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Abstract

The advent of second generation CARs and the CD19 paradigm have ushered a new therapeutic 

modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on 

the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and 

manufacture of engineered T cells with optimized properties. A new armamentarium, comprising 

not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory 

receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like 

memory T cells, is being developed for clinical use in a wide range of cancers. Immunological 

principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic 

biology and cell manufacturing sciences.

This article provides an account of why and how adoptive T cell therapies are breaking out 

of the mold of classic immunology and bringing on a new dimension to immunotherapy, one 

that is predicated on cell engineering and synthetic biology. The first embodiments of 

adoptive T cell therapies made use of naturally occurring T cells (Phase I). Chimeric antigen 

receptors (CARs), bolstered by the success of the CD19 paradigm, have introduced synthetic 

biology into clinical practice. Thus, current CAR therapy approaches utilize autologous T 

cells that are retargeted to a specified antigen and metabolically reprogrammed through 

synthetic receptors known as second generation CARs (Phase 2). This paradigm shift is 

paving the way for further T cell engineering that will not only substitute for insufficient T 

cell responses but provide “off-the-shelf” therapeutic T cells and possibly circumvent 

normal T cell ontogeny by generating T cells in vitro (Phase 3).

Phase I: Natural cell therapies

The technique of adoptive cell transfer was used to study tumor immunity well over half a 

century ago [1–3]. By the 1980’s, a large body of work had established that T lymphocytes 

harvested from immune mice could protect syngeneic recipients from a subsequent tumor 

challenge and sometimes mediate rejection of established tumors, reviewed in [4]. This 

common laboratory practice eventually inspired the use of T cell transfers for therapeutic 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Immunol. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Curr Opin Immunol. 2016 August ; 41: 68–76. doi:10.1016/j.coi.2016.06.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



purposes [5]. Also dating back to the 50’s, the clinical use of allogeneic bone marrow grafts 

would eventually lead to the recognition that donor T cells present in bone marrow grafts 

could mediate potent effects, some beneficial through the graft-versus-leukemia (GVL) 

effect and some deleterious resulting in graft-versus-host disease (GVHD). [6–9].

The clinical results obtained with early adoptive T cell transfers pointed to the need to devise 

better approaches to select and expand T cells with increased tumor specificity, and, 

especially in the allogeneic setting, decreased toxicity [10–12].

In the 80’s and 90’s, a succession of cell therapy approaches were developed with the intent 

to increase efficacy and minimize toxicity, reviewed in [13]. Therapies utilizing autologous 

lymphokine-activated killer (LAK) cells and donor leukocyte infusion (DLI) made use of 

bulk circulating mononuclear cells, non-specifically expanded in the presence of 

interleukin-2 in the case of LAK cells, or left unmanipulated in the case of DLI [14–17]. The 

shortcomings of these approaches pointed to the need to further enrich the infusion product 

with antigen-specific T cells. Starting from surgical explants rather than blood, a higher 

frequency of tumor-reactive cells could be retrieved and expanded from tumor-infiltrating 

lymphocytes (TILs), providing superior outcomes to LAK cell therapy [18]. TIL therapy 

remains in use to this date and is being applied to some other cancers, although its use 

cannot be generalized [19]. In the allogeneic setting, the establishment of a number of 

methodologies to isolate virus-specific T lymphocytes (VSTs) from peripheral blood proved 

to be fruitful against Epstein-Barr virus, cytomegalovirus and adenovirus, enabling the use 

of donor T cells with a markedly reduced risk of GVHD [20–22].

A common feature of these various cell therapies is their reliance on naturally occurring T 

cells, isolated from the patient or a donor (Figure 1, left). These varied technologies all 

depend on the existence of potentially therapeutic cells in the collected blood or tissue 

samples, and fall short when such cells cannot be retrieved [13]. The advent of T cell 

engineering singularly altered this overarching limitation. Armed with genetic technologies 

and further empowered by the design of supra-physiological, synthetic receptors, it would no 

longer be a cell harvested from the patient or a donor that would be adoptively transferred, 

but an engineered cell product that was designed and generated through ex vivo cell 

manufacturing (Figure 1, right). The founding example for this concept is CD19 CAR 

therapy.

