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Gene knockout of Zmym3 in mice arrests
spermatogenesis at meiotic metaphase with defects in
spindle assembly checkpoint

Xiangjing Hu1,2,5, Bin Shen3,5, Shangying Liao1,5, Yan Ning1,2, Longfei Ma1,2, Jian Chen1,3, Xiwen Lin1, Daoqin Zhang1,2, Zhen Li1,2,
Chunwei Zheng1,2, Yanmin Feng1,3, Xingxu Huang*,4 and Chunsheng Han*,1

ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor
complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in
somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system
resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI).
ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or
H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that
are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of
meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during
mouse spermatogenesis by regulating the expression of diverse families of genes.
Cell Death and Disease (2017) 8, e2910; doi:10.1038/cddis.2017.228; published online 29 June 2017

Mammalian spermatogenesis is a unique cellular develop-
mental process that is intricately regulated by extrinsic and
intrinsic factors. Spermatogonial stem cells (SSCs) at the very
beginning of spermatogenesis have to make decisions either
to undergo self-renewal or to initiate differentiation, which
eventually leads to meiosis and sperm production. The
mechanism by which such a decision is made remains poorly
understood despite that several key factors have been
identified. For example, glial cell-derived neurotrophic factor
(GDNF) promotes SSC self-renewal and inhibits their differ-
entiation, whereas retinoic acid (RA) acts in an opposite
manner.1,2 The lengthy differentiation of spermatogonia,
tightly coupled with active mitotic divisions, results in drastic
amplification of spermatogenic population and an orderly
gene expression change that is essential for meiosis aswell as
post-meiotic development. Abnormal gene expression during
spermatogonial differentiation leads to either a spermatogenic
arrest at a pre-meiotic stage or a precocious entry of
meiosis.3,4

Oatley et al.5 identified GDNF-regulated genes using
microarray analysis on cultured mouse SSCs and showed
that several such genes were essential for SSC self-renewal.
Among their down-regulated gene list, we identified a gene
named Zmym3. An early study reported that Zmym3 mRNA
was most abundant in adult testis and brain among eight
examined organs and was alternatively spliced in a develop-
ment- and tissue-specific manner and that protein sequences
of Zmym3 are evolutionarily conserved from the arthropods to

humans with several highly conserved protein motifs.6

ZMYM3 and one of its paralog ZMYM2 each contain nine
similar zinc fingers. In humans, chromosome translocations
near these two genes have been linked to myeloproliferative
syndromes and X-linked mental retardation, respectively.7,8

Therefore, the zinc fingers in these two proteins are named
MYM (myeloproliferative and mental retardation)-type zinc
fingers. Based on the current NCBI HomoloGene database,
the human and mouse genomes encode six MYM-type ZFPs,
which are ZMYM1, ZMYM2, ZMYM3, ZMYM4, ZMYM5, and
ZMYM6. The other motifs of ZMYM3, which are potentially
important for its function, include nuclear localization signal,
SH3-binding motif and tyrosine phosphorylation sites, sug-
gesting that the function of this protein is highly regulated.
Interestingly, both ZMYM3 and ZMYM2 were identified in a

LSD1-containing complex isolated from Hela cells.9 LSD1 is
the first identified histone demethylase,10 and has since been
shown to have essential roles in many biological processes.11

Specific deletion of Lsd1 in mouse oocytes results in female
infertility due to precocious meiotic resumption, spindle and
chromosomal abnormalities, and disrupted gene expression
during oogenesis.12 Similarly, conditional deletion of Lsd1 in
mouse spermatogonia leads to male infertility as a result of
abnormal histone modification and gene expression in
spermatogonia followed by a complete loss of germ cells in
adult males.13 The function of ZMYM proteins has not been
well understood except for that ZMYM2 is known to stabilize
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the LSD1–CoREST–HDAC1 transcriptional co-repressor
complex on chromatin through its MYM-type zinc fingers.14

In this study, we report that mouse Zmym3 in cultured SSCs
is regulated by GDNFand RA in opposite ways and expresses
two major protein isoforms. During spermatogenesis, ZMYM3
is present in germ cells until pachytene spermatocytes
(pacSC). Zmym3 gene KO in mice by using the CRISPR-
Cas9 system results in infertility in adult male mice.
Spermatogenesis of the KO mice exhibits a major arrest at
themetaphase ofmeiosis I (MI). The longer protein isoform but
not the short one interacts with LSD1. However, the Zmym3
gene KO has no effect on the LSD1 protein level and on total
abundances of H3K4me1/2 or H3K9me2. The spindle body
formation is normal but more apoptotic and BUB3+MI cells are
observed in KO mice. RNA sequencing analysis of cultured
SSCs and isolated spermatocytes shows that many genes are
expressed aberrantly. These results shows that ZMYM3, a
highly conserved ZMYM-type LSD1 interacting protein, has an
essential role in spermatogenesis in an organ-specific
manner.

Results

Zmym3 is down-regulated by GDNF, up-regulated by RA,
and expressed in germ cells until pacSC. Based on a
microarray data set reported by Oatley et al.,5 we found that
Zmym3 mRNAs were down-regulated by GDNF, which was
consistently supported by results from three different probe
sets on the microarray. Taking advantage of their experiment
design, we confirmed this observation by using our own
cultured SSCs and quantitative RT-PCR (qRT-PCR) assays
(Figure 1a). The presence of ZMYM3 protein in cultured
SSCs was detected by immunostaining using a commercially
available polyclonal antibody (Figure 1b, Supplementary
Figure S1 and S2a). The identity of the ZMYM3+ SSCs was
confirmed by the expression of GDNF receptor subunit
GFRα1 (Figure 1b). Interestingly, we noticed that the signals
of ZMYM3 and GFRα1 were negatively correlated. As GFRα1
expression is higher in actual stem cells than in potential
stem cells that have undergone slight differentiation,15 we
suspected that the expression of Zmym3 might also be
regulated by RA. Indeed, Zmym3 expression was up-
regulated by RA at both the mRNA and protein levels in a
time-dependent manner (Figure 1c–e).
On Western blots, we saw two ZMYM3 bands (~200 and

95 kDa), which represent isoforms probably translated from
alternatively spliced mRNAs as many verified and predicted
alternatively spliced mRNAs were reported by a previous
study and the NCBI Gene database.6 Because the sizes of
both bands on Western blots are larger than the predicted
masses of the corresponding isoforms (Supplementary
Figure S2b), they are most likely post-translationally modified.
We further examined the subcellular localization of the two
isoforms using cytoplasmic and nuclear extracts from SSCs
and found that the larger form was predominantly localized to
the nucleus, whereas the smaller one was detected in both the
cytoplasm and the nucleus (Figure 1f).
We next investigated Zmym3mRNA and protein expression

in testicular cells and other organs of adult mice. All results of

RNA sequencing (RNA-seq),16 qRT-PCR and Western
blotting showed that ZMYM3 was ubiquitously expressed in
multiple organs, and was the most abundant in gonads and
brain (Supplementary Figure S2c–g). In the testis, ZMYM3
was expressed in both germ cells and somatic cells such as
Sertoli cells and interstitial cells, and among germ cells,
ZMYM3 was expressed in spermatogonia and early sperma-
tocytes such as preleptotene, leptotene, and zygotene
spermatocytes (plpSC, lepSC, and zygSC) but not in late
spermatocytes such as pacSC or spermatids (Figure 1g),
consistent with the RNA-seq17 and qRT-PCR results
(Supplementary Figure S2c–d). Whole-mount co-
immunostaining of ZMYM3 with GFRα1, PLZF (markers for
undifferentiated spermatogonia), and c-KIT (a marker for
differentiating spermatogonia and plpSC) on the seminiferous
tubules showed that ZMYM3 was expressed in all stage
spermatogonia with a higher level in c-KIT+ differentiating
spermatogonia and probably the plpSC (Figure 1h–j).

Zmym3 KO in mice results in adult male infertility and
arrests spermatogenesis at MI. We next generated Zmym3
KO mice by injecting into fertilized eggs Cas9 mRNAs and
two sgRNAs targeting the second exon of the gene
(Figure 2a). Four female founder mice were generated with
small deletions in the expected genomic region, resulting in
premature termination of translation owing to frame shifts
(Supplementary Figure S3a). We next identified the most
probable off-target sites for each gRNA by bioinformatic
predictions, and found no mutations on these sites by
sequencing. Adult KO males older than 6 months did not
show any apparent abnormal appearance or behavior and
mated with females normally as vaginal plugs were regularly
seen. However, the KO testes and epididymides were
significantly smaller than the WT ones (Figure 2c and d).
Western blotting and immunohistochemical results both
confirmed the complete KO of ZMYM3 in the KO testis
(Figure 2e and f). The KO males started to reduce their testis
sizes, sperm counts, and fertilities from 2 months after birth
(Supplementary Figure S3b). Interestingly, the smaller
number of spermatids produced in young animals differen-
tiated to spermatozoa normally, and showed no obvious
apoptosis during their postmeiotic development (Supple-
mentary Figure S3c). Moreover, spermatozoa produced from
the KO mice were also morphologically normal (Supple-
mentary Figure S3d). The KO mice became infertile when
tested at 6 months after birth (Figure 2g and h). A close look
at the PAS-stained testis sections of the KO mice showed that
their spermatogenesis was mainly arrested at MI (Figure 2i).
The numbers of round spermatids, elongating spermatids, as
well as sperms were all significantly reduced (Figure 2j,
Supplementary Figure S4).

Zmym3 KO mice undergo spermatogenesis normally
until MI. As ZMYM3 is also expressed in Sertoli cells, we
first examined the immunostaining of the Sertoli cell marker
Wilms Tumor 1 (WT1),18 but found no difference between WT
and KO mice in terms of its localization and the number of
WT1+ cells. Similarly, no difference was found for GFRα1,
PLZF, and c-KIT. These results indicate that the development
and probably the function of both somatic cells and
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pre-meiotic germ cells are not changed by Zmym3 KO
(Figure 3a–d). When meiosis is initiated in lepSC, these cells
undergo DNA double-strand breaks (DSBs) and chromoso-
mal synapsis, and the progression of these two processes
can be monitored by the immunostaining patterns of proteins
such as γH2AX, SYCP3, SYCP1, and CREST. In pacSC of
both WT and KO mice, the DSBs had all been repaired and
autosomes fully synapsed as shown by localization of γH2AX
signals to the partially synapsed sex chromosomes and by
the noodle-like bright smooth staining of SYCP3 and SYCP1
(Figure 3e–g, Supplementary Figure S5). Together, these
data suggest that the mitosis and meiosis phases before MI
in Zmym3 KO mice are normal.

Zmym3 KO does not change the in vitro proliferation and
meiosis initiation of SSCs. Several SSC lines developed
from the F2 KO mice and their WT littermates were
successfully established, indicating that Zmym3 KO might
not impair the in vitro proliferation of SSCs (Figure 4a). The
KO of Zmym3 in these cultured SSCs was confirmed by
Western blot (Figure 4b). The proliferation rate of these KO
cells was quantitatively compared with that of WT SSCs and
no significant difference was found (Figure 4c). We next
cultured WTand KO SSCs on Sertoli cells and induced them
by RA to initiate meiosis.19 Five days after RA treatment,
SYCP3+ cells were observed. The weakly and strongly
stained cells represented plpSC and lepSC/zygSC, and were
named W-cells and S-cells, respectively, for convenience
(Figure 4d). Again, no difference was observed for the
percentages of either W-cells or S-cells between KO and WT
SSCs (Figure 4e). Taken together, these results indicated that
neither the proliferation nor the meiosis initiation of cultured
SSCs was damaged by Zmym3 KO, and the in vitro results
were consistent with the in vivo observations.

Zmym3 KO has no effect on the protein levels of LSD1,
H3K4me1/2, and H3K9me2. A previous study showed that
LSD1 was expressed at a much higher level in mouse testis
than in other organs, such as brain, lung, liver, heart, and was
detected in all types of spermatogenic cells.20 Using whole-
mount immunostaining, we found that LSD1, similar to
ZMYM3, was more abundantly expressed in c-KIT+ cells
than in GFRα1+ cells (Figure 5a and b). LSD1 also exhibit a
similar expression pattern as ZMYM3 in cultured SSCs as
indicated by its co-immunostaining with GFRα1 (Figure 5c).
We showed that Lsd1 KO using an inducible Cas9-SSC line,
which was established in our lab recently,21 reduced the
proliferation of SSCs significantly (Figure 5d), consistent with
its essential role in spermatogenesis.13 Co-immunoprecipi-
tation assay showed that an LSD1 polyclonal antibody pulled
down both LSD1 and the larger but not the smaller form of
ZMYM3 (Figure 5e). Despite the interaction of ZMYM3 and
LSD1 in SSCs, we found that LSD1 was expressed in
cultured WT and KO SSCs at similar levels based on the
Western blot results (Figure 5f–g). Moreover, the global levels
of H3K4me1/2 and H3K9me2 were not changed by Zmym3
KO (Figure 5h–i). No apparent difference was also observed
for H3K4me2 and H3K9me2 immunostainings in pacSC
isolated from WT and KO mice (Figure 5j). These results
showed that ZMYM3 KO had no apparent effect on the global

levels of LSD1 and the examined histone modifications both
in vitro and in vivo.

Zmym3 KO causes MI arrest in a SAC-dependent
manner. For both mitosis and meiosis, cells use spindle
assembly checkpoint (SAC) to ensure the fidelity of chromo-
some segregation.22 Proteins involved in SAC include BUB1,
BUBR1, BUB3, and MAD2.23 As Zmym3 knockout (KO)
caused an accumulation of MI spermatocytes, we examined
whether any of these proteins was abnormally localized in
meiotic cells of the KO mice. Zmym3 KO did not affect spindle
assembly as revealed by the α-TUBULIN staining (Figure 6a).
However, the number of BUB3+ MI spermatocytes in Zmym3
KO mice was about two-fold more than that in WT mice
(Figure 6b and c). Moreover, TUNEL assays indicated that
significantly more MI spermatocytes in KO mice underwent
apoptosis than in WT mice (Figure 6d and e). These results
showed that Zmym3 might regulate metaphase–anaphase
transition through a SAC-dependent pathway.

Zmym3 KO disrupts mRNA expression of genes involved
in meiosis and post-meiotic development of germ cells.
To elucidate the molecular bases for the infertile phenotype of
Zmym3 KO mice at the mRNA expression level, we first
carried out RNA-seq analysis on cultured SSCs and c-KIT+

pre-meiotic cells induced from SSCs by RA treatment for both
WT and KO mice (Supplementary Table S1). To acquire
c-KIT+ cells, feeder-free SSC cultures were induced by
100 nM RA for 36 h and 90% of the cells became c-KIT+

(Figure 7a). We first found 1744 and 2581 genes to be either
up- or down-regulated by RA in WT SSCs (Figure 7b).
Interestingly, 467 novel RA-upregulated genes (set Rn-u in
Figure 7b) were identified after Zmym3 was knocked out, and
this gene set was found to be significantly enriched with zinc
finger family transcription factors (Table 1). Moreover, we
found that many genes involved in meiotic cell cycle and
spermatogenesis such as Sycp1, Sycp2, Mov10l1, Rnf17,
Stag1, and Smc were precociously expressed when Zmym3-
was knocked out (set Ru-n in Figure 7b, sets Ku-n, Ku-u, Kn-u in
Figure 7c). The up-regulation of some of these in KO SSCs
was confirmed with qRT-PCR using independent samples
(Figure 7f).
We found that smaller numbers of genes changed their

expression in response to Zmym3 KO in SSCs and c-KIT+

cells compared with RA-regulated genes. Some genes
involved in the proliferation regulation of SSCs and undiffer-
entiated spermatogonia such as Lin28,Sall4,Oct4,Cdh1, and
Gfrα1 were also in the KO-down set, and their expression
changes caused by Zmym3 KO were also confirmed by qRT-
PCR (Figure 7f). These observations suggest that Zmym3 KO
enhances the expression of genes involved in spermatogonia
differentiation and meiosis while suppresses genes that
maintain the undifferentiated states of spermatogonia.
We next conducted RNA-seq analysis on spermatocytes

directly isolated from mouse testes by sorting out tetraploid
cells, which were mainly SYCP3 and γH2AX double positive
(Figure 7d). We found 97 up-regulated and 73 down-regulated
genes in spermatocytes of both 5- and 7-months (Figure 7e).
We checked the expression of 24 genes involved in SAC but
found they were not dysregulated by Zmym3 (Supplementary
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Figure S6b). The down-regulated set was enriched with
several GO terms such as ‘spermatogenesis’, which included
genes such as Prm1, Prm2, Prm3, Klhl10, Odf1, Chd5, Sun5,
Ccdc63, Oaz3, Spata20, Galntl5, Atp1a4, Acsbg2, which
either have essential roles or are highly/specifically expressed
in spermatids, the expression of which were also confirmed by
qRT-PCR (Figure 7g). These results indicated that Zmym3 KO

disrupted the expression of some key genes involved in
postmeiotic development of spermatogenesis.

Discussion

We report in this study that Zmym3, a gene that initially came
to people’s attention for its potential roles in X-linked mental
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retardation and epigenetic regulation, has an essential role in
mouse spermatogenesis. Zmym3 KO mice have no other
apparent abnormalities including mating behavior despite that
the gene is highly expressed in the brain, but arrests

spermatogenesis at MI through a SAC-dependent pathway.
Therefore, we have identified an evolutionarily conserved
gene that has a specific role in promoting meiosis progression
during spermatogenesis. The female KO mice seemed to be
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fertile as they gave birth to mutant offspring, but this question
remains open until the fertility of homozygous female KOmice
is carefully evaluated in the future.
Given that ZMYM3 is expressed in both somatic cells and

germ cells, we are not sure whether ZMYM3 in somatic cells
has a role in spermatogenesis based on the results in the
present study. Despite that the function of Sertoli cells and the
androgen-producing Leydig cells both seem to be normal
based on the immunostaining of WT1 and the normal mating
behavior of the KO mice, that the KO mice do not loss their
fertility completely until 6 months after birth suggests that this
phenotype may also be related to the senescence of somatic
cells. This question can be addressed in the future by
transplanting WT SSCs into the testes of infertile KO
mice and checking whether spermatogenesis can be
re-established.

Given that ZMYM3 is expressed in all spermatogenic cells
before meiosis initiation, it is surprising that no apparent
defects are observed earlier than in MI spermatocytes. One
explanation is that subtle defects do occur in these cells but
cannot be easily detected, and they accumulate to a point of
no-return whereby spermatogenesis arrests at MI. This is
supported by the RNA-seq results, which show that many
genes express abnormally in cultured KO cells. Particularly,
some genes that are involved in meiotic processes such as
synapsis are up-regulated in KO SSCs, suggesting that the
KO spermatogonia might initiate meiosis precociously. Alter-
natively, these cells are indeed normal because the lost
function of ZMYM3 in KO germ cells is compensated by other
similar proteins. This explanation is supported by the
observation that quite a few zinc finger protein genes were
up-regulated by RA in germ cells only when Zmym3 is
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knocked out. It is more surprising that no recognizable genes
involved in meiosis are dysregulated in the KO spermatocytes.
Such a discrepancy between Zmym3 expression pattern and
the time point when its function was clearly revealed by gene
KO suggests the presence of a complex functional regulatory
pathway, which may consist of multi-step protein–protein
interactions. Indeed, we have identified many ZMYM3-
interacting partners including some transcription co-factors
and a protein involved in sumoylation using yeast-two-hybrid
methods (data not shown). The detection of up-regulated
expression of haploid genes in KO spermatocytes should be
cautioned. Despite that the isolation of spermatocytes was
carried out based on both their tetraploid feature and their
large size, minor contamination of secondary spermatocytes
is still possible. As the genes such as Prm1/2/3 are highly
expressed, its expression can be readily detected even if the
contamination is minor, and the difference in their expression
between WT and KO mice can also be detected as the KO
testes lack secondary spermatocytes.

ZMYM3 has been reported to be associated with epigenetic
modifying enzymes such as LSD1, HDAC1/2 by several
studies. Two isoforms of ZMYM3 are present in SSCs and the
larger form but not the short one co-immunoprecipitates with
LSD1. Interestingly, Zmym3 KO does not change the expres-
sion level of LSD1, H3K4me1/2, and H3K9me2. However,
this does not exclude the possibility that epigenetic modifica-
tions on certain genomic regions are disrupted but not
detected by Western blotting or immunocytochemical assays.
It is important to observe that Zmym3 KO results in MI
arrest related to SAC, which has been well studied in
oogenesis.24 MI-arrested spermatocytes triggered by SAC
were eliminated through apoptosis, a male-specific event.25 A
Y chromosome-located gene named Zfy2, which also
encodes a zinc finger protein, has been reported to be
essential and sufficient for removing the apoptotic MI-arrested
spermatocytes.26 Therefore, ZMYM3 might represent a novel
sex-specific player in this pathway if the female KO mice are
indeed fertile.
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A recent study showed that ZMYM3 inHEK293T cells had an
essential role in DNA damage repