFβ 
and IL-10 have distinguishable kinetics and opposing contributions to adaptation of TNFα 
responses to LPS.

Experimental and computational methods

Mathematical model of autocrine/paracrine cytokine signaling in microglia

We employed a variant of the classic S-systems model formulation, 56 based on the 

successful application of such an approach in recent models incorporating cytokine–cytokine 

interactions.57,58 We used the following formulation to simulate the expression dynamics of 

each cytokine,
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(1)

(2)

where Cx = Cx(t) is the expression of cytokine x (TNFα, IL-1β, IL-6, TGFβ, IL-10, or 

CCL5) that is produced at rate kx upon activation by cytokine Ci at time = t − τd,ix. Thus, the 

delay term τd,ix is time between the activation of Ci and its subsequent activation of Cx. The 

activation of Cx depends on Ci according to a Hill function characterized by half-maximal 

activation constant Kix and cooperativity coefficient nix. Similarly, inhibitory cytokine Cj 

reduces Cx production with time delay τd,jx according to a decreasing sigmoidal function 

characterized by Kjx and njx. The degradation of Cx occurred with both concentration-

dependent and concentration-independent components determined by rate constants γx and 

γss,x, respectively. The concentration-independent degradation term encompassed the initial 

value of cytokine x, which was set to Css,x = 0.1 for all cytokines, and a degradation constant 

that was set to maintain a constant steady state (eqn (2)) in the absence of stimulation.59 

According to available data, LPS directly stimulates the production of all species in our 

model aside from TGFβ. Hence, LPS was included among the Ci terms for all species other 

than TGFβ.

The model was implemented in MATLAB 2013a (The Math- Works Inc., Natick, MA) using 

ode45 to integrate the differential equations. We found that ode15s gave approximately 

identical results. All parameter values appear in ESI† and code to implement the model is 

available on the modelDB database (http://senselab.med.yale.edu/modeldb/; accession 

number: 170029).60

Parameter estimation

We followed a procedure similar to our previous work61 (see ESI,† “Parameter estimation 

and model comparison” for further details). First, we initiated all coupling constants (Kix 

and Kjx) based on available data. We then fitted the entire model parameter set to normalized 

experimental waveforms because our primary interest was to recapitulate the relative 

experimental kinetics (Fig. 1). Furthermore, it was not possible to fit our model to cytokine 

concentrations, given the available data, so the model was set in arbitrary units. We 

constrained the fits such that all model outputs were of the same order of magnitude (Fig. 

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c5mb00488h

Anderson et al. Page 4

Mol Biosyst. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://senselab.med.yale.edu/modeldb/


S1, ESI†). The model includes a total of 93 parameters. We modeled cytokine interactions 

without explicitly incorporating mechanistic detail, hence, there is not an explicit relation 

between parameter values and biological mechanisms. In particular, our model is 

phenomenological and does not include details such as the dynamics of receptor–ligand 

interactions, intracellular signaling interactions, and gene expression regulation. Hence, it is 

not entirely appropriate to explicitly associate the model parameters with specific biological 

referents. Rather, each parameter aggregates a number of biological processes (e.g., cytokine 

production rate depends on transcription, translation, and post-translational modification). 

As described in the ESI,† we used numerical optimization to fit parameters based on 

minimization of summed square differences between model prediction and experimental 

data. We implemented a global sensitivity analysis prior to selecting a final parameter set 

and manually tuned the most sensitive parameters, as well as parameter associated with the 

most sensitive network interactions (see Fig. 2 and 4D).

Global sensitivity analysis

We implemented variance-based global sensitivity analysis as described previously.61,62 We 

used the high dimensional model reduction technique to decompose model output variance 

with respect to parameter variations imposed across 100 000 samples. This implementation 

of global sensitivity analysis is superior in evaluating parameter sensitivity in terms of 

parameter sampling63 and accurate performance on non-linear models.64 The total 

contribution of parameter θi to Cx, including effects due to first and higher order 

interactions, was given by

(3)

where E(·) is the expectation of the argument and V(Cx|θ~i) is the variance of Cx 

conditioned on all parameters other than θi. We determined the global parametric 

sensitivities of the TNFα response to LPS by numerically estimating STi for all model 

parameters according to a previously described algorithm.62 Two-fold variations were 

implemented for all parameters.61 See ESI† for further detail on sensitivity analyses and 

their implementation (“Sensitivity analyses”, Fig. S2 and S3).

Analysis of sensitivity to initial conditions

To assess the sensitivity of the LPS-mediated TNFα response to the initial conditions of 

anti-inflammatory cytokines TGFβ and IL-10, we varied their initial values from 0.01 to 20 

and evaluated the effects on the TNFα response. In addition, we performed all of these anti-

inflammatory variations over the same range of initial TNFα values (TNFα0). For these 

variations, we used 20 initial values from the aforementioned range, varied incrementally in 

log space. All combinations of TGFβ, IL-10, and TNFα initial values were considered, thus 

generating 8000 simulations. To assess TNFα sensitivity, we computed the normalized 

gradient of the LPS-induced TNFα response with respect to either TGFβ or IL-10 (see 
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Results, eqn (5) and (6)). We computed these gradients over a range of time points and 

TNFα0 levels and plotted the data in a coordinate system defined by TGFβ0 and IL-100.

Experimental techniques and data analysis

Animals—All procedures were approved by the Animal Care Committee of the Research 

Institute of the McGill University Health Centre (RIMUHC). Male homozygote IL-10 KO 

mice (obtained from Dr Radzioch, RIMUHC) or C57BL/6 control mice (WT; Charles River 

Laboratories, CA) at 8 to 12 weeks of age were used to obtain bone marrow derived 

macrophages for cell culture.

Macrophage culture and treatment—Macrophages were generated as previously 

described.65 Briefly, mice were euthanized and their hind leg bones were removed. Bone 

marrow was flushed out, homogenized and red blood cells were hypotonically lysed. After 

washing, cells were cultured in RPMI media containing 10% fetal bovine serum (FBS; 10%. 

Invitrogen, CA), L-cell-conditioned media (10%; a source of M-CSF), penicillin/

streptomycin, and vitamins solution (1%; Invitrogen, CA) for 7 days. Mature macrophages 

were re-plated at a density of 80 000 cells per well in 24-well plates and left to adhere 

overnight. Cells were treated with lipopolysaccharide (LPS; 100 ng mL−1) or vehicle control 

(PBS) in RPMI containing FBS (10%) for 6 and 18 h durations.

