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Modifying behavior to maximize reward is integral to adaptive decision-making. In rodents, the μ-opioid receptor (MOR) system encodes
motivation and preference for high-value rewards. Yet it remains unclear whether and how human MORs contribute to value-based
decision-making. We reasoned that if the human MOR system modulates value-based choice, this would be reflected by opposite effects
of agonist and antagonist drugs. In a double-blind pharmacological cross-over study, 30 healthy men received morphine (10 mg), placebo,
and the opioid antagonist naltrexone (50 mg). They completed a two-alternative decision-making task known to induce a considerable bias
towards the most frequently rewarded response option. To quantify MOR involvement in this bias, we fitted accuracy and reaction time
data with the drift–diffusion model (DDM) of decision-making. The DDM analysis revealed the expected bidirectional drug effects for two
decision subprocesses. MOR stimulation with morphine increased the preference for the stimulus with high-reward probability (shift in
starting point). Compared to placebo, morphine also increased, and naltrexone reduced, the efficiency of evidence accumulation. Since
neither drug affected motor-coordination, speed-accuracy trade-off, or subjective state (indeed participants were still blinded after the third
session), we interpret the MOR effects on evidence accumulation efficiency as a consequence of changes in effort exerted in the task.
Together, these findings support a role for the human MOR system in value-based choice by tuning decision-making towards high-value
rewards across stimulus domains.
Neuropsychopharmacology (2017) 42, 1833–1840; doi:10.1038/npp.2017.58; published online 12 April 2017
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INTRODUCTION

Adaptive decision-making involves successfully predicting
appetitive outcomes, as well as selectively approaching
rewards (Fields and Margolis, 2015). So far, research on
neurochemical modulators of value-based decision-making
in humans has centered around contributions of the
dopamine, noradrenaline and serotonin systems (eg,
Rogers, 2011). Nonetheless, maladaptive decision-making is
commonly observed in clinical populations with disrupted μ-
opioid receptor (MOR) function, eg, substance dependence
(Lubman et al, 2009) and chronic pain (Apkarian et al,
2004). Further, evidence from rodent models demonstrate μ-
opioid modulation of important subprocesses of value-based
decision-making (Laurent et al, 2015). In rats, MOR agonism
primarily enhances preference for high-value rewards, as
indicated by measures of consumption (DiFeliceantonio
et al, 2012) as well as by effort exerted to achieve rewards (eg,
progressive ratio schedules (Zhang et al, 2003)). Blockade of

MORs shows the opposite effects (Cleary et al, 1996).
Overall, evidence from pharmacological manipulation stu-
dies indicate that the rodent MOR system regulates
preference and valuation in the food, sexual (Mahler and
Berridge, 2012) and social (Moles et al, 2004) domains.
In humans, the MOR system is best known as a moderator

of pain and pleasure (eg, Leknes and Tracey, 2008).
Molecular imaging has demonstrated endogenous MOR
activity during pain relief and certain types of reward (eg,
Boecker et al, 2008; Colasanti et al, 2012; Henriksen and
Willoch, 2008; Hsu et al, 2013). Hence, MOR signaling in
humans likely affects value-based decision-making by
altering the value of rewards and punishments. For instance,
substance abusers’ preference for drug cues above all other
rewards may be mediated by MOR system dysfunction
(Ghitza et al, 2010). Preliminary psychopharmacological
evidence from our lab showed that in healthy men, MOR
agonism increased, and antagonism decreased, reward
motivation and preference, specifically for the high-value
stimuli, ie, the sweetest drink (Eikemo et al, 2016) and the
most attractive opposite sex faces (Chelnokova et al, 2014;
Chelnokova et al, 2016). These findings align well with
previous evidence that MOR antagonism reduces preference
for high-value food rewards (high-calorie foods; Ziauddeen
et al, 2013).
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Here, we investigated how the MOR system modulates
value-based choice in healthy humans. In a psychopharma-
cological study with a three-way repeated-measures design,
30 opioid-naive men received the MOR agonist morphine
(10 mg per-oral), the non-selective opioid antagonist nal-
trexone (50 mg), and placebo on 3 separate days. Since only
the MOR is strongly affected by both drugs, we assume that
behaviors influenced bidirectionally reflect drug effects on
MOR and not other opioid receptors. Participants completed
a two-alternative signal detection task with asymmetric
rewards (Figure 1). The task is designed to induce a
considerable response bias towards the most frequently
rewarded response option (Pizzagalli et al, 2005). The
response bias is markedly reduced in patients with disrup-
tions of reward processing caused by, eg, depression
(Pizzagalli et al, 2008b).
To assess MOR system involvement in the processes