Phase 2: Engineered T cell therapies (autologous)

1. The need for genetic engineering tools

The implementation of T cell engineering begins with devising appropriate tools to 

genetically modify primary T cells. The first attempts to succeed made use of ecotropic γ-

retroviral vectors to transduce mitogen-activated mouse splenocytes [23]. The same 

approach was subsequently adapted to human T lymphocytes [24–26]. Retroviral 

transduction was pivotal for launching mouse and human T cell engineering, which had been 

hitherto limited to transfection of surrogate leukemia cell lines or hybridomas, which do not 

recapitulate several critical features of normal T cell proliferation, function and survival. 

Receptors and signaling molecules could from thereon be studied in authentic T cells. These 
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methods remain the foundation of many of today’s clinical trials based on T cell engineering 

[27–30]. There are by now an array of available T cell transduction methods, based on γ-

retroviral, lentiviral, and nonviral DNA- or RNA-based vectors (reviewed in [31]). Gene 

editing techniques have recently been used to disrupt genes in primary T cells [32–34], 

further expanding the possibilities of T cell engineering. Gene editing may also be used to 

target CAR delivery, addressing limitations of randomly integrating vector systems [35].

2. Retargeting T cells: need for effective receptors for antigen

The genetic repurposing of a T cell requires the expression of a chosen receptor for antigen 

that serves as the targeting device and gatekeeper of T cell activation. This is achieved by 

expressing a T cell receptor (either αβ or γδ) [36] or an artificial receptor such as a CAR 

[37] The first CARs described by Eshhar and Brocker [38,39], initially called T-bodies, were 

TCR mimetics that aimed to mediate antigen recognition and T cell activation through a 

single chain rather than the 6 independent gene products that constitute the physiological 

TCR/CD3 complex (Figure 2). Upon introducing the CAR nomenclature, we referred to 

such molecules as first generation CARs [40]. Unlike the TCR, CARs bind cell surface 

antigens independently of HLA and are therefore not constrained by patient HLA haplotypes 

for their clinical utilization. After we and others revealed the shortcomings of ζ-chain-based 

TCR mimetics [41–43], we found that integrating costimulatory signals within the CAR 

itself enabled T cell expansion and preserved the function of human primary T cells upon 

repeated exposure to antigen [43,44]. These receptors, known as second-generation CARs 

[40], comprise an antigen binding domain and two signaling domains, one derived from a T 

cell–activating molecule, most commonly the ζ-chain of the CD3 complex and one derived 

from a costimulatory receptor, such as CD28 [44] or 4-1BB/CD137 [45], (Figure 2). CD28- 

and 4-1BB-based CARs are at present the best know CAR designs and have been 

extensively reviewed elsewhere [46,47]. The list of second generation CARs has vastly 

expanded over the past decade. Over 40 different specificities have been reported and 

various signaling domains have been evaluated include OX40, DAP10, DAP12, ICOS, 

NKG2D and more [48–50]. Further research is needed to better understand the respective 

properties of all these second generation CARs [46,47].

3. Third generation CARs and armored CARs

The CARs that have recently shown impressive clinical outcomes in patients with B cell 

malignancies are second generation CARs. The results obtained in patients with B cell 

malignancies are extensively reviewed elsewhere [43,51,52].

Third generation CARs are conceptually similar to second generation CARs, except for their 

use of multiple costimulatory components, for example 4-BB and CD28[53–55], or OX40 

and CD28[56]. They have already been introduced in the clinic, but the first outcomes in 

clinical trials targeting Her2 or CD20 have not been very positive [57,58]. More 

investigation is needed to optimize and better define the therapeutic potential of this design. 

In a recent study evaluating novel CAR structures, third generation CARs did not perform as 

well as other designs [59].
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The function of second generation CARs can however be enhanced through a variety of 

alternative strategies. Those based on the coexpression of an independent gene product co-

transduced with the CAR may be referred to as armored CARs [60]. The purposes of this 

CAR + X approach are many (Figure 2). Some aim to further alter the function and/or 

persistence of the engineered T cell, while others act on the tumor cell or the tumor 

microenvironment; some approaches integrate the two goals. The molecules used in this 

setting include cytokines, such as interleukin-7, 12 and 15 [61–64], cytokine receptors 

[65,66], chimeric costimulatory receptors [67,68], costimulatory ligands [59,69] and other 

modulators of T cell activation [70,71]. A discussion of the rationale for each one of these 

designs is beyond the scope of this review, but this diversity reflects the enormous potential 

of combining immunological and synthetic biology principles for the further improvement 

of CAR T cells.

4. Control switches

CAR T cells are potent anti-tumor agents, as demonstrated in the context of various CD19+ 

malignancies, including NHL, CLL and ALL [72–74]. They can induce toxicities, such as B 

cell aplasia, severe cytokine release syndrome and neurotoxicity [72–74]. Several innovative 

strategies have been developed to counteract these occurrences, by either eliminating the 

engineered T cells or better constraining their function.

These strategies make use of remote or cell autonomous controls, utilizing small molecules, 

antibodies or synthetic receptors to regulate T cell activity. One approach is to activate a 

latent suicide switch, such as the inducible caspase-9 (iCasp9) enzyme, through the 

administration of a small molecule to induce T cell apoptosis [75]. Bifunctional small 

molecules that mediate the binding between antigen and CAR have also been developed to 

regulate target engagement [76]. A variation on this approach uses antibodies to mediate 

antigen recognition on target cells and binding of T cells expressing a synthetic Fc receptor 

[77].

Wu et al. [78] recently reported a design incorporating a remote control of CAR T cells, 

whereby a small molecule is used to dimerize antigen-binding and signaling domains. In 

contrast to the small molecule-controlled suicide switch, this ON-switch design represents a 

positive reversible regulation that does not eliminate T cells but rather restricts their 

activities (reviewed in [79]). Both the inducible caspase-9 approach and this one take 

advantage of well-established chemically induced dimerization (CID) modules developed in 

the 1990s, where two proteins bind only in the presence of a small molecule [80].

5. Combinatorial antigen targeting

Although the above safety switches allow remote temporal control of CAR T cell activity, 

they do not provide a means to improve spatial control of antigen engagement and tumor 

selectivity. To this end, combinatorial approaches integrating two autonomous antigen inputs 

to control CAR T cell functions have been developed to spatially discriminate between 

normal and tumor cells expressing a common target. Three strategies have emerged to 

address this challenge, all making use of different chimeric receptors: iCARs, CCRs and 

synNotch receptors (Figure 2).
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iCARs are synthetic inhibitory receptors derived from the PD-1 or CTLA-4 receptors, 

intended to protect normal cells from targeted destruction based on the iCAR’s recognition 

of an antigen present in normal cells but not the tumor [81]. iCARs are neither CARs–as 

they do not trigger T cell activation–nor CCRs–as they do not enhance T cell function or 

persistence. Federov et al. showed that recombinant receptors mimicking two prototypic 

checkpoint blockade receptors, PD-1 and CTLA-4, could restrain T cell cytotoxicity and 

cytokine secretion in antigen-specific fashion[81]. The main interest in utilizing iCARs is to 

divert collateral damage to normal tissues without resorting to lymphotoxic means such as 

suicide genes and high dose corticosteroid therapy. This situation is in part analogous to T 

cell and natural killer cell immunoregulation, where inhibitory checkpoint blockade 

receptors or killer inhibitory receptors (KIRs), can reversibly block or limit immune 

responses.

Another approach utilizes complementary signals split between two receptors: a CAR for T 

cell activation and a chimeric co-stimulatory receptor (CCR) for costimulation [67]. Tumor 

selectivity can be enhanced by the use of two receptors with complementary, conditional 

signals. The two antigens need to be chosen in such a manner that that they are both 

expressed by the tumor cells but found alone on normal cells [82]. Acting in cell 

autonomous fashion, the required co-engagement of the CCR and the CAR upon recognition 

of two independent antigens reinforces tumor selectivity in vivo[82].