Following LPS treatment, cells were lysed and total RNA was extracted using the RNeasy 

Lipid Tissue Kit (Qiagen, CA). Reverse-transcription was performed with the Omniscript 

Reverse Transcription Kit (Qiagen, CA), and qPCR was performed using 1 μL of cDNA 

with Fast SYBR Green Master Mix (Applied Biosystems, CA) on a Step-One Plus qPCR 

machine (Applied Biosystems). Peptidylprolyl isomerase A (PPIA) was used as an internal 

control gene. TNF primer sequences for were as follows: forward: 5′-TTG CTC TGT GAA 

GGG AAT GG-3′; reverse: 5′-GGC TCT GAG GAG TAG ACA ATA AAG-3′.

Data analysis—We calculated TNFα expression following LPS application with 

standardization relative to PPIA. The effects of LPS on TNFα gene expression levels were 

computed as −ΔΔCt values:66

Statistical comparisons of LPS responses from WT versus IL-10 KO macrophages were 

performed using the two factor analysis of variance (ANOVA). The Tukey honestly 

significant difference (HSD) test was applied for multiple comparisons. The Mann– 

Whitney–Wilcoxon test was applied to check ANOVA results with a non-parametric test. 

Adaptation of the TNFα response to LPS from 6 to 18 h was computed as follows:
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(4)

where  represents the average gene expression change at time i. To compare 

adaptation between WT and KO genotypes, we used an ‘error propagation’ metric to 

estimate the standard deviation of adaptation:67

(5)

where A = Adaptation (eqn (3)) and SEMi is the standard error of the mean (i.e., ) 

at time i. Statistical analyses were completed using functions aov, TukeyHSD, and 

wilcox.test in the statistical programming language R.68

Results and discussion

Network structure and simulation of cytokine signaling in microglia

Our first goal was to establish a cytokine signaling network, based on microglial time-series 

data, that could be simulated with a mathematical model. Experimental data show the 

temporal profiles of cytokine release following the application of bacterial toxin 

lipopolysaccharide (LPS) to cultured microglia.69 We created a network including the 

following cytokines/chemokines: TNFα, TGFβ, IL-10, IL-6, IL-1β, and chemokine (C–

Cmotif) ligand 5 (CCL5). These species were chosen as network nodes for the following 

reasons: (1) there exist time-series data documenting the microglial release profile following 

LPS application for all network species, (2) a wealth of data exist with characterizations of 

the interactions amongst these cytokines (e.g., the application of TGFβ to LPS treated 

microglial cultures attenuates TNFα release33), (3) these species are particularly relevant to 

our interest in CNS-mediated control over cardiovascular physiology, based on in vitro and 

in vivo data,70–72 and (4) these cytokines are of broad interest in neuroinflammation and 

neurodegenerative disease research.73–75

We distilled the results of our literature search into the interaction network shown in Fig. 1A. 

All species in the network other than TGFβ have been shown to be directly activated by 

LPS, while TGFβ activation following LPS treatment depends on TNFα.76 With one 

exception (see below), every edge in the network was derived from experimental data from 

microglia demonstrating an activating or inhibitory effect of the source node on the target 

(Table S1, ESI†). We assessed the topological properties of the network and found that 

TNFα exhibited connectivity features indicative of a prominent role in network control. 

TNFα had the highest in-degree, out-degree, and number of shortest path connections 

between other nodes. This suggests that TNFα is topologically situated to globally control 

the dynamics of the cytokine network, as expected based on experimental work.75,77–79
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To examine the dynamic coordination of microglial cytokine signaling, we developed a 

mathematical model based on the network of microglial cytokine/chemokine signaling 

interactions (Fig. 1A). A modified S-systems model formulation permitted calibration to 

experimental data (Fig. 1B).56 A key assumption of our model formalism was that AND 

logical gating governs the combined effects of a group of cytokines on their target. For 

instance, if cytokines A and B both activate the production of cytokine C, cytokine C will 

only be produced if both A and B are active. In OR gating, if cytokines A and B both 

activate the production of cytokine C, cytokine C will be produced if either A and B is 

active. We attempted to implement OR gating, in which the sequence product operator was 

replaced by the summation operator in eqn (1), but the model could not be calibrated to data 

with this configuration (see ESI,† “OR gating model”). Hence, we hypothesize that AND 

gating characterizes the collective influences of a group of cytokines on their mutual target. 

We also assumed that the model rests at a steady-state state with arbitrarily low species 

levels in the absence of LPS. This assumption is consistent with data from cultured 

microglia in which cytokine expression is nearly undetectable in the absence of a 

perturbation,76 and data suggest that the brain in vivo contains low cytokine levels under 

baseline conditions relative to disease states or responses to inflammatory stimuli.80

While we did not find evidence in the published literature on microglia showing that TGFβ 
coordinates its own release, we hypothesize the existence of this autoregulatory loop because 

its inclusion in our mathematical model was necessary to recapitulate the time-series data. 

Without the positive feedback autoregulation loop for TGFβ, cytokine/chemokine data from 

experiments in which LPS was applied to cultured microglia could not be replicated by our 

model (Fig. 1B; see ESI,† “Experimental data used for parameter estimation” for further 

information). In particular, this autoregulation loop was necessary to obtain delayed and 

relatively slow LPS responses for TNFα, TGFβ, and CCL5. Supporting the plausibility of 

this hypothesized TGFβ autoregulatory loop, data from astrocytes (a CNS parenchymal cell-

type involved in cytokine release with many functional similarities to microglia) show that 

TGFβ application stimulates TGFβ upregulation.41,81 TGFβ autoregulation has also been 

demonstrated in the CNS in vivo,82 and in other non-CNS cell types.83–85 Our model 

prediction of similar TGFβ autoregulation in microglia thereby yields a novel hypothesis for 

experimental evaluation. The final calibrated model recapitulated the relative experimental 

kinetics. These results suggest that our modeling formalism captures a complex set of 

interactions triggered by inflammatory stimulation by LPS.