underpinning value-based choice, we fitted trial-by-trial
accuracy and reaction time data with a Bayesian implemen-
tation of the drift–diffusion model (DDM) of decision-
making. The DDM is a well-established computational
model used to study cognitive components of two-
alternative decisions (Ratcliff and McKoon, 2008). It has
provided valuable information about how decision subpro-
cesses are influenced by drugs (Pedersen et al, in press; Van
Ravenzwaaij et al, 2012), psychopathology (Banca et al,
2015), and by task properties such as time restriction or
reward schedule (Mulder et al, 2012; Wiech et al, 2014).
The DDM describes the decision processes as a gradual

accumulation of the difference in evidence for the two choice
options (Ratcliff and McKoon, 2008). The decision begins at
a starting point (z) in-between two decision boundaries,
where the boundary separation parameter (a) quantifies the
speed-accuracy trade-off; Figure 2. The efficiency of evidence
accumulation is captured by the drift rate (v) parameter. A
response is initiated once sufficient evidence has been
accumulated to reach one of the two decision boundaries.
We expected the starting point parameter to reflect the

response bias induced by the skewed reward schedule of the
present task (Mulder et al, 2012). Further, since MOR drugs
modulate both preference and motivation in rodents, we
hypothesized that MOR manipulations in healthy humans
would modulate the shift in starting point and/or the
efficiency of the evidence accumulation. We reasoned that
behaviors modulated by the endogenous MOR system in the
healthy human brain would show bidirectional drug
modulation, as indicated by the linear contrast
(morphine4placebo4naltrexone).

MATERIALS AND METHODS

Study Design and Participants

The study was conducted in a double-blind, placebo
controlled manner. Tasks and drug conditions were
pseudo-randomized and counterbalanced. Participants were
32 healthy men with normal or corrected-to-normal vision.
One participant tested positive on the opiate urine screening
(MOP Opiate300 Test Strip; SureScreen Diagnostics Ltd,
Derby, UK) and another failed to complete all sessions,
yielding a final group of n= 30 (mean age 26.9, range 20–36).
Exclusion criteria included: history of or current psychiatric/

medical illness, prior drug dependence/addiction, use of
medication except antihistamines and contraceptives, com-
plex allergies. Alcohol and drug use was assessed during
screening (Supplementary Information).

Figure 1 Experimental task. Participants were presented with schematic
faces and instructed to identify which of two alternative mouths was shown
(eg, short or long mouth). We developed three equally ambiguous stimulus
sets for use in the three sessions to avoid any learning effects
(Supplementary Figure S1). Unknown to the participant, correct identifica-
tion of one of the stimulus alternatives led to a monetary reward (NOK1,
~ 15 cents) three times more often than the other stimulus (75 vs 25%
reward probability). The most frequently rewarded response option is
considered the high-value stimulus. Non-rewarded and incorrect trials were
followed by a fixation cross. Altogether 300 trials were divided into three
blocks. The differences between the face stimuli have been inflated for
illustrative purposes.

Figure 2 The drift–diffusion model of decision-making. The model
assumes that relative evidence for two decision alternatives is accumulated
until a decision boundary is reached. The figure illustrates key parameters of
the model. The drift rate (v) represents how much evidence is on average
accumulated per time unit, and can indicate task difficulty, ability or effort
exerted in the task. The jagged lines represent sample paths (the upward
sloping line for a correct response; the downward sloping path for an
erroneous response). The starting point (z), also called bias, provides
information about whether the decision maker is favoring one option before
trial onset. The figure here shows no bias. The boundary separation (a)
indicates the speed-accuracy trade-off: the larger the separation, the more
decision makers prefer accuracy over speed. The parameter t captures non-
decision time needed for stimulus processing and response execution. The
figure also shows typical response time distributions (error and correct trials)
for a larger number of choices.
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Time Line