Wendell Lim and colleagues recently adapted the combinatorial principle in a temporal 

sequence, exploiting the unique mechanism and modular structure of the Notch-receptor 

(synthetic Notch receptor–synNotch) [83,84]. Notch engagement of its natural ligands leads 

to proteolytic release of an intracellular portion that possesses transcriptional regulatory 

function. Thus, a synNotch receptor specific for antigen A can secondarily induce 

expression of a CAR specific for antigen B [85]. In addition to spatial control of cellular 

behavior, the synNotch receptor systems has the potential to integrate multiple extracellular 

inputs in parallel, reviewed in [86] The ability to integrate combinatorial environmental cues 

may be useful to study specific cell-cell interaction in the tumor microenvironment.

6. Cell substrate optimization

A major question arising from the success and rise of CAR therapy is T cell subsets are 

optimal for best clinical results. Strikingly, the consistent clinical outcomes obtained in ALL 

patients have been obtained with bulk peripheral blood T cells comprising variable CD4+/

CD8+ T cell ratios and variable proportions of naive and antigen-experienced T cells [72–

74]. The quasi uniformity of those successful outcomes thus did not reveal whether an 

optimal CD4+/CD8+ T cell ratio or a superior T cell subset dominant contributes to the 

therapeutic outcome. However, we know from murine studies that, although CD8+ or CD4+ 

CAR T cells alone can exert significant therapeutic effects [87,88], a mixture of both subsets 

displays superior efficacy [88,89]. Much remains to be learned about the potential defined T 

cell subsets, in particular the central memory (TCM) and the stem cell–like memory (TSCM) 

subsets [90–94]. It is likely that the selection of optimal T cell subsets for CAR therapy will 

impact the efficacy, consistency, and safety of CAR therapy [95,96].
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Phase 3: Engineered T cell therapies (heterologous)

Current CAR therapies make use of autologous T lymphocytes, obliging to manufacture T 

cells in personalized fashion. In principle, the use of allogeneic cell sources could reduce 

such manufacturing needs. However, a reliable path to generating safe and effective T cells 

in a non-autologous setting still remains to be established (reviewed in [97]). The use of 

heterologous cells poses two major additional challenges: donor T cells may attack the 

recipient, causing GVHD (a well know obstacle in the transplantation field) and the recipient 

may reject the incoming T cells, limiting their persistence and therapeutic efficacy (another 

well known obstacle in the transplantation field). Nonetheless, some first clinical 

experiences are emerging, shedding some light on the nature and magnitude of the obstacles 

to overcome. These few studies were conducted in the context of substantially 

immunocompromised recipients.

To avoid allorecognition of the recipient and GVHD, one may either utilize VSTs with 

reduced alloreactive potential or delete the endogenous TCR. The clinical experience with 

these approaches is limited. CAR-expressing VSTs have not shown much anti-tumor activity 

in a trial utilizing EBV-specific T cells expressing a CD19 CAR [98,99]. A case report of the 

compassionate use of a CD19 CAR T cell edited at the TRCα locus has been difficult to 

interpret, but was useful in showing that a very small fraction of T cells escaping TCR 

deletion greatly expanded and induced GVHD [100]. Interestingly, however, CD19 CAR 

DLI in selected patients with relapsed lymphoma after an allogeneic transplant without 

GVHD, has shown encouraging tumor responses without GVHD [101], consistent with prior 

studies in murine models [102].

Yet another alternative approach is to generate T cells with optimal features from precursors 

that are amenable to substantive genetic engineering and thorough safety testing, such as 

pluripotent stem cells. The first successes in the in vitro generation of human T cells from 

embryonic stem cells and induced pluripotent stem cells have been recently reported [103–

105]. Themeli et al demonstrated that CAR T cells derived from human iPS cells could 

induce significant tumor regressions in a xenogeneic lymphoma model [105], providing the 

first evidence in support of the feasibility of generating “synthetic T cells” for therapeutic 

purposes (reviewed in [97]).