In subsequent simulations, we found that our model with delay differential equations (DDEs, 

see Methods, eqn (1) and (2)) was computationally demanding to implement, and 

occasionally the model generated sharp deflections in the dynamic variables (see arrows in 

Fig. S1C; see also Fig. S10, ESI†). These sharp deflections were likely related to a 

numerical integration issue. However, DDEs did not provide a significant advantage, in 

terms of the model fit to data and model predictions, in comparison to ordinary differential 

equations (ODEs). To test whether we could obtain comparable results using ODEs, we set 

all time delay terms to zero (τd = 0 in eqn (1)) and verified that the resulting ODE model 

yielded qualitatively similar simulation results (Fig. S1C, ESI†). Thus, even though the DDE 

model provided a better fit to data, the performance of the ODE model was optimal for our 

model analyses (see ESI,† “Parameter estimation and model comparison”, Tables S2 and 
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S3). The model fits appeared qualitatively similar and other simulation results were nearly 

identical for the ODE and DDE models. These results, along with others noted below, 

suggest that the DDE and ODE models are comparable. We examined the ODE model in the 

simulations and analyses presented below unless otherwise noted.

TNFα is sensitive to anti-inflammatory feedback inhibition

To determine the relative influences of model parameters on cytokine expression, we 

performed a global sensitivity analysis. 61,62 This analysis entailed the variation of all 

parameters in tandem followed by the decomposition of model output variance into the 

relative contributions of each parameter. Because our initial analysis of the cytokine network 

revealed that TNFα is topologically positioned to exert robust control over network 

dynamics, and given the well documented role of TNFα in neuroinflammatory disease 

states,75 we focused on the sensitivity of TNFα to themodel parameters. Our sensitivity 

analysis showed that the TNFα response to sustained LPS input was most sensitive to 

parameters associated with TGFβ production, IL-10 inhibition of TNFα, IL-1β activation of 

TNFα, and IL-6 activation of IL-10 (Fig. 2). All other parameters had a relatively 

insignificant impact (i.e., total sensitivity < 0.2) on the global variability of TNFα. Of all 

model parameters, 5.7% of the parameters exerted a prominent influence on the LPS-

induced TNFα response, thereby indicating model robustness.

To enhance our confidence in model robustness and the absence of deleterious parameter 

uncertainty, we evaluated the first order sensitivity indices of each parameter and estimated 

the confidence bounds on the entire set of TNFα responses included in our global analysis. 

Furthermore, we conducted a local (i.e., single parameter) sensitivity analysis and found 

independent validation of the results from our global analysis. The results from these 

analyses were consistent with model robustness (see ESI,† “Sensitivity analyses”, Fig. S2 

and S3). To further address whether multiple parameter sets could predict the experimental 

data equally well, we performed parameter estimation starting from 20 randomly selected 

initial parameter sets (ESI,† “Parameter variation analyses”). The results show that several 

distinct parameter fits describe the data comparably, though none of the fits were 

significantly better than the reference parameter set (see Fig. S4A and Table S2, ESI†). 

These findings are thoroughly described and discussed in the ESI† (Fig. S4 and S5).

Endotoxin tolerance simulations support model validity

An important aspect of computational modeling is model validation using data that were not 

used for parameter estimation. Given that tolerance in the TNFα response to sequentially 

applied LPS stimuli has been experimentally observed in microglia, 86 we tested whether 

our model could recapitulate such endotoxin tolerance. Our results demonstrate that our 

model exhibits tolerance of the TNFα response to LPS over a range of inter-stimulus 

intervals (ISIs) and relative levels of the two LPS stimuli (Fig. 3B). To further examine the 

validity of our model, we tested whether TGFβ regulated endotoxin tolerance, as was 

observed experimentally for microglia.87 The relative effects of TGFβ were isolated by 

simulating a functional knockout (KO) of this cytokine (i.e., TGFβ KO). This KO condition 

simulates the effect of pharmacological antagonism or genetic mutation. We found that 

TGFβ KO enhanced response gain, thereby occluding tolerance (Fig. 3B). Our results 

Anderson et al. Page 9

Mol Biosyst. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supported the experimental finding that TGFβ enhanced tolerance of the TNFα response to 

LPS over a range of stimulus conditions. These results are consistent with model validity.

TNFα is prominently inhibited by kinetically distinct TGFβ and IL-10 inputs

Our sensitivity analysis motivated us to further examine the relative influences of TGFβ and 

IL-10 on TNFα. In agreement with the sensitivity analysis, experimental data suggest that 

TGFβ and IL-10 are critical regulators of TNFα production in peripheral macrophages and 

microglia.88,89 Upon closer examination of the TGFβ and IL-10 response profiles during 

LPS stimulation, we found that IL-10 activation temporally preceded TGFβ activation (Fig. 

4A). This temporal shift in the LPS-mediated activation of IL-10, relative to that of TGFβ, 

resulted in an accelerated inhibitory input to TNFα from IL-10 compared to TGFβ (Fig. 4). 

We evaluated the cumulative LPS-induced activation levels of TGFβ and IL-10 by 

computing area under the expression curve (AUC) over time, as well as the relative 

contribution of total IL-10 expression (Fig. 4C). The results showed that IL-10 expression 

contributed more than 50% of the combined inhibitory input to TNFα throughout the 

upstroke, peak, and approximately half of the adapting decay in the continuous presence of 

LPS. Similar findings were obtained for the DDE model (Fig. S6, ESI†). Our results were 

not surprising given similar experimental findings.31–33,90 These results suggest that while 

IL-10 and TGFβ jointly impose negative feedback on TNFα, the effects of IL-10 precede 

those of TGFβ and play a greater role in shaping the peak TNFα response to LPS. Based on 

the above results, we chose to further investigate the relative contributions of IL-10 and 

TGFβ to the regulation of TNFα. These interactions are highlighted in Fig. 4D.

A separatrix distinguishes anti-inflammatory initial condition effects on TNFα gradients

Because TGFβ and IL-10 levels were believed to be particularly important for determining 

the TNFα response to LPS, we systematically evaluated the effects of initial TGFβ, IL-10, 

and TNFα levels on the effects of continuously applied LPS. This analysis allowed us to 

assess the dependence of the TNFα response on the configuration of anti-inflammatory 

initial conditions. We simulated the LPS response for a set of permutations in the initial 

conditions of TNFα, TGFβ, and IL-10. From these simulation results we computed the 

normalized TNFα gradients in the directions of both the TGFβ and IL-10 initial levels (i.e., 
TGFβ0 and IL-100):

(6)

(7)

These gradients elucidate the sensitivity of the LPS-induced TNFα response changes in the 

initial conditions of either TGFβ or IL-10. Further, these gradients showed how sensitivity to 

initial conditions varied depending on the relative baseline levels of TGFβ and IL-10. Our 
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analysis entailed ∇TNF|TGF0 and ∇TNF|IL100 computations over a range of simulation times 

and TNFα0 values.