Participants were tested on three different days with a
minimum inter-session interval of seven days. Each session
lasted approximately 3 h during which participants com-
pleted a battery of experimental tasks. An optimal test
interval (60–120 min after drug intake) was deduced by
comparing the time of maximal bioavailability and half-life
of oral morphine and naltrexone. The monetary reward task
was conducted on average ~ 90 min post drug administra-
tion. Participants were reimbursed 400–500 NOK ($60–70)
per session, depending on task performance. The experi-
mental procedures were approved by the Regional Ethics
Committee (2011/1337/REK Sør-ØstD). Participants were
informed that they could withdraw from the study at any
time. Participants were asked to sustain from alcohol since
the evening before each test session, to sustain from eating an
hour before testing, and not to drive a vehicle for 6 h after
drug administration. Participants were not allowed to
consume caffeine or nicotine during the test session.

Drug Administration

Morphine is an opioid agonist with high affinity to the
μ-receptor. To minimize subjective drug effects, we chose
10 mg per-oral morphine (Morfin, Nycomed Pharma, Asker,
Norway). Previous reports have shown only weak subjective
effects to larger doses (eg, Zacny and Lichtor, 2008).
Naltrexone is a non-selective opioid antagonist with high
affinity to μ- and κ-opioid receptors. We used 50 mg per-oral
naltrexone (Adepend, Orpha-Devel, Purkersdorf, Austria), a
standard dosage that blocks more than 90% of MORs
(Weerts et al, 2013). Both drugs induce a plasma concentra-
tion plateau ~ 1 h after intake (eg, Lugo and Kern, 2002;
Verebey et al, 1976). Placebo pills were cherry-flavored
breath mints that were visually matched to morphine and
naltrexone pills. A small amount of the flavored placebo pills
were added to the drug dosages, to avoid recognition of
medication taste. Participants were asked to swallow, rather
than chew, the pills.

Control Measurements

Subjective state (including mood: happiness, anxiousness,
irritability, and feeling good) ratings were collected (i) before
drug ingestion (baseline); (ii) 60 min after drug ingestion;
(iii) ~ 40 min into testing; and (iv) after completion of all
tasks using electronic visual analog scales implemented in
MatLab R2012a (Mathworks, Natic, USA). A motor-
coordination task was performed ~ 100 min after drug
administration (Supplementary Information).

Value-Based Decision-Making Task

Reward behavior was tested with a two-alternative forced-
choice task (adapted from Pizzagalli et al, 2005, Figure 1). In
each of 300 trials, a schematic face with no mouth is
presented for 500 ms, followed by a brief presentation of one
of two mouth stimuli (100 ms). The two stimuli are slightly
different in one dimension, eg, length. The task is to correctly
identify the mouth stimulus displayed in each trial. The two
mouth stimuli are equiprobable and presented in a random

order within each block. Participants are informed that
correct responses can sometimes, but not every time, lead to
a monetary reward. The reward message is presented
immediately after a rewarded trial and replaced by a fixation
cross after 1750 ms. Incorrect and unrewarded trials are
followed by a fixation cross. Unknown to the participant, the
task is based on a skewed reinforcement schedule. One of the
two stimuli is associated with a larger probability of reward
(75% when the correct answer is provided), than the other
stimulus (25% reward probability following a correct trial).
The most frequently rewarded response option is considered
a high-value option. Participants performed a different
version of the task in each session to avoid learning effects
(see Supplementary Information, Supplementary Figure S1).
Behavioral data from this task has by large been assessed

within a signal detection framework using block-wise
accuracy (aggregated in three 100-trial blocks). While the
bias (criterion) in a traditional signal detection framework is
calculated as the ratio of hits for each response option, the
DDM integrates both accuracy and reaction time data in the
estimation of the decision parameters. The behavioral biases
induced by the task can be reflected in the drift rate (v) and
starting point (z), parameters reflecting the efficiency of
evidence accumulation and a priori preference for one
response option respectively. The key advantage of a DDM
analysis of the data is that it allows for a clear discrimination
of information processing efficiency and speed-accuracy
trade-off, whereas the discriminability parameter in the
signal detection framework reflects both these parameters.
The tasks were presented on a 20″ PC monitor using E-prime
software (version 2.0; Psychology Software Tools, Inc.,
Pittsburgh, Pennsylvania, USA).

