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Abstract

Experiments have suggested that ion correlation and fluctuation effects can be potentially 

important for multivalent ions in RNA folding. However, most existing computational methods for 

the ion electrostatics in RNA folding tend to ignore these effects. The previously reported Tightly 

Bound Ion (TBI) model can treat ion correlation and fluctuation but its applicability to biologically 

important RNAs is severely limited by the low computational efficiency. Here, based on Monte 

Carlo sampling for the many-body ion distribution, we develop a new computational model, 

Monte Carlo Tightly Bound Ion (MCTBI) model, for ion binding properties around an RNA. Due 

to an enhanced sampling algorithm for ion distribution, the model leads to significant 

improvement in computational efficiency. For example, for a 160-nt RNA, the model causes more 

than 10-fold increase in the computational efficiency, and the improvement in computational 

efficiency is more pronounced for larger systems. Furthermore, unlike the earlier model, which 

describes ion distribution using the number of bound ions around each nucleotide, the current 

MCTBI model is based on the three-dimensional coordinates of the ions. The higher efficiency of 

the model allows us to treat the ion effects for medium to large RNA molecules, RNA-ligand 

complexes, and RNA-protein complexes. This new model, together with proper RNA 

conformational sampling and energetics model, may serve as a starting point for further 

development for the ion effects in RNA folding and conformational changes and for large nucleic 

acids systems.
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1 INTRODUCTION

In order to form a folded three-dimensional structure, nucleic acids (RNAs and DNAs) 

require metal ion binding to neutralize/screen the backbone charges.1–3 Quantitative models 
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for ion-nucleic acids binding would directly impact our ability to predict nucleic acids 

structures and folding stabilities.4–22 For example, one of the key issues in RNA structure 

prediction,23–27 is lack of an accurate and efficient method to evaluate the ion effects at 

various solution conditions, especially for solutions with divalent ions such as Mg2+ ions.

According to the different ways of ion binding to RNA, we can classify bound ions into the 

different types, such as site-specific bound (or chelated) ions28 and diffuse ions.29 In one 

extreme, site-specific bound ions are trapped in the specific sites on RNA and are usually 

fully or partially dehydrated.30 The specific binding is a result of the competition between 

the gain in ion-RNA attraction and penalty of removing water molecules from ions. 

Molecular dynamics (MD) simulations have provided deep insights into the atomic details 

for site-binding processes, such as the site-specific ion binding to a RNA kiss loop,31 the 5S 

rRNA loop E motif,32 SAM-I riboswitch,33 and many other systems.34–37 In the other 

extreme, diffuse ions usually remain hydrated and diffuse around the RNA surface. The 

large number of diffuse ions may dominate the electrostatic contribution to RNA folding 

stability.38 The classical Counterion Condensation (CC) theory39 and (nonlinear) Poisson-

Boltzmann (NLPB) theory40–45 have been widely used to compute the non-specific ion 

binding thermodynamics. In particular, previous studies showed that the NLPB-predicted ion 

effects for the diffuse ions were consistent with the results from MD simulations for simple 

RNA structures.46–49

For a compact tertiary structure of RNA, a significant charge buildup results in a high local 

counterion concentration around the RNA.49 The high local concentration of the ions would 

cause strong mutual interference due to volume exclusion and Coulombic interaction. These 

counterions cannot move “freely” like the diffuse ions. Instead, their distribution is subject 

to the coupling (correlation) effect and such an effect is more pronounced for multivalent 

ions,14, 50–53 due to the higher charge. The importance of such an ion correlation effect in 

RNA folding has been revealed and highlighted in terms of two length scales by Koculi et 

al.53 Furthermore, ion accumulation around the phosphate groups for tertiary motifs has 

been found to play an important role in the conformational transition from a compact but 

non-functional structure to the native functional structure.22 We note that ion correlation 

may become an important effect for such ion accumulation. For strongly correlated ions, the 

electric field on an ion is not only a function of the position of the ion but also of the 

positions of the other ions, especially the nearby ions. Therefore, it is necessary to consider 

the positions of many ions simultaneously and correspondingly, the ensemble of discrete 

many-ion distributions. Ion correlation and fluctuation lead to several important properties of 

ion binding. For example, due to the ion correlation, the binding of the different ions to RNA 

can be coupled between each other. Such correlated ion binding events can play a more 

important role in a more compact structure, which is usually formed in the later stage of 

RNA folding after the formation of the secondary structures. Furthermore, the cooperative/

anti-cooperative effects of ion binding may be coupled to a possible correlation-induced 

enhancement of folding stability and cooperativity.15

Counterion Condensation (CC) and Poisson-Boltzmann (NLPB) both neglect the fluctuation 

of ion distributions and ion-ion correlations. Experimental results suggest that neglecting 

these effects for multivalent ions, such as Mg2+ ions, may be responsible for the inaccuracy 
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in the theoretical predictions.50, 54 Several new theories have been developed to treat the ion 

correlation effect for biomolecular systems.55–58 For example, novel Monte Carlo and 

coarse-grained molecular dynamics simulations were employed to sample counterion 

distributions around an RNA,9, 55 and in the three-dimensional interaction site model (3D-