Our results revealed that the TNFα response to LPS declined with increases in the initial 

IL-10 level for particular pairings of the TGFβ and IL-10 initial expression levels (see blue 

bands in Fig. 5A). Combinations of the initial TGFβ and IL-10 levels along the diagonal of 

the TGFβ0–IL-100 space rendered decreases in the TNFα response to LPS for increases in 

initial IL-10 levels when TNFα0 was relatively low (Fig. 5A; see Fig. S7, ESI† for similar 

plots of the TNFα gradient with respect to the initial TGFβ level). In addition to the negative 

TNFα response gradients for increases in IL-100 observed for certain combinations of the 

TGFβ and IL-10 initial levels, positive gradients were observed for other initial condition 

permutations (see red bands in Fig. 5A). ∇TNF|IL100 > 0 occurred when increases in the 

initial IL-10 level led to increases in the TNFα response to LPS. The finding of such 

positive TNFα gradients with respect to IL-100 was surprising given that IL-10 inhibits 

TNFα expression and thus, increases in initial IL-10 levels would be expected to only 

reduce TNFα responses, as found for TGFβ (Fig. S7, ESI†). Hence, a separatrix defined by 

adjacent negative and positive gradients, extending along the negative diagonal of the 

TGFβ0– IL-100 space, was observed for low TNFα0 values at simulation times around t = 

48 h of LPS stimulation (Fig. 5A and B).

The evaluation of sample traces showed that the TNFα response amplitude and gradient 

varied inversely with respect to both TGFβ0 and IL-100 (Fig. 5B and C). We specifically 

examined the LPS-mediated TNFα response for a series of initial IL-10 levels at three levels 

of initial TGFβ (Fig. 5B). For the highest initial level of TGFβ, increases in the initial 

amount of IL-10 resulted in decreases in the TNFα response amplitude, thereby producing 

the negative TNFα gradient with respect to IL-100 (Fig. 5C, top). At intermediate initial 

TGFβ levels, increased IL-100 resulted in reduced TNFα response amplitude along with a 

temporal shift in the response profile (Fig. 5C, middle). These temporal shifts in the TNFα 
response resulted in delays in both the response peaks and decays, the latter of which 

produced negative TNFα gradients with respect to initial IL-10 levels. Increasing IL-100 

resulted in reduced kinetics of the LPS-mediated TNFα response. These responses were 

characterized by slower recovery from the peak and thus higher levels at late simulations 

times compared to the TNFα expression profile observed for lower initial IL-10 levels (Fig. 

5C, middle). For the lowest TGFβ0 level, negative TNFα gradients were found for earlier 

time points and regions of TGFβ0–IL-100 space, whereas positive gradients were observed 

at relatively later simulation times (Fig. 5C, bottom). Similar to the case for intermediate 

TGFβ0 levels, increases in initial levels of IL-10 resulted in peak reductions and temporally 

right-shifted TNFα response profiles. This shift yielded both negative and positive gradients 

with respect to IL-100. In general, as TGFβ0 was reduced, the TNFα response was larger 

with a faster decay.

To further elucidate the basis for the separatrix observed at low initial TNFα levels (Fig. 

5B), we examined adjacent temporal profiles of TNFα and ∇TNF|IL100 at select zones in 

TGFβ0–IL-100 space (Fig. 5D and E). For zone 1, the TNFα response to LPS was small due 

to high TGFβ0 and an incremental increase in IL-100 resulted in a modest peak reduction 

associated with a negative gradient at corresponding times (Fig. 5E). When both TGFβ0 and 
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IL-100 were high (zone 2), TNFα was unresponsive to LPS and this unresponsiveness was 

insensitive to changes in IL-100. In contrast, zone 3 was characterized by negative gradients 

at all time points, due to the moderately high levels of both TGFβ0 and IL-100. In zone 4, 

the presence of negative gradients, temporally followed by positive gradients, resulted from 

the combined effects of reduced TNFα response amplitude and decrease in response kinetics 

(Fig. 5D and E). To further evaluate the effects of initial conditions on the network response, 

we performed a Lyapunov exponent analysis (see ESI,† “Lyapunov exponent analysis”). 

This analysis showed that regions of TGFβ0–IL-100 space with the highest sensitivities to 

initial conditions corresponded to the negative gradients observed with low TNFα0 in Fig. 

5A (Fig. S8, ESI†). This suggests that ∇TNF|IL100 is indicative of global network sensitivity 

under such conditions. Overall, these results show that the cytokine network is sensitive to 

initial antiinflammatory conditions. For low TNFα levels, a single negative TNFα gradient 

with respect to initial IL-10 expression temporally precedes the instantiation of a separatrix 

defined by adjacent negative and positive gradients in TGFβ0–IL-100 space.

TGFβ and IL-10 exert divergent effects on the adaptation of TNFα to LPS

The preceding analyses identified TGFβ and IL-10 as critical regulators of TNFα and 

established that the effects of IL-10 on TNFα are instantiated before those of TGFβ. We 

next examined the relative effects of TGFβ and IL-10 on TNFα adaptation to sustained LPS 

stimulation. The relative effects of TGFβ and IL-10 were isolated by simulating the KO of 

each cytokine (i.e., TGFβ KO and IL-10 KO). We simulated the responses to sustained LPS 

stimuli, over a concentration range, in wildtype (WT) and KO phenotypes (Fig. 6A–C). We 

computed adaptation based on the relative levels of the peak TNFα response and the TNFα 
level at t = 3 days of LPS stimulation (termed steady state response, Fig. 6D):

(8)

For the WT phenotype, the degree of TNFα adaptation exhibited a sigmoidal dose–response 

profile (Fig. 6E). For IL-10 KO, we observed increased adaptation (left-shifted adaptation 

curve), whereas TGFβ KO produced a reduction in adaptation (right-shifted adaptation 

curve) (Fig. 6E). These results suggest that IL-10 reduces adaptation whereas TGFβ 
enhances adaptation. Both KO phenotypes produced relatively shallow dose–response 

adaptation curves in comparison to the WT phenotype. Further analyses showed that 

although KO of both TGFβ and IL-10 resulted in increased TNFα peak response levels, 

albeit to different degrees (Fig. 6F), the removal of TGFβ increased TNFα steady state 

values to a greater extent than observed for IL-10 KO (Fig. 6G). These findings suggest that 

TGFβ controls adaptation by reducing both the peak and steady state TNFα responses to 

LPS. In contrast, IL-10 reduces the TNFα peak but does not affect the steady state, and thus 

IL-10 reduces adaptation.