Control Data Analysis

To test effects of drug manipulations on motor function
and mood we used Bayesian hierarchical implementations
of generalized linear models in Stan via RStan (Stan
Development Team, 2014; see Supplementary Information
for details).

Drift–Diffusion Model Analysis

Reaction time and accuracy data was fit with the DDM of
decision-making. We used the HDDM toolbox (Wiecki et al,
2013), which allows for hierarchical modeling of DDM
parameters in a Bayesian framework. To capture the within-
subjects design of our experiment, we used a regression
approach to model effects of the drug manipulation and of
learning over blocks in each session. Because the aim of the
current study was to examine the bidirectional effects of
drugs relative to the placebo condition, we directly
incorporated the relevant contrasts into the regression model
(three drug conditions times three block conditions, see
Supplementary Information for details).
The DDM included the drift rate (v), starting point (z),

boundary separation (a), and non-decision time (t) para-
meters. The drift rate parameter is often interpreted as an
index of task difficulty. However, in a within-subjects design
with constant stimulus quality as employed here, drift rate
can be interpreted as the efficiency of the signal processing,
reflecting attention allocated or effort exerted during the
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task. Because we had no hypotheses concerning the non-
decision time parameter of the DDM, t, this parameter was
kept constant across conditions. Additional DDM para-
meters describing trial-by-trial variation in non-decision
time, drift rate, and bias were not tested because parameter
recovery experiments showed that these are difficult to
estimate reliably on the individual level, and because their
estimation is computationally expensive (Wiecki et al, 2013).
To estimate contrasts of model parameters in a hierarch-

ical manner, we estimated a group-level mean and SD of
model parameters, which served as priors for individual level
parameters. The effects reported are group-level means.
Contrasts for drug effects on DDM parameters are presented
as posterior density plots that represent posterior beliefs
about parameter values (Figure 5), commonly used for
reporting results from Bayesian analyses. To visualize if and
how well the model and the estimated parameters captured
the data, we performed a posterior predictive check (Gelman
et al, 2014), using the fitted model parameters to simulate
data and then comparing these to the observed data in order
to look for systematic discrepancies (Supplementary
Information). The final DDM analysis included data from
27 participants (for details about data exclusion and Bayesian
estimation see Supplementary Information).

RESULTS

Control Measures

As expected since drug doses were optimized to avoid
subjective drug effects, Bayesian regression analyses revealed
no credible effects on mood (Figure 3; see Supplementary
Information and Supplementary Table S3 for details).
Importantly, successful blinding (34% correct guesses at
debriefing in the third session) confirmed that drug admin-
istration of morphine and naltrexone was not associated with
sedation, subjective high or other effects likely to affect task
performance. Further, comparable performance across drug
conditions on a motor-coordination control task indicated
that neither of the drugs impaired ability to perform the task
(Supplementary Table S4).

Descriptive Statistics

Inspection of means and variance information for accuracy,
and reaction time data for each drug condition indicated the
presence of the expected behavioral bias towards the most

frequently rewarded stimulus. Overall, participants were faster
and more accurate on high-reward stimulus trials (Figure 4).

Drift–Diffusion Model Results

Baseline task performance. To evaluate how the DDM
parameters would reflect the behavioral effects of the task, we
first examined performance in the placebo condition (block-
wise results are presented in Supplementary Information,
Supplementary Figure S2, and Supplementary Table S1). A
shift in the starting point of the evidence accumulation (z)
was evident in the first block and increased over time. This
result replicates the key finding of previous signal detection
analysis of this task, namely that participants increasingly
learn to prefer the most frequently rewarded response option
(Pizzagalli et al, 2005), using computational modeling
methodology. Estimation of the other relevant parameters
revealed that both the drift rate (v) and boundary separation
(a) decreased over time, ie, from the first 100 trials (block 1)
until the completion of the 300 trials. This likely reflects task
fatigue. Note that comparable fatigue effects were observed
in the two drug conditions as well.