Thus, while the challenges to developing off-the-shelf strategies remain substantial, it is 

intriguing to think about the possible advent of “Phase 3” in the historical progression of T 

cell-based immunotherapies.

Conclusions and outlook

This article summarizes what T cell therapies have achieved to date and lays out directions 

for their further evolution. The crux of the exposé is that immunological principles will find 

a new embodiment and purpose thanks to advances that are extraneous to the field of 

immunology: genetic engineering, synthetic biology and cell manufacturing sciences.

Immunologists have defined the principles governing immune responses, from antigen 

processing and presentation to antigen recognition, from T cell ontogeny and T cell priming 

Sadelain Page 6

Curr Opin Immunol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to memory formation, and from T cell subset definition to regulatory network integration. 

On the operational front, immunotherapists have tested the limits of this knowledge in the 

context of human pathology. To me, the acid test of fundamental knowledge is the ability to 

alleviate patient suffering and enable curative medical interventions.

In this regards, natural adoptive cell therapies – Phase 1 – have provided numerous critical 

insights into the potential and the limitations of the natural immune system to defeat cancer: 

adoptively transferred allogeneic T cells can direct profound anti-tumor responses (e.g., the 

graft-versus-leukemia effect) and protect against viral infections (e.g., against herpes 

viruses), provided that enough T cells of the right specificity and fitness are administered to 

the patient. Unselected allogeneic T can be therapeutic but also mediate severe, potentially 

lethal, toxicities (e.g., GVHD induced by T cell replete marrow grafts or DLI). In a few 

settings, autologous T cells occasionally mediate tumor regressions upon adoptive transfer 

(e.g., using TILs against melanoma), provided that they persist and are not inactivated by the 

tumor microenvironment, which often requires aggressive conditioning.

Genetic engineering technologies enable to redesign T cells, and extend their capabilities 

and performance. Combined with the use of synthetic biology tools such as chimeric antigen 

receptors, chimeric costimulatory receptors, chimeric cytokine receptors, iCARs, synNotch 

and safety switches, T cells may eventually overcome the resistance that tumors successfully 

oppose to the action of natural T cells. The optimal T cell substrate for such manipulations 

will likely be defined soon and reinforce these approaches. This is the current state of the art 

– “Phase 2” – which has only just begun.

In the future, the combined use of ever-improving genetic tools, synthetic biology tools, 

stem cell biology and manufacturing sciences, may enable the use of T cells prepared from 

alternative, ie non-autologous, sources. This next phase would represent another 

groundbreaking leap for cell therapy. The biological challenges to reach this stage, however, 

should not be underestimated. For the present, the main priorities are to demonstrate the 

efficacy of CAR therapy beyond the CD19 paradigm, especially against solid tumors, and 

further advance T cell manufacturing, which will hopefully allay the logistical and economic 

questions some have about the potential to implement cell therapies on a very large scale.
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Highlights

• The CD19 paradigm has established CARs as a novel immunotherapy in 

oncology immunotherapy

• The synthetic tool box is not limited to CARs and includes CCRs, iCARs and 

synNotch

• The use of alternative T cell sources poses substantial challenges but shows 

promise

• Genetic engineering and synthetic biology are transforming adoptive T cell 

therapy

• Second generation CARs have ushered in a new era of T cell-based cancer
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Figure 1. 
A paradigm switch in T cell therapy. The quest to isolate and expand available T cells from 

the patient or a donor (left) is giving way to the design and manufacture of engineered T 

cells with optimized properties (right). See text for abbreviations.
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Figure 2. 
The expanding repertoire of synthetic immunoreceptors: CARs (first generation TCR 

mimetics, second generation providing integrated activating and costimulatory signals; 

CCRs, chimeric costimulatory receptor; CCyRs, chimeric cytokine receptors; iCARs, 

inhibitors of T cell activation; synNotch, synthetic Notch receptors. See text for definitions 

and references.
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