To further characterize the relative effects of TGFβ and IL-10 on the TNFα response to LPS, 

we assessed the time from stimulus initiation to peak response (ttp) and area under the 

expression curve (AUC) for the three phenotypic conditions. We found that TGFβ KO 
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increased ttp while IL-10 KO decreased ttp (Fig. 6H). This suggests that TGFβ reduces ttp 

and thereby speeds up the peak TNFα response to LPS, whereas IL-10 delays the peak 

response. We examined the cumulative amounts of TNFα produced following the initiation 

of LPS stimulation by computing the TNFα integrals (AUCs) over time. The results showed 

that KO of either TGFβ or IL-10 resulted in AUC increases. The TGFβ KO phenotype 

resulted in a greater TNFα expression increase than that for IL-10 elimination at lower LPS 

levels, but the KO AUCs converged as LPS was increased. Similar findings for the effects of 

anti-inflammatory occlusion were obtained for the DDE model (Fig. S9, ESI†). These results 

suggest that TGFβ occlusion may result in particularly harmful inflammatory effects at low 

levels of inflammatory stimulation, whereas the effects of IL-10 elimination may be 

exacerbated as a function of stimulus intensity.

Because TGFβ appeared to enhance adaptation, we examined the TGFβ amplitude following 

an LPS stimulus in WT and IL-10 KO phenotypes (Fig. S10A, ESI†). The TNFα peak was 

smaller for the WT phenotype in comparison to IL-10 KO. However, peak TNFα expression 

was positively related to TGFβ in both phenotypes. This analysis showed that TGFβ was 

activated in proportion to the degree of LPS-induced TNFα activation, which was attenuated 

by IL-10. Similarly, IL-10 expression was positively related to TNFα for WT and TGFβ 
phenotypes (Fig. S10B, ESI†). Collectively, our data demonstrate that LPS-activated TNFα 
levels determine the amount of TGFβ produced. In turn, TGFβ determines the degree of 

tolerance. In contrast, IL-10 reduces the TNFα response and consequently the amount of 

TGFβ produced following the LPS stimulus. Overall, these novel simulation results indicate 

that antiinflammatory cytokines TGFβ and IL-10, which both provide feedback inhibition to 

TNFα, have surprisingly disparate effects on TNFα, related to temporal differences in 

expression and feedback regulation.

IL-10 attenuates TNFα adaptation to LPS in murine macrophages

To experimentally test the hypothesis that IL-10 suppresses adaptation of the TNFα 
response to LPS, we compared the LPS responses of macrophages isolated from WT and 

IL-10 KO mice. We evaluated TNFα expression using qPCR at six and 18 hours after the 

initiation of continuously applied LPS (100 ng mL−1). We quantified the TNFα response to 

LPS by computing −ΔΔCt values (Fig. 7A, see Methods). To compare the LPS responses in 

WT versus IL-10 KO macrophages, we performed a two factor ANOVA to determine the 

effects of genotype (WT, IL-10 KO), LPS stimulus duration (6, 18 h) and the corresponding 

interaction. Our results showed significant effects of LPS duration (F = 137.7, P = 3.6 × 

10−7), genotype (F = 5.0, P = 0.05), and a duration/genotype interaction (F = 20.9, P = 

0.001). A post-hoc analysis revealed that the mean TNFα response was not different at six h 

post LPS application in WT (mean = 5.33, sd = 0.97, n = 3) compared to IL-10 KO (mean = 

6.3, sd = 0.53, n = 4; P = 0.40). At 18 h, the TNFα expression responses were increased in 

WT (mean = 2.43, sd = 0.91, n = 4) compared to IL-10 KO (mean = −0.26, sd = 0.23, n = 3; 

P = 0.003). Additionally, we examined the difference between WT and IL-10 KO TNFα 
expression at 18 h using the Mann–Whitney–Wilcoxon test, a non-parametric test of 

similarity between distributions. The results provided support for time-dependent genotype 

difference (P = 0.057). These results show that although IL-10 KO does not affect the 
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macrophage TNFα response to six h LPS, IL-10 KO results in a reduced TNFα to LPS 

following 18 h of stimulation.

Our experimental data suggest that occluding IL-10-mediated negative feedback regulation 

of TNFα inhibits TNFα release following prolonged LPS application, though TNFα was 

not decreased by IL-10 KO at six h. This trend is consistent with IL- 10-mediated repression 

of TNFα adaptation to LPS. To test whether IL-10 KO influences TNFα adaptation to LPS, 

we computed the degree of adaptation between six and 18 h of LPS stimulation for WT and 

IL-10 KO macrophages (Fig. 7B). We found that adaptation was reduced in WT compared 

to the IL-10 KO (WT adaptation = 0.54, IL-10 KO adaptation = 1.04, see Methods eqn (3)). 

To evaluate the errors of these adaptation calculations, we applied an error propagation 

computation to estimate the respective standard deviations of WT versus KO adaptation 

(Methods eqn (4)). Based on these estimated deviations, we computed the adaptation values 

± two times the standard deviations (adaptation ± 2 × sd): for the WT genotype this interval 

was (0.35, 0.74) whereas for the IL-10 KO genotype the interval was (1.00, 1.08). The 

adaptation ± 2 × sd intervals were non-overlapping and these intervals are likely to 

encompass the respective 95% confidence intervals ( ). Thus, our results 

provide convincing evidence that IL-10 KO increases adaptation of TNFα to LPS. Our 

experimental results support our computationally derived hypothesis that IL-10- mediated 

inhibition of TNFα has the counter-intuitive effect of suppressing adaptation to LPS.

Discussion

Our microglial cytokine network was established based on controlled cell culture 

experiments that demonstrated pairwise functional interactions between cytokines. Network 

inference approaches have shown utility in generating network structures from large data 

sets,91 but we chose to restrict our analysis to only interactions that have been 

experimentally validated. Data driven network structures can lack biological precision due to 

spurious correlations, inadequate pruning of indirect connections, and lack of information on 

edge sign (activation versus inhibition).92–94 Our approach of using mechanistic interaction 

data sets obviated the need for network discovery approaches.