Drug effects on decision parameters. The DDM revealed
bidirectional drug effects on the rate of evidence accumula-
tion, that is the drift rate (v): Opioid antagonism with

Figure 3 No credible drug effects were found for any of the mood types. For illustration, average ratings with within-subjects SEM are presented for all
measurements throughout the test phase (x-axis values refer to minutes after drug ingestion).

Figure 4 Descriptive data. Average accuracy (a) and reaction time (b)
data presented by drug condition and stimulus type (high- and low-reward
probability) for the 27 participants included in the final DDM analysis. Error
bars represent within-subject SEM.
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naltrexone decreased the drift rate compared to the placebo
condition (mean difference Δ (90% HDI)= 0.17 (−0.29,
− 0.058), mean Cohen’s d=− 0.46). The @@posterior
probability of a lower drift rate in the naltrexone condition
was 0.99 (p(NoP)). In contrast, drift rate was increased
following MOR agonism with morphine (Δ= 0.126 (−0.015,
0.268), p(M4P)= 0.93, d= 0.30). The comparison of poster-
ior distributions for the M4P4N contrast shows that the
drift rate following MOR agonism was higher than after
MOR antagonism with a posterior probability of 0.99
(Figure 5).

A similar drug effect pattern was found for the starting
point parameter (z). Across all drug conditions, the starting
point was shifted towards the high-value option. Morphine
increased the shift of the starting point towards the high-
reward boundary compared to the placebo control condition
(Δ= 0.041 (−0.004, 0.084), p(M4P)= 0.94). While the
starting point only tended to be less skewed towards the
high-reward option in the naltrexone condition compared to
placebo (Δ= 0.032 (−0.092, 0.03,); p(NoP)= 0.81), it was
clearly decreased with naltrexone compared to morphine
(Δ= 0.073 (−0.008, 0.147), p(M4N)= 0.94.

We found no credible support that the MOR system
influences boundary separation (Figure 5), as evidenced by
comparable parameter estimates for naltrexone and placebo
(Δ= 0.01 (−0.075, 0.54), p(NoP)= 0.61, d= 0.09);) and
morphine and placebo (Δ= 0.038 (−0.040, 0.95),
p(M4P)= 0.76, d= 0.34).

In sum, the computational modeling results support
MOR system modulation of value-based decision-making
by changes in both the starting point towards a stimulus
associated with high-reward probability and the rate
of the evidence accumulation (Figure 5d and Supple-
mentary Table S1).

DISCUSSION

Results from bidirectional drug manipulation of MORs
provide evidence for MOR system modulation of value-based
choice in healthy humans. As hypothesized, MOR blockade
reduced the propensity to modulate behavior as a function of
reward probability, primarily through lowered evidence
accumulation rate compared to placebo. Conversely, MOR

Figure 5 Drug effects on drift–diffusion model parameters. (a) Posterior density plots of the primary contrast morphine4naltrexone (M4N) for the three
main DDM parameters (row 1–3). Posterior density plots represent the probability of parameter values given the prior, model and data. The horizontal lines
below each density plot indicate the 90% highest density intervals (HDI) calculated from the posterior distribution. HDIs can be thought of as Bayesian analogs
to confidence intervals (CIs). HDIs however also provide information about the probabilities of the possible parameter values. The 90% HDI contains the 90%
most credible values given the prior information, model, and data. Contrasts with at least 90% of the posterior distribution on either side of zero are
considered credibly different and are marked with shaded distributions. (b) Posterior density plots showing posterior distributions of group-level mean
parameter estimates for drift rate, starting point and boundary separation for both drugs contrasted with placebo (P) estimates. (c) Group-level DDM
parameters of interest in the three drug conditions, midpoints mark the mean parameter estimate, error bars are 90% HDIs of the means. Vertical lines
illustrate between-subject variation for each drug condition in the estimation of DDM parameters. (d) Bivariate posterior density distributions of the contrasts
of posterior distributions for group-level drift–diffusion parameter estimates. Contrasts show Naltrexone–Placebo (N–P) and Morphine–Placebo (M–P) for
starting point bias and drift rate posterior distributions. The figure illustrates that MOR antagonism and agonism have opposite effects on starting point
(response bias) and drift rate compared to placebo.