RISM), Ornstein and Zernike integral equation theory was used to account for the ion-ion 

correlations57. In a recently developed model, a generalized counterion condensation theory 

was developed to explicitly treat Mg2+ ions and ion-ion correlations.58 Tests against 

experimental data indicate that these models are quite promising. Molecular dynamics (MD) 

simulations can take into account the ion correlation and fluctuation effects, however, the 

simulation often requires exceedingly long computer time.46

Motivated by the need to take into account both the ion fluctuation and ion correlation 

effects, we developed the Tightly Bound Ion (TBI) model.59 The basic approach of the 

model is to classify ions according to the correlation strength and then treat strongly and 

weakly correlated ions separately. Multivalent ions such as Mg2+ ions in the close vicinity of 

the RNA are more likely strongly correlated while other ions, such as those far away from 

the RNA, are usually weakly correlated. For the strongly correlated ions, the TBI model use 

an explicit enumeration to sample the (many-body) ion distributions while for the weakly 

correlated ions, the model employs the mean-field (NLPB) approximation. In the TBI 

model, we assume ions, including the strongly correlated ions, are hydrated. Extensive 

comparisons between TBI predictions and experimental results support the conclusion that 

the TBI model offers improved predictions for ion binding properties and ion-mediated 

nucleic acids stability for simple helices, pseudoknots, kissing complexes, and more 

complex tertiary folds.54, 59–65 Since the major difference between the TBI model and the 

NLPB is the inclusion of the ion correlation effect, a comparison between the TBI and 

NLPB predictions can may show the contribution from the correlation. Indeed, extensive 

TBI-NLPB comparisons have been made and the theoretical predictions have been tested 

against experimental data for the number of excess bound ions10, 14 and the ion-dependence 

of the free energies.80 The results pointed to possible importance to consider the correlation 

effect for a variety of RNA structures in multivalent ion such as Mg2+ ion solutions.54, 59–65

However, the TBI model is severely limited by its low computational efficiency. Because the 

TBI model is based on the time-consuming explicit enumeration of ion distributions, 

applications of the model to medium (100–200 nts) or large RNA structures (> 200 nts) are 

not practical. Furthermore, the model, which is based on a coarse-grained description for ion 

distributions, cannot treat the spatial coordinates of the ions, thus cannot give high-

resolution ion distributions. Here we develop a new model (“MCTBI” model) that can treat 

medium to large RNA structures with high resolution ion distributions. In this paper, we test 

the validity of the model through extensive theory-experiment comparisons. Furthermore, 

we demonstrate that the MCTBI model, unlike the previous models, can predict the most 

probable and the average ion distributions with high resolutions. This model may sever as a 

solid step toward ultimate goal of accurate prediction for ion-dependent structure and 

stability for large RNAs.
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2 Model development

2.1 TBI model

For a given structure of RNA, we run the NLPB calculation to estimate the ion concentration 

around the RNA. According to the ion concentration, we compute the ion correlation 

strength and classify the space into two regions occupied with two types of ions respectively: 

(a) ions of strong correlation are called the tightly bound (TB) ions and the corresponding 

spatial region is called the TB region, (b) ions of weak correlation are called diffusely bound 

(DB) ions and the corresponding region is called the DB region.59 For the DB ions, we apply 

the NLPB. For the TB ions, we consider correlation and fluctuation through explicit 

enumeration of the many-body ion distributions. We divide the TB region into cells (TB 

cells), each around a phosphate, and define a TB ion distribution in terms of the number of 

ions in each TB cell.

Motivated by the need to overcome the two aforementioned severe limitations of the TBI 

model, here we develop a new, computationally efficient model. As illustrated below, the 

new model, Monte Carlo Tightly Bound Ion model (MCTBI), is based on coordinate-based 

ion distribution and Monte Carlos (MC) sampling for the TB ion distributions. With 

significantly higher computational efficiency, the MCTBI model can predict the three-

dimensional ion distributions and provide ion binding properties. The MCTBI model allows 

us to treat ion correlation and fluctuation effects for medium to large RNA structures.

2.2 The MCTBI model

The MCTBI model is based on all-atom RNA structures that are either constructed from the 

X3DNA66 or from the Protein Data Bank.67 As a coarse-grained charge model, each 

phosphate is assumed to carry an electronic charge −e and other atoms are assumed to be 

neutral. The RNA is located in a large solution box, whose size is larger than six times of the 

Debye length in order to reduce the boundary effect.59 The mixed salt solution in the box 

can contain divalent cationsMg2+, monovalent cations K+ (or Na+), and monovalent anions 

Cl−. Their bulk concentrations , and  satisfy the charge neutrality condition: 

. Ions are considered as fully hydrated in our study. The (hydrated) ionic radii 

are rMg2+ = 4.5Å, rK+ = 4.0Å, rNa+ = 3.5Å, and rCl− = 4.0Å, respectively.62, 63

To determine the tightly bound region, we first run the NLPB calculation with the three-step 

focusing process68, with respective grid sizes 1.7Å, 0.85Å, and 0.425Å. The NLPB solution 

provides a rough estimation for the spatial distribution of the ion concentration and ion 

correlation strength.59 The demarcation between the TB region and DB region is established 

according to the correlation strength. The details of how to separated the two regions have 

been reported in previous studies.59, 60 In general, a high (bulk) ion concentration leads to a 

large TB region. Moreover, multivalent ions involve have stronger Coulomb interactions 

thus have higher tendency to form strong correlation. In contrast, monovalent ions usually 

have negligible correlation. Therefore, we treat monovalent ions as diffuse ions and 

according to the correlation strength, classify multivalent ions such asMg2+ ions into TB 

ions (in the TB region) and DB ions (in the DB region). In general, the TB region is a thin 
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layer of width from zero to a few Angstroms, depending on ion concentration and RNA 

structure.

For an RNA with N phosphates, we assume that Nb, the number of Mg2+ ions in the TB 

region, varies from 0 to N. An increasing Nb and the stronger charge neutralization of RNA 

would cause a weaker ion binding around RNA and a weaker ion correlation. As a result, the 

actual TB region would be smaller than the one originally determined without considering 

the TB ions (Nb = 0). We use a fixed TB region in order to enhance the computational 

efficiency. Because unlike the DB ions, the TB ions are treated more accurately with the full 

considerations of the discrete distributions and the related correlation and fluctuation, a 

larger TB region may provide a more reliable description for the ions than a smaller one. 

Therefore, our use of the fixed TB region may be valid. Furthermore, our previous tests have 

shown that the predicted results are not very sensitive to small variations of the TB 

boundary.54, 59–65 As a result, the partition function of the whole system can be calculated as 

the sum over all the possible Nb’s:

(1)

where Nd = N2+ − Nb is the number of the divalent ions in the DB region with N2+ as the 

total number of the divalent ions in the system. Since the system is divided into two regions, 

the partition function for a given set of Nb and Nd can be approximately given by

(2)

where Zb and Zd are the partition functions of the TB ions and of the DB ions, respectively. 

In our calculation, we first compute the TB ion partition function Zb(Nb) for the different 

numbers of TB ions (Nb). For each Nb, we also calculate the DB ion partition function 

Zd(Nd).

For the (correlation-free) DB ions, the partition function can be calculated as an ideal gas in 

a mean field:

(3)

Here Vd is volume of DB region. N1+ and N− are the number of monovalent cations and 

anions, kB is the Boltzmann constant and T is the temperature. The factorial terms represent 

that the ions are identical particles. λ2+, λ1+, and λ− are the thermal wavelengths of the 

corresponding ions. The free energy ΔGd of the DB ions is the sum of the entropic free 

energy of the diffuse ions,59 the electrostatic energy, including the (average) electrostatics 
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interaction energy between TB ions and DB ions. ΔGd can be calculated from the effective 

single-particle ion distribution solved from NLPB:69, 70

(4)

Here α denotes the ion species. zαe is the charge of ion species α, ψ(r) and ψ′(r) are the 

electric potentials at position r with and without the DB ions in the solution, and cα(r) and 

represent the local (at r) and bulk concentrations, respectively. In this paper, we use kBT as 

the unit of energy.

We note that ψ(r) − ψ′(r) effectively gives the electric potential due to the charged particles 

in the TB region. Therefore, the first integral in Eq. 4 is the free energy for the interaction 

between the DB ions and the charged particles in the TB region plus the enthalpic part of the 

free energy for the DB ions.70 The second integral gives the entropic part of free energy for 

the DB ions.

In the calculation, for each Nb (the number of the TB ions), we sample the TB ion 

distributions. Based on the interaction energy for the particles in the TB region, we compute 

the statistical weight, the mean free energy for the TB ions, and the Boltzmann-averaged 

mean TB ion distribution. We note that such a mean TB ion distribution is determined from 

the interactions inside the TB region only and does not include interactions with the DB 

ions.

The influence of the DB (TB) ions on the TB (DB) ions is treated with an approximation. 

Fore each given Nb, the above ψ(r), ψ′(r) and cα(r) for the DB ions in Eq. 4 are solved from 

NLPB based on the above mean TB ion distribution (instead of each single discrete TB ion 

distribution). Such an approximation has the advantage of enhancing the computationally 

efficiency of the model: For a given Nb, instead of solving NLPB for each of the (large 

number) discrete TB ion distributions, we only need to solve NLPB once for each mean TB 

ion distribution. The approximation may be valid because the TB ion distributions are 

dominated by the interactions with the charges in the TB regions instead of the DB ions. Our 

previous extensive theory-experiment tests further support the reliability of this 

approach.54, 59–65

For the TB ions, ion correlation requires the use of the many-body ion distribution instead of 

a single-particle distribution. The partition function Zb of a Nb-ion system is given by

(5)

and the statistical weight W(Nb) involves the configurational integral for all the Nb ions:
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(6)

Here we use Ri (i ∈ [1,Nb]) to represent the coordinates of the ion i in the TB region and 

ΔGb is the interaction energy between all the charged particles inside the TB region, 

including volume exclusion, Coulombic interaction and dielectric polarization energies. 

Here the charges inside the TB region include not only the TB ions but also the phosphates. 

In our calculation, the excluded volume effect is modeled by a Lennard-Jones (LJ) potential 

and the polarization energy is computed from the Generalized Born (GB) model:

(7)

The first term in the equation above is the Coulombic energy between the charges in the TB 

region. Zi(or j)e in the above equation is the charge of particle i(or j), εR (= 20 in our 

calculation) is the dielectric constant of RNA, and rij is the distance between particles i and j. 
The second term is the LJ potential with uo(= 0.35) as the LJ constant and σij as the 

equilibrium distance between particles i and j. Here we set σij as the addition of the radius of 

the two particles. The third term above is the mutual polarization energy induced by other 

charges, εW(= 78) is the dielectric constant of water and Bi(or j) is the Born radius for 

particle i(or j). The forth and fifth terms represent the self-polarization energies of 

phosphates (subscript P) and ions (subscript I).

Combining Eqs. 2, 3, and 5 together results in the following partition function for a given set 

of (Nb,Nd):

(8)

Here

(9)
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is the partition function of the ideal solution without the insertion of RNA. Since the number 

of the multivalent ions in the whole system is much larger than that in the TBI region (N2+ 

≫ Nb), we have , and Eq. (8) becomes

(10)

From the equations above, the key to the calculation of the partition function is to evaluate 

the statistical weight W(Nb) for a given Nb. In this paper, we develop a Monte Carlo-based 

method for W(Nb).

2.3 Lattice Model of the TB region

We use a simple cubic lattice with adaptive lattice size to configure ion distribution. For a 

low bulk concentration of the multivalent ions, we choose a grid (lattice) size lb = 0.425Å (= 

the final grid size in the aforementioned three-step focusing process for the NLPB 

calculation for the DB region). For a high ion bulk concentration, there are usually more ions 

bound in the TB region the sampling of the ion distributions could be time-consuming. To 

enhance the computational efficiency, we choose lb such that the number of lattice sites Ns 

inside the TB region is ≈ 100 × N. The TB ions are configured on the lattice sites such that 

each site can be occupied by at most one ion. As a result, there are  possible ways to 

partition Nb TB ions onto Ns sites. In other words, W(Nb) in Eqs. 5 and 6 involves 

different spatial configurations for the TB ions.

Following the Rosenbluth-Rosenbluth (RR) method,77 the statistical weight W(Nb)/Nb! for 

the Nb particles in a discrete space can be calculated through a process of adding particles 

one by one:

(11)

where the product  corresponds to the process of adding 1, 2, …, Nb ions.

Consider the step of inserting the i-th ion into the system of the pre-existing i−1 ions and N 
phosphate charges. The statistical weight of the i-th ion w(i) is given by

(12)

In the above equation, mi denotes the number of the available (vacant) sites for placing the 

ith ion, given the constraint that (i − 1) ions have already occupied their respective sites 
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through the preceding steps. The factor w(i)/i is the change in the statistical weight caused 

by the insertion of the ith ion. ΔUi(k) denotes the interaction energy between the newly 

inserted ith ion (at the grid site k) and the pre-existing (i − 1) ions and all the N phosphate 

charges. ΔUp is the energy (LJ potential, Coulombic energy, and the polarization energy) 

between the phosphate charges. Since ΔUp is independent of the ion distribution, we can 

separate it out from ΔUi(k).

Following Eq. 7, ΔUi(k) can be computed using the following formula

(13)

In a (hypothetical) ideal situation, if all the particles in the TB region are electrically neutral, 

then ΔUi(k) = ΔUp = 0 and Eq. 11 gives , the number of ways to 

configure Nb ions on the Ns lattice sites. Moreover, Eq. 12 shows , which 

represents the available volume for placing the i-th ion.

When a new ion is inserted, the interaction between the newly added ion and the pre-existing 

ions would perturb the distribution of the pre-existing ions. Such a backtrack effect is 

ignored in the original RR algorithm.77 To account for the backtrack effect, we need to 

adjust ion distributions on the fly as we insert ions.78

Different methods can be used to treat the backtrack effect. We may use the conventional 

Monte Carlo simulation to sample the low energy distributions. For example, we can use 

Metropolis algorithm to randomly select and move the ions. However, due to the ruggedness 

of the energy landscape, such a simple algorithm would be impractical due to its low 

efficiency. Here we develop a new sampling algorithm to treat the backtrack issue of the TB 

ion distributions.

2.4 An importance sampling method

We develop an “insertion-deletion” algorithm for the co-insertion sampling of the ion 

distribution, i.e., the ion distribution changes with the number of ions in the system. In this 

approach, we first insert N (the maximum allowed number of TB ions) ions one by one into 

the TB region, randomly place them in the TB region such that the low-energy sites have 

higher probabilities to be occupied. We then randomly remove the ions one by one such that 

ions at higher energy sites are more likely to be removed. As we remove 0, 1, 2, …,N − 3,N 
− 2,N − 1 ions one by one, we generate low-energy distributions for N,N − 1,N − 2, …, 3, 2, 
1-ion systems, respectively. Repeating the above random process multiple times leads to an 

ensemble of low energy distributions for the different number of ions. Because the ion 

distributions are generated from the subset of the full N-ion distributions, our insertion-
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deletion approach accounts for the full ion correlation, including the impact of the later 

inserted ions on the earlier inserted ions.

Our computation procedure involves the following steps:

1. Forward process: inserting ions. We perform Monte Carlo sampling to generate 

Mf samples of the N-ion distribution. Specifically, to insert the i-th ion, we 

enumerate all the available vacant sites k = 1, 2, 3, …mi. For each site k, we 

calculate the total interaction energy change ΔUi(k) (Eq. 13) if the i-th ion is 

placed at site k. The probability of placing the i-th at site k is

(14)

To sample the ion positions with the above probability, we divide the interval [0, 

1] into mi segments, each of length pf (i, k) for k = 1, 2, …,mi: Σk pf (i, k) = 1. 

We then generate a random number r ∈ [0, 1] to select the site k (if r falls in the 

k-th segment). This way, sites of lower interaction energy ΔUi(k) would have 

higher probability to be visited.

2. Backward process: removing ions. For each N-ion distribution generated in the 

above forward process, we produce an ensemble of Mb sequences for the ions, 

where each sequence represents the order of ions to be removed from the N-ion 

distribution. Specifically, to guide the sampling toward the low-energy 

distributions, we use the following probability function for removing an ion j at 

position k:

(15)

where ΔUj(k) is the total interaction energy between ion j and all the phosphate 

charges and the remaining ions. The sum is effectively the “partition function” 

over the ensemble of the ion removal sequences. According to the above 

probability function, Ions with higher energy ΔUj(k) would have higher 

probability to be removed.

3. Updating ion distribution. For a system of s ions (s = 1, 2, …,N), the above 

procedure provides an ensemble of low-energy distributions as given by the 

coordinates of the last removed s ions. These ion distributions serve as the 

updated s-ion distributions in the insertion-deletion process.

4. Computing . For each generated N-ion distribution in the forward process, 

we compute the average weight  for w(i) in Eq. 12. Here the averaging is 

over the ensemble of the updated (i − 1)-ion distributions. Eq. 11 gives the 

statistical weight W(Nb).
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5. Computing . Averaging the W(Nb) over the Mf samples of the N-ion 

distribution gives the mean statistical weight  of the Nb bound ion system.

To examine the robustness of the above sampling algorithm, we test the different Mb’s for 

different RNAs. The results shown in Figs. 1a–d and Figs. S1–S7, suggest that (a) Mb = N 

may be sufficient for stable  results and (b) Mf = Ns (the number of the lattice sites for 

the TB ions) gives the optimal balance between efficiency and the robustness.

It should be noted that although our “insertion-deletion” algorithm and the MC method used 

in Ref. 55 both have two MC steps to sample the ion distributions, however, the main ideas 

about the backtrack algorithm are quite different. While the current model uses the 

“deletion” algorithm to enhance the sampling of the low-energy ion distributions, the MC 

method in Ref. 55 employs a neighbor cyclic permutation method.

To examine the importance of the deletion part in the model. we calculate the correlation 

C(Nb) between the statistical weights before and after the deletion procedure:

(16)

where Wi(Nb) and  denote the statistical weights (Eq. 11) in the i-th Monte Carlo 

sample for the Nb-TB ion distribution before and after the deletion, respectively. A small 

C(Nb) indicates a large change in the statistical weight caused by the deletion step, therefore, 

removing the deletion step could result in the loss of important TB ion distributions. As 

shown in Fig. 1E and Figs. S1E–S7E, the correlation function decays exponentially with a 

characteristic  for correlation:

(17)

Physically, the electrostatic interaction energy and the statistical weigh W(Nb) for a system 

of larger number of TB ions (larger Nb) are more sensitive to the change of ion distribution, 

resulting in a weaker correlation. Tests for the different RNA structures (Figs. S1E–S7E) 

show that  is dependent on the RNA structure and less sensitive to the ion 

concentration.

To investigate the probability distribution of the number of the TB ions (Nb), we calculate 

the free energy ΔG(Nb)[= −kBT ln(Z(Nb,Nd)] for the different Nb’s; See Figs. 1F and S1F–

S7F (with error bars to indicate the fluctuations from the different Monte Carlo samples of 

the ion distribution). At low [Mg2+], the most probable TB ion number  (minimum 

ΔG(Nb)) is small, while at high [Mg2+],  shifts to the larger number Nb end, meaning that 

more Mg2+ ions are bound tightly to the RNA surface. Furthermore, the figures show that 

the most probable TB ion number  is much larger than  for high [Mg2+]. The result 
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provides further support for the necessity to include the deletion step for sampling the TB 

ion distribution.

3 RESULTS AND DISCUSSION

To test the MCTBI model and investigate the ion binding properties for RNA, we apply the 

MCTBI model to a variety of RNA structures in different ionic concentrations. Theory-

experiment comparisons provide effective tests for the model. Moreover, the model can 

predict several important properties of ion-RNA interactions. First, the model gives the 

fraction of the excess bound ions fα per nucleotide for ion species α:

(18)

where the partition functions Z(Nb,Nd) and Z in Eq. 18 are determined from Eqs. 1 and 10, 

respectively, and Γα(Nb) is the number of excess ions, including the TB ions and the excess 

DB ions:

(19)

Second, the MCTBI model can predict the electrostatic free energy ΔG = −kBT ln(Z) and the 

three-dimensional spatial distribution of the TB ions. The probability of finding a TB ion at 

position (grid point) k is given by

(20)

Here n(Nb, k) is the number of Nb-ion distributions (out of the totally MfMb sampled 

distributions) with site k occupied by a TB ion.

3.1 Comparisons with the previous models

To test the efficiency and accuracy of the MCTBI, we first use a simple RNA duplex of 

length N = 40 to 240 in a Mg2+ solution as a test system. As shown in Fig. 2, the 

computational time depends not only on the RNA sequence length N but also on the ion 

concentration [Mg2+]. Lower ion concentration causes a smaller TB region and a smaller 

sampling space, therefore, requires a shorter computer time. Comparisons with the original 

TBI show that the MCTBI model is computationally much more efficient then the existing 

TBI model. The improvement in computational efficiency is more pronounced for high 

[Mg2+] and larger RNAs, where MCTBI model is over 10 times more efficient than the 

existing TBI model (Fig. 2).

Sun and Chen Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, we show the results of the binding fraction fMg2+ as a function of [Mg2+] for 

the different RNA structures (See Fig. 3). We find that the MCTBI predictions agree with the 

experimental data and MCTBI gives overall more accurate predictions than the original TBI. 

As [Mg2+] increases, the entropic cost for ion binding is reduced, causing more Mg2+ ions 

binding to RNA. Moreover, an increased Mg2+ ion binding would cause reduction in 

monovalent ion binding, so fNa+(or K+) decreases with increasing [Mg2+]. From the 

comparisons between the predictions from the MCTBI model and the original TBI model as 

shown in Figs. 2 and 3, we find that the MCTBI in general can provide more efficient and 

more accurate predictions for the ion-RNA binding properties.

As shown in Fig. 4A, a higher concentration of Mg2+ ions can help lowering the electrostatic 

free energy of the system. Moreover, for a mixture solution of monovalent and divalent ions, 

the overall ion binding shows a competition between monovalent and divalent ions. From the 

plots for the rRNA fragment system at [K+] = 20mM (line with empty triangles) and [K+] = 

60mM (line with filled diamonds), we find that in a a dilute [Mg2+] solution, the 

electrostatic free energy ΔG is dominated by the monovalent ions and is higher for 20 mM 

[K+] than 60 mM [K+]. For higher [Mg2+] (> 5 mM), the behavior of ΔG is dominated by 

the Mg2+ ions instead of the K+. As a result, 20 mM [K+] and 60 mM [K+] give nearly the 

same value for the electrostatic free energy ΔG for the same [Mg2+].

The MCTBI model can also predict the net bound charge (including the anion charges) per 

nucleotide ftot (see Fig. 4b):

(21)

Although fNa+(or K+) decreases with the increase of [Mg2+], the net effect of the increases in 

fMg2+ and fCl− (see the inset of Fig. 4b) results in the increase in net charge ftot. Since each 

phosphate group carries −e charge, an ion-dressed RNA at a dilute [Mg2+] (< 1 mM) shows 

a weak negative charge. At high [Mg2+], the sign of RNA net charge could be reversed (from 

negative to positive). In addition, in Figs. 3C & D, we find that a higher concentration of 

monovalent ion can enhance [K+] ion binding to rRNA and dampen [Mg2+] binding. 

Because the gain in [K+] ion binding makes up the loss of [Mg2+] ion binding, a higher 

concentration of monovalent ion results in a lower net bound charge ftot.

3.2 Ion-RNA binding properties for Adenine riboswitch

Riboswitches regulate gene expressions for bacteria metabolism. Because of their ion-

sensitive structures, riboswitches are excellent systems to study the ion-RNA interactions. 

Due to the large size of RNA, previous TBI model was unable to treat riboswitches due to 

the exceedingly long computational time. The significantly improved computational 

efficiency for the MCTBI model now allows us to treat riboswitches. Here we focus on the 

72-nt Adenine riboswitch (A-riboswitch; PDB ID: 1Y2685) with an Adenine ligand To 

investigate the ion binding properties. Based on the same solution conditions as the one used 

in the experiment ([K+] = 50mM),86 the MCTBI predictions for the Mg2+ ion binding 

fraction fMg2+ are in good agreement with the experimental data86 (see Fig. 5a). The model 

also predicts the decrease in fK+ with the increase of [Mg2+], i.e., the competition between 
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the monovalent and divalent ions. Furthermore, as shown in Fig. 5b, the MCTBI model can 

predict the electrostatic free energy for the A-riboswitch RNA for a given [Mg2+]. The 

results suggest that a higher [Mg2+] can help lower the free energy of the ion-riboswitch 

system.

MCTBI can also predict the probability for the ion distributions. Fig. 6 shows the predicted 

TB Mg2+ ion distribution at [Mg2+] = 2mM and [K+] = 50mM. The result shows two 

important features of the ion distribution. First, toward the outer boundary of the TBI region, 

the TB ion concentration decreases and approaches the DB ion concentration. The result is 

consistent with the classification scheme for the TB and DB regions. Second, the MCTBI 

model predicts several highly probable ion binding locations. For example, Fig. 6b shows a 

high-probability ion-binding bulge region around the experimentally observed bound Mg2+ 

ions labeled as 1 and 2 in the figure. The result supports the notion that there exist discrete 

“high-probability” locations for ion binding. Ions bound at these locations may become site-

specific bound ions observed in the structure determination experiment. In addition to the 

above sites, the model also predicts high probability regions near the ions labeled 3, 4 and 5 

in the figure, respectively.

3.3 Ion binding properties for RNA-protein complexes

Protein binding is known to influence the ion distribution around RNA and the ion-mediated 

electrostatic interactions. 87 Given the significantly enhanced computational efficiency and 

the ability to predict the spatial distributions for ions around RNA, the MCTBI model 

enables detailed analysis and predictions for the ion effects in RNA-protein complex 

formation. To test the model and to investigate the ion binding mechanism for RNA-protein 

complexes, we apply the MCTBI to an experimentally studied 58-nt fragment of rRNA 

bound with the Bst-L11C protein (PDB ID: 1HC881). Fig. 7 shows the MCTBI-predicted ion 

binding properties for the complex, such as the fractional numbers fMg2+ and fK+ for bound 

Mg2+ and K+ ions, respectively, the electrostatic free energy ΔG, and the fractional net 

charge ftot. The comparison for fMg2+ between the theoretical predictions and the 

experimental data87 (see Fig. 7a) supports the validity of the MCTBI model.

Next we use the MCTBI model to compute the ion distributions, specifically, the TB Mg2+ 

ion distribution in 60 mM K+ and 2 mM Mg2+. In contrast to the unbound form of RNA 

(and protein), the RNA-protein complex has a large region in the TB region occupied by the 

protein (see Fig. 8a). The TB ions are cannot exist in this open region. As shown in Fig. 8a, 

similar to the the riboswitch system shown in Fig. 6, the probability of finding TB Mg2+ ions 

near the boundary of the TB region is low, suggesting that ions near the boundary of the TB 

region approach a weakly correlated DB ion-like state.

Furthermore, from the “zoom-in” view shown in Fig. 8b, the MCTBI predicts discrete 

highly probable positions for bound ions. Some highly probable positions are consistent with 

the experimentally observed ion binding sites (see ions labeled 1 – 6). Since the current 

MCTBI model does not treat ion dehydration and chelation effects, the model cannot predict 

the site-specific bound ions that involve significant dehydration and chelation.
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An intriguing experimental finding about the ion binding properties is that at dilute [Mg2+], 

more Mg2+ ions are bound to the rRNA-protein complex than to the rRNA alone, while at 

high [Mg2+], the situation is reversed.87 To quantitatively understand this phenomena, as 

shown in Fig. S8 in the Supplementary Information, we divide the whole space into three 

parts: the protein region, which is occupied by the protein in the RNA-protein complex and 

is empty for the unbounded RNA, and the remaining DB and TB regions, which are the DB 

and TB regions minus the protein region, respectively. We calculate the number of excess 

bounded Mg2+ ions Γp, Γrtb, and Γrdb in the protein, the remaining TB region, and the 

remaining DB region, respectively:

(22)

Here k, r, r′ and k′ denote the coordinates (grid sites) in the remaining TB region, the 

remaining DB region, and the protein in the DB and the TB regions, respectively. p(k) (Eq. 

20) is the probability of finding a TB ion at position k. Γp, Γrtb, and Γrdb satisfy the 

following relationship:

(23)

where Γtot is the total number of excess ions and N is the number of nucleotides (sequence 

length). From the MCTBI-predicted results for RNA-protein complex and RNA alone with 

[Mg2+] = 10μM and 2 mM (see Table 1), respectively, we find the following two competing 

effects. Compared to the unbound RNA, the presence of the protein in the protein-RNA 

complex would exclude ion presence in the protein region (Γp = 0). On the other hand, the 

presence of protein, which has a lower dielectric constant than bulk water, would result in an 

enhanced ion-RNA attraction. The former and later effects tend to cause an increase and 

decrease in Γtot, respectively. In the case of dilute [Mg2+], the TB region is so thin that the 

exclusion effect of protein on TB ions is negligible, as a result, the protein-RNA complex 

has a larger Γtot than the unbound RNA. However, at high [Mg2+], the volume exclusion 

from the protein becomes important, thus the protein-RNA complex has a smaller Γtot than 

an unbound RNA.

4 CONCLUSION

By taking into account the correlation and fluctuation effects, the TBI model provides a 

method for reliable prediction of the ion effects in nucleic acid systems. However, the 

applicability of the method has been limited by the low computational efficiency due to the 

sampling of the discrete correlated ion distributions and the inability to treat the three-

dimensional spatial coordinates of the bound ions. In the present study, using a new Monte 

Carlo-based sampling method for ion distributions, we develop the MCTBI model to 

overcome these limitations. The key ingredient of the method is to use an “insertion and 
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deletion” algorithm to enhance the efficiency for sampling the important (low-energy) states 

of the ions while accounting for ion correlation. In the MCTBI model, we use a simple cubic 

lattice to configure the tightly bound (strongly correlated) ions. We then compute the 

partition function for the bound ions through the “insertion-deletion” procedure. From the 

free energy-ion distribution relationship, we predict the average and the most probable 

distributions (binding sites) for the bound ions and the electrostatic free energies of the 

system for the different solution conditions.

Applications of the MCTBI model to various systems, including RNAs, RNA-ligand 

complexes, and RNA-protein complexes, indicate that the MCTBI model is computationally 

much more efficient that previous TBI models. Comparisons with the experimental results 

for ion binding properties show the reliability of the model. Furthermore, the MCTBI-

predicted ion distribution and binding sites, number of bound ions, and electrostatic free 

energies for protein-RNA and ligand-RNA complexes provide useful insights into the ion 

effects in protein/ligand-RNA association, such as the mechanism for the changes of ion 

binding properties and ion-mediated stabilities upon protein/ligand-RNA association. For 

example, compared to the unbound RNA, the RNA-protein complex can have more (less) 

bound ions for low (high) [Mg2+]. However, as a caveat, we note that the current MCTBI 

model does not treat ion dehydration and chelation effects. Future development of the model 

should consider these effects. In addition, the current applications of the model has been 

focused on the ion effects for a given RNA structure. Further development should consider 

the ensemble of RNA conformations. This goal would demand a more dramatic 

improvement in the computational efficiency of the MCTBI model.
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Figure 1. 
Test results for the robustness of the Monte Carlo sampling in the “insertion-deletion” 

algorithm using a 60- nt RNA helix as the test case. (A) i = N/6, (B) i = N/2, and (C) i = 

5N/6 show the results for the deletion process. For each of the three different sets (red, 

black, and green) for the N-ion (N = 60 here) distribution (generated through the insertion 

process), we run Mb Monte Carlo samples for the deletion process to generate an ensemble 

of the distributions for the i − 1 ions. Based on the distribution of the i − 1 ions, the 

statistical weight w(i) for the i-th ion is computed. (D) and the inset in (D) show the results 

for the Monte Carlo sampling in the insertion process. Here we show the results for Nb = 

N/6 (inset), Nb = N/2 (black line), and Nb = 5N/6 (red line). (E) Correlation (C(Nb)) between 

the statistical weights before and after the deletion step. The characteristic correlation-

specific TB ion number  is found to be 3 for this system. (F) The free energy ΔG(Nb) 

as a function of Nb. The error bar shows the fluctuation for the different Monte Carlo 

samples of the TB ion distribution.
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Figure 2. 
The computer time as a function of the RNA length N for the MCTBI and the previous TBI 

models64 for various [Mg2+]’s with 20 mM Na+ background. The time is for the 

computation for the binding fractions, electrostatical free energy, and TB ion spatical 

distribution. The calculations are performed on a PC with Intel i7- 4790 processor and 16GB 

RAM.

Sun and Chen Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The [Mg2+]-dependence of the Mg2+ and Na+ (or K+) binding fractions per nucleotide for 

four different test systems: 80-nt RNA duplex (A-form helix) with 10mM Na+, 76-nt yeast 

tRNAPhe (PDB ID: 1TRA79) with 32 mM Na+, and 58-nt fragment of rRNA (PDB ID: 

1HC881) with 20 and 60 mM K+, respectively. The experimental data are from the 

References 82–84, respectively.

Sun and Chen Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a) The electrostatic free energies ΔG and (b) the total charge neutralization ftot as functions 

of [Mg2+] for the 80-nt RNA duplex with 10 mM Na+, 76-nt yeast tRNAPhe with 32mM 

Na+, and 58-nt fragment of rRNA with 20 mM and 60 mM K+, respectively. The inset of (b) 

shows the binding fraction of Cl− ions.
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Figure 5. 
Ion binding properties for Adenine riboswitch. (a) The binding fractions of Mg2+ and K+ 

ions per nucleotide, respectively, and (b) the electrostatic free energy as a function of [Mg2+] 

with fixed [K+] = 50mM. The inset of (b) shows the fraction of the total charge as a function 

of [Mg2+].
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Figure 6. 
Predicted TB Mg2+ ion distribution in a solution with 2 mM Mg2+ and 50 mM K+. (a) and 

(b) show the “zoom-out” and “zoom-in” views of the Mg2+ ion distribution in the TB region, 

respectively. The labeled spheres are the bound Mg2+ ions shown in the PDB structure (A-

riboswitch, PDB ID: 1Y26, yellow color in the figure).
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Figure 7. 
The behavior of (a) the binding fractions of Mg2+ and K+ ions per nucleotide and (b) the 

electrostatic free energy as a function of [Mg2+] with fixed [K+] = 60mM. The inset of (b) 

shows the fraction of the total charge as a function of [Mg2+]. As an approximation, we use 

the same dielectric constant for the protein εp and the RNA (εp = εR = 20).
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Figure 8. 
Predicted TB Mg2+ ion distribution in a solution with 2 mM Mg2+ and 60 mM K+. (a) and 

(b) show the “zoom-out” and “zoom-in” views of the Mg2+ ion distribution in the TB region, 

respectively. The green spheres are the bound Mg2+ ions shown in the PDB structure (PDB 

ID: 1HC8) of the RNA (yellow)-protein (magenta). The color code is the same as in Fig. 6.
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Table 1

The number of excess (bound) ions in the protein region, the remaining TB region, the remaining DB region, 

and the whole space in a solution with dilute [Mg2+] and high [Mg2+].

RNA type Γp Γrtb Γrdb Γtot

[Mg2+] = 10μM

Unbound RNA 0.02 1.12 0.09 1.23

RNA complex 0.00 1.26 0.09 1.35

[Mg2+] = 2mM

Unbound RNA 3.51 15.24 1.51 19.85

RNA complex 0.00 16.82 1.54 18.36
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