In our modeling approach, we implemented a mathematical framework derived from the S-

systems formalism.56 Similar adaptations of the S-systems model haven been useful in 

previous models involving cytokine signaling.57,58,95,96 A key assumption of our model was 

that the integrated effects of input cytokines on their target are governed by AND gating. 

While we do not have specific evidence validating this assumption for all connections in the 

network, both computational and experimental data indicate that AND gating is common in 

intracellular signaling networks involved in coordinating cytokine responses and 

production.97–100 Furthermore, incubation of macrophages with either TGFβ or IL-10 

renders the cells almost completely refractory to LPS such that TNFα release is negligible,90 

consistent with AND gating. Thus we hypothesize that such AND gating characterizes 

microglial cytokine interactions based on the congruence between our model and the 

available kinetic data.
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Our network included an inhibitory effect of IL-6 on TNFα based on experimental data 

showing that IL-6 attenuates TNFα production by cultured microglia in response to LPS.31 

However, it has been shown that IL-6 activates latent TGFβ,101 and this interaction was not 

included in our network model. We did not include this interaction because our sensitivity 

analyses indicated that the interaction between IL-6 and TNFα did not significantly 

contribute to our simulation results. Furthermore, a number of well documented molecular 

species that were not included in our model have been shown to influence the microglial 

phenotype.102 In particular, interferon-γ, nitric oxide, and superoxide have been shown to 

regulate microglial inflammation, 102 and these species have been shown to exert effects on 

TGFβ regulation in other immune cells.103,104 While we appreciate that these interactions 

may be important in the context of microglial LPS response, we chose not to include such 

interactions based on the dearth of microglia-specific data regarding these regulatory 

mechanisms, and the lack of time-series data necessary for parameter estimation.

A common feature of many systems biology models is that the inverse problem of parameter 

estimation is ill posed such that multiple non-unique solutions exist, thus rendering the 

problem underdetermined.105,106 This problem can be mitigated by using regularization 

techniques to facilitate error reduction in parameter estimation.107 However, the utilization 

of such techniques requires a priori criteria for penalizing certain parameter fits. It has been 

proposed that a priori information should not be used in solving inverse problems based on 

philosophical and mathematical arguments.108 While confidence in a model is enhanced by 

confidence in parameter estimates and parameter identifiability,109,110 it has been 

demonstrated that many models in systems biology and other areas of science have a 

spectrum unidentifiable parameters with exceedingly large confidence bounds.106,111 Even 

with very large data sets, such “sloppy” parameters can be prohibitively difficult to precisely 

estimate experimentally.106,110 While lack of parameter precision is a limitation inherent to 

situations in which the number of parameters exceeds the number of experimental data 

points, as in our case, approaches have been devised to mitigate problems associated with 

model parameter inidentifiability. Such alternative approaches include focusing on the 

robustness of model predictions106 and simulating a spectrum of parameter set 

phenotypes108,112 (see ESI,† “Parameter analysis discussion” for an expanded discussion). 

Our approach integrated the aforementioned perspectives by using sensitivity analysis to (1) 

focus manual parameter tuning of sensitive parameters, (2) thoroughly assess model output 

uncertainty, and (3) verify our model predictions for a population of optimized parameter 

sets. As detailed in the ESI,† we demonstrated that our model generates well constrained 

predictions. Thus, despite the limitation that our parameters are not ideally constrained, due 

to the lack of adequately sampled data, our predictions have very tight confidence bounds. 

The validity of our model is also supported by our findings of endotoxin tolerance and its 

dependence on TGFβ. Furthermore, we have performed Differential Lyapunov exponent 

analysis for TNFα trajectory to examine the maximal exponential rate of divergence of 

trajectories surrounding it. Our results indicate that the negative feedback loops imposed by 

IL-10 and TGFβ are more sensitive to perturbations in the initial state when the system is 

operating closer to the bifurcation point (Fig. 5B). Despite all the complexities in the 

network, the model preserves bifurcative characteristics of negative feedback loops as 

observed elsewhere.113 These results are consistant with our sensitivity analyses indicating 
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model robustness. Finally, our model predictions regarding tolerance and adaptation were 

confirmed in 5/7 (>70%) of parameter the parameter sets estimated from random starting 

points (Fig. S5, ESI†).

Topological analysis of our cytokine interaction network suggested that TNFα is a critical 

control-point for the microglial LPS response. Global sensitivity analysis of our 

mathematical model showed that TGFβ and IL-10 are prominent feedback inhibitors of 

TNFα. Consistent with these analyses, TNFα has been implicated as a regulator of 

neuroinflammation in central infections77,78 and traumatic injuries2 as well as neurological, 

neurodegenerative, and psychiatric diseases.75,79 Assessment of TNFα sensitivity to the 

initial state of the network showed that the initial levels of TGFβ and IL-10 can exert 

opposing influences on TNFα. Increases in the initial levels of TGFβ could only lead to 

reductions of the TNFα response to LPS regardless of the initial IL-10 and TNFα levels. 

However, increases in the initial levels of IL-10 could elicit TNFα peak reductions and 

temporal shifts. These results indicate the instance of a separatrix depending on the initial 

states of TGFβ and IL-10. Based on our topological analysis of the network, and sensitivity 

analyses of the mathematical model, we focused our study on the roles of TGFβ and IL-10 

in regulating TNFα dynamics. While we did not explicitly examine the contributions of 

IL-1β, IL-6, and CCL5 to network behavior in our simulations, their presence in the model 

shaped the network interactions we studied.

To further assess the functional implications of cytokine interaction dynamics, we studied 

the contributions of TGFβ and IL-10 to TNFα expression in the physiological context of 

adaptation to LPS. Surprisingly, TGFβ and IL-10 were found to have opposing effects on 

adaptation to LPS. These divergent effects appear to be related to the differences in the 

kinetics of the feedback inhibition. Experimental data from macrophages and microglia 

show that that IL-10 activation precedes that of TGFβ.31–33,90 IL-10 controls the amount of 

TGFβ produced by providing relatively fast negative feedback to TNFα and thereby 

coordinating its level of activation. In turn, TGFβ regulates the sustained level of TNFα. 

Based on our modeling predictions, we experimentally tested the hypothesis that IL-10 KO 

results in enhanced TNFα adaptation to sustained LPS in macrophages. Our data supported 

the mechanisms proposed based on our modeling work, thereby demonstrating that IL-10 

occlusion enhances adaptation to LPS. However, we note that our model predicts a relatively 

augmented TNFα in the IL-10 condition. This was not observed in our experiment, however, 

we believe this is because we may not have sampled at the time of the peak response. 

Furthermore, the LPS response kinetics are likely to be different between WT and IL-10 KO 

conditions. Experiments are currently underway to address these possibilities. Nevertheless, 

our experimental results are consistent with enhanced adaptation following prolonged LPS 

exposure, whereas instance of peak modulation will be addressed in future experiments.

While recent evidence has shown microglia, under homeostatic conditions, express a unique 

gene profile,40,114 microglia and peripherally derived macrophages share the majority of 

genes involved in the inflammatory response. In a functional context, LPS tolerance of the 

TNFα to sequentially applied LPS doses has been observed in both macrophages115 and 

microglia. 86 Our model validation results were consistent with these findings. Furthermore, 

TGFβ was shown to mediate LPS tolerance in both macrophages115 and microglia,87 and 
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our model recapitulated these results. Importantly, there is a wealth of data demonstrating 

that macrophages and microglia engage similar interactions amongst TNFα, TGF, and 

IL-10.87,89,90,115,116 Therefore, we believe the use of macrophages is highly relevant in this 

context and validates our unexpected finding that IL-10 reduces TNFα adaptation. This 

interpretation is consistent with the common use of bone marrow-derived cells as models of 

neuroinflammation, given the experimental accessibility of these cells.6,117,118 Furthermore, 

given the issues raised above modeling issues related to the sloppiness and inidentifiability 

of model parameters, our macrophage results support the generalizability of our findings to 

other myeloid cell types. Efforts are currently focused on modeling and experimentally 

testing the effects of IL-10 KO on adaptation and tolerance in microglia in vivo.

Our novel findings that TGFβ and IL-10 exert opposing effects on adaptation supports and 

extends the conclusions of several modeling studies. It has been shown that negative 

feedback loops with differential kinetics exert distinguishable influences in an oscillating 

network.119 In a model of peripheral immune response to LPS, it was shown that relatively 

slow versus fast anti-inflammatory activation led to sepsis.120 Faster anti-inflammatory 

activation was associated with restoration to health.120 In contrast, we found that the faster 

IL-10 response was associated with pro-inflammatory effects via indirect inhibition of TGFβ 
mediated indirectly by TNFα. An important distinction between our microglial model and 

peripheral infection models120 is that the peripheral models simulate cell to cell interactions, 

whereas our model is microglia-specific. As such, seemingly pro-inflammatory effects of 

adjustments to anti-inflammatory levels in peripheral models occur due to excessive 

reduction of the capacity of phagocytes to clear pathogens. This context is distinct from our 

study of autocrine/paracrine regulation of microglia via cytokine network dynamics.

Similarly, simulations with a computational model of NFκB dynamics showed that 

kinetically distinct negative feedback inhibitors (A20 and IκBα) exert differential influences 

on the TNFα response to LPS stimulation.35 A20 KO resulted in an enhanced TNFα 
response to LPS. Response adaptation was increased, as with our finding that IL-10 KO 

increased adaptation. Further, IκBα KO resulted in an increased A20 response, analogous to 

our finding that IL-10 KO resulted in increased TGFβ expression. However, the increased 

expression of A20 was insufficient for attenuating the LPS response in the NFκB model. 

The A20 anti-inflammatory response adapted rapidly compared to the sustained activation 

anti-inflammatory cytokines in our model, thus highlighting a key difference between the 

systems under study. Hence, while a number of previous studies document phenomena 

similar to our observations, in the contexts of multi-cellular interactions or isolated signaling 

pathways, our study provides novel insights into the roles of parallel negative feedback 

interactions involving cytokine signaling in microglia.

Conclusions

Our simulations and analyses show novel phenomena whereby TGFβ and IL-10 exert 

opposing influences on TNFα. While our focus on LPS response directly pertains to the 

microglial endotoxin response, microglial phenotypes associated with bacterial infection 

have been shown to resemble those associated with neurodegenerative diseases.121 In 

particular, LPS activates inflammatory signaling through interaction with tolllike receptor-4, 
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which also activates sterile inflammation in hypoxic, ischaemic, and traumatic 

injuries.122–126 It is clear that macrophages and microglia exhibit a plethora of stimulus-

specific phenotypic states,127,128 although the mechanisms underlying regulation of cytokine 

production share a common network regulatory basis in disparate inflammatory 

phenotypes. 127 Our study of microglial LPS responses may have broader implications 

regarding cytokine network interactions stimulated by other inflammatory ligands such as 

beta-amyloid and alpha-synuclein. Simulations and analysis of our model highlight novel 

hypotheses that can be addressed through experiments with cultured microglia using 

available tools for perturbing and measuring cytokines. Thus, our model of cytokine 

signaling in microglia offers utility in generating mechanistic hypotheses regarding the 

therapeutic applications of cytokine perturbations to treat conditions associated with 

neuroinflammation.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Network model and mathematical simulation of complex signaling dynamics involving pro- 

and anti-inflammatory cytokines. (A) The literature-based network model depicts activation 

and inhibition of cytokine production, respectively, with black arrows and red T-connectors. 

The dashed line representing the TGFβ autoregulation loop indicates that this interaction is 

hypothesized rather than demonstrated experimentally. All model species aside from TGFβ 
were activated by LPS in our simulations. (B) The results of our calibrated model are shown 

along with normalized experimental kinetic profiles. Simulations were performed in which a 

saturating stimulus of LPS = 1000 was applied at t = 0 and maintained throughout the 

simulation. Traces are shown with and without the TGFβ autoregulatory loop.
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Fig. 2. 
Global sensitivity analysis reveals that TNFα is highly sensitive to TGFβ and IL-10. Total 

sensitivity indices (ST) were computed for each parameter and data are shown for all 

parameters with ST > 0.2. The temporal profile of the LPS-induced TNFα response, for 

saturating stimulus (LPS = 1000), is shown above the sensitivity index heatmap. Sensitivity 

indices were computed at times corresponding to the simulated waveform. All identified 

parameters involve one of the following cytokines: IL-1β, TGFβ, IL-10, or IL-6.
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Fig. 3. 
Simulations of endotoxin tolerance support model validity. (A) Tolerance is evaluated by 

applying two sequential LPS doses, separated by an interstimulus interval (ISI), where the 

first dose is smaller than the second dose (LPS1 = 500, LPS2 = 1000). In general 

sensitization occurs when the peak response to the second LPS dose is greater than the peak 

response to the first dose (gain>0, see equation). Tolerance occurs when the peak response to 

the second LPS dose is smaller than the peak response to the first dose (gain < 0). (B) Gain 

of the TNFα response to LPS was evaluated over a range of ISIs (2 h LPS pulse duration). 

For these simulations we set LPS = 0.1 during the ISI to maintain network coupling. 

Negative gain was observed for the wildtype condition for ISI > 6 h, thereby indicating 

tolerance. Simulated functional knockout (KO) of TGFβ resulted in the absence of negative 

gain, thereby eliciting sensitization.
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Fig. 4. 
TGFβ and IL-10 provide temporally distinct feedback inhibition to TNFα. (A) Relative 

waveforms of TNFα, TGFβ, and IL-10 are plotted for comparison (LPS = 1000 starting at t 
= 0). (B) Normalized TGFβ and IL-10 contributions to the TNFα activation rate equation 

show that IL-10-mediated inhibition of TNFα precedes that of TGFβ. These quantities were 

computed as  and 

. (C) Normalized area under the curve (AUC) was 

computed as a function of time for the TGFβ and IL-10 inputs to TNFα shown in panel A. 

The AUC ratio trace represents the fractional contribution of IL-10 relative to TGFβ: AUC 

ratio = AUCIL10/(AUCTGF + AUCIL10). (D) Cytokine interaction network where sensitive 

interactions that will be the focus of the remainder of the paper are highlighted.
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Fig. 5. 
A separatrix distinguishing TNFα response profiles exists in the TGFβ–IL-10 initial 

condition space. Simulations in which a saturating dose of LPS = 1000 was applied 

continuously starting at t = 0 were performed for range of TNFα, TGFβ, and IL-10 initial 

condition permutations. (A) The normalized TNFα gradient is plotted in the direction of the 

IL-10 initial condition (see equation in upper right). In each plot, the y-axis is defined by the 

TGFβ initial condition range and the x-axis is defined by the IL-10 initial condition range. 

Each column corresponds to a different time point at which the gradients were computed and 

each row corresponds to a different value of the initial TNFα level. (B) The plot shows the 

gradient for a low initial level of TNFα (TNFα0 = 0.01) at a late time point (t = 48 h). A 

separatrix cuts across the diagonal distinguishing negative versus positive gradients of the 

TNFα response to LPS with respect to increases in the initial IL-10 level. Colored circles 

denote the regions of initial condition space for which TNFα temporal profiles are shown in 

panel C. (C) Temporal profiles of TNFα (left) and ∇TNF|IL100 (right) are shown for TNFα0 

= 0.01 at three levels of TGFβ0 and four levels of IL-100 as indicated in panel B. (D) 
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Gradient plots for TNFα0 = 0.01 are shown at t = 12 h (left) and t = 48 h (right) along with 

numerical indicators of regions of TGFβ–IL-10 initial condition space examined in panel E. 

(E) Temporal profiles of TNFα and ∇TNF|IL100 are shown for each of two adjacent values 

of IL-100. This illustrates the correspondence between the temporal profile and computed 

gradient. Zone 1 in panel D is characterized by high TGFβ0 and low IL-100. Increasing 

IL-100 from 0.01 to 0.15 resulted in a TNFα peak reduction associated with a negative 

gradient at corresponding times. Zone 2 depicts the TNFα gradients observed for relatively 

high initial TGFβ and IL-10 levels. Under these conditions, TNFα is unresponsive to LPS 

and the TNFα gradients are approximately zero. For zones 3 and 4, we compare the TNFα 
response to LPS at two adjacent IL-100 levels (1.2 and 1.8) at TGFβ0 levels on either side of 

the separatrix observed at 48 h. The data for zone 3, in which the TGFβ0 and IL-100 levels 

are relatively high (both 1.2), the TNFα response over three days of LPS stimulation is 

monotonically increasing and the gradient as a function of IL-100 is negative. If TGFβ0 is 

lowered to 0.07 (zone 4), the same increase in IL-100 results in a temporal shift in the TNFα 
profile along with a peak reduction. Due to the temporal shift, the gradient shows a negative 

deflection followed by a trajectory reversal into the positive range, thereby instantiating the 

positive gradient range demarcating the separatrix.
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Fig. 6. 
TGFβ and IL-10 have divergent effects on TNFα adaptation. Simulations were performed 

for a range of LPS doses in which LPS was applied continuously starting at t = 0 for the 

duration of the simulation. The effects of knocking out TGFβ or IL-10 were simulated by 

removing these nodes from the network. The reference simulation is referred to as WT and 

the knockouts are referred to as TGFβ KO and IL-10 KO. (A–C) Sample TNFα responses to 

LPS are shown across the range of stimulation levels for the WT (A), TGFβ KO (B), and 

IL-10 KO (C) phenotypes. (D) Adaptation was computed using the ratio of steady state to 

peak TNFα responses to sustained LPS applications (see equation). (E) Adaptation was 

computed for LPS inputs ranging from 0.1 to 1000 in all three model phenotypes. (F) Plots 

of maximal TNFα values show that KO of either feedback inhibitor increased the peak 

response to LPS. (G) The TNFα steady state response shows that TGFβ knockout markedly 

increases the TNFα steady state, whereas IL-10 knockout has a relatively minor effect. (H) 

The time from the initiation of the LPS pulse to the peak TNFα response (ttp) is shown for 

the three conditions. (I) Plots show the total amount of TNFα produced following LPS 

application, assessed by the area under the TNFα curve (AUC).
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Fig. 7. 
IL-10 restrains TNFα adaptation to LPS in macrophages. LPS was applied continuously to 

macrophage cultures from WT and IL-10 KO mice and TNFα gene expression was 

evaluated at 6 and 18 h stimulus durations. (A) IL-10 KO mice responded similarly to LPS 

applied for 6 h (data are presented as mean ± SEM, * P < 0.005, ns – not significant). For 18 

h of LPS stimulation, the IL-10 KO response was significantly attenuated relative to WT. (B) 

Adaptation was calculated for the WT and IL-10 KO macrophages based on the relative 

responses at 6 and 18 h (eqn (4)). Adaptation levels are shown along with corresponding 

estimates of standard deviation (eqn (5)). The analysis suggests that IL-10 KO enhances 

adaptation of the TNFα response to LPS in macrophages.
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