Opioid modulation of reward in healthy humans
M Eikemo et al

1837

Neuropsychopharmacology



system activation with a non-sedative dose of morphine led
to higher drift rate. Morphine also shifted the starting point
of each decision closer towards the high-value boundary.
Indeed, the agonist and antagonist drugs appear to ‘pull’
these two decision subprocesses in opposite directions
compared to placebo.
When people develop a preference towards one response

option, this is usually reflected in a shifted starting point of
the decision process. The bidirectional MOR modulation of
starting point observed here indicates human MOR system
involvement in preference for high-value (high-probability)
rewards. This finding is in line with rodent studies
demonstrating that MOR stimulation increases while MOR
blockade decreases preference specifically for high-value
rewards such as sucrose, fat, and sex cues (Mahler and
Berridge, 2012). Task-induced changes in starting point have
previously been associated with brain activity in regions of a
fronto-parietal network, including several MOR-rich cingu-
late and prefrontal areas (Henriksen and Willoch, 2008;
Mulder et al, 2012).
MOR modulation of preference for the high-value

response option was also manifest in changes of evidence
accumulation efficiency (drift rate). Compared to placebo,
morphine increased and naltrexone decreased accumulation
efficiency in the task. Since stimulus quality was kept
constant across counterbalanced tasks in the three sessions,
we interpret the changes in drift rate as a reflection of the
motivation to obtain reward. Higher motivation to earn
money should increase attention and effort exerted in the
task, thereby enhancing the efficiency of evidence accumula-
tion. In principle, changes in drift rate could also result from
drug effects on visual acuity, ie, by enhancing or disrupting
overall stimulus perception. However, we find no evidence of
drug effects on vision. MOR manipulations primarily
affected accuracy for the high-reward option. Further, eye-
hand coordination performance was comparable across drug
conditions. Viewing the drift rate changes as a reflection of
altered attention and effort, is supported by rodent findings
that MOR manipulation modifies the value an animal places
on a reinforcer (DiFeliceantonio et al, 2012). Indeed,
infusion of a MOR agonist into the nucleus accumbens
increased rats’ willingness to expend effort to obtain a
reward, as measured by progressive ratio schedule (Zhang
et al, 2003). Furthermore, injecting μ-opioid drugs directly
into mesolimbic structures such as the nucleus accumbens
increases rats’ incentive motivation (Berridge et al, 2009).
Notably, the present MOR drug effects on value-based

choice occurred without credible changes in mood, sub-
jective ‘high’, alertness or motor coordination. Debriefing
revealed that participants performed at chance level when
asked to identify the drugs at the end of the three sessions.
Hence, drug effects on value-based choice are likely to reflect
MOR modulation of decision subprocesses and not indirect
effects due to subjective drug effects. Since both the starting
point and bias measures were modulated bidirectionally, we
assume that the effects are driven by the only known receptor
strongly affected by both drugs (MOR and not KOR).
The computational modeling approach used here yields

mechanistic information above and beyond what can be
gleaned from descriptive data and signal detection analysis.
Behavioral biases can have systematic effects on the response
time distributions for errors and correct responses. These are

captured by the DDM, but would be missed in analyses
limited to accuracy data. The estimation of DDM parameters
enabled assessment of drug effects on latent psychological
processes that make up the decision process. The assump-
tions of the DDM, as a sequential sampling model of
decision-making, have not only been shown to accurately
describe behavioral results (Ratcliff and McKoon, 2008).
Studies linking this model to neurophysiological (Gold and
Shadlen, 2007; Shadlen and Newsome, 2001) and neuroima-
ging mechanisms of decision-making (Basten et al, 2010)
indicate that the model can describe neurobiological
mechanisms underpinning binary decisions.
In the healthy human brain, endogenous opioids are

released to regulate pain (Henriksen and Willoch, 2008) and
rejection (Hsu et al, 2013). Preliminary molecular imaging
evidence also indicates opioid release during certain rewards:
social acceptance (Hsu et al, 2013), exercise ‘high’ (Boecker
et al, 2008) and after positive mood induction (Koepp et al,
2009). We have previously reported evidence that bidirec-
tional MOR manipulations affected explicit liking and
wanting of high-value rewards in the taste (Eikemo et al,
2016) and face perception (Chelnokova et al, 2014;
Chelnokova et al, 2016) domains. Here, we corroborate
and extend upon these findings by showing MOR modula-
tion of implicit motivation and preference. Indeed, debrief-
ing confirmed that the task’s skewed reward schedule was
unknown to participants even after three test sessions.
Further, we extend the evidence of MOR reward modulation
to a secondary reinforcer (money). These results support a
general role of MORs across reward domains. Indeed, brain
regions richly innervated by MORs such as ventral striatum,
amygdala and perigenual anterior cingulate cortex have been
consistently implicated in human neuroimaging studies of
monetary and other rewards (McClure et al, 2004).
The current results in healthy participants also align well

with studies showing impaired value-based decision-making
across substance-use disorders (Lubman et al, 2009; Paulus,
2007) and with the growing evidence for dysregulation of
MOR function across addictions (Ghitza et al, 2010; Mick
et al, 2015). Indeed, addiction is characterized by a
maladaptive preference for certain activities, such as drug
abuse or pathological gambling, at the cost of all other
rewards. Such exaggerated preference for drug cues predicted
relapse to heroin (Lubman et al, 2009). Thus the increase in
preference for high-value reward observed here after acute
morphine administration may represent an innocuous
precursor to the maladaptive drug preference commonly
observed after chronic MOR stimulation with opioids,
stimulants or alcohol (Colasanti et al, 2012; Mitchell et al,
2012). Notably, sustained MOR antagonist treatment has led
to improvements in craving and other pathological behaviors
across addictions (Lobmaier et al, 2011).
The meso-cortico-limbic dopamine (DA) and limbic MOR

systems are co-located in the nucleus accumbens, ventral
pallidum, and amygdala and are thought to play comple-
mentary and central roles in reward processing (Berridge
et al, 2009). Thus, the present effects on effort exerted in the
reward task may in part reflect MOR modulation of
mesolimbic DA signaling (Johnson and North, 1992). The
reward task used here also involves implicit learning of
reward probabilities which likely recruits dopaminergic
neurotransmission (Pessiglione et al, 2006). Indeed, inducing
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an antagonistic effect on DA was previously shown to reduce
learning and preference for high-value reward in this task
(Pizzagalli et al, 2008a). However, evidence from substantial
rodent opioid research points to important, independent
contributions of the MOR system to different aspects of
reward processing, notably to reward valuation and ‘liking’
(eg, Berridge et al, 2009; Hnasko et al, 2005; Laurent et al,
2015). Accordingly, we speculate that MOR system modula-
tion of value is the main mechanism underpinning the
observed drug effects on starting point and drift rate.
Some limitations of the present study warrant considera-

tion. Only male participants were tested, as opioid drugs
have been shown to interact with female cyclic hormones
(Smith et al, 1998). Since the present findings mirror results
from rodent studies, we consider it likely that future studies
will demonstrate similar MOR modulation of value-based
decision-making in women. Although we do not explicitly
control for intake of nicotine or caffeine in the present
analysis, the within-subjects design renders systematic
influences of these substances unlikely. Although it is a not
limitation as such, we wish to stress that the present results
indicate a reduction and not an elimination of reward
responsiveness after naltrexone treatment. At 50 mg per-oral,
this opioid antagonist induces a high degree of MOR
blockade in the healthy brain (490% of endogenous
receptors; Weerts et al, 2013). Value-based choice is likely
influenced by the MOR system in interaction with, eg,
noradrenaline, serotonin, dopamine, and endocannabinoids
(Rogers, 2011). Understanding how these systems together
contribute to aversive and appetitive processes in healthy
humans and psychopathology remains an important task for
the future.
In sum, these results suggest that the human MOR system

guides value-based choice by tuning decision-making
towards high-value rewards. Further, the findings support a
role for the human MOR system promoting adaptive
strategies such as effort expenditure and preference for
highly valuable rewards across stimulus domains. Knowledge
of the basic affective mechanisms of the MOR system in
healthy humans is a necessary foundation for development
of improved, targeted treatments of the millions of patients
whose MOR systems have been disrupted by chronic pain or
substance dependence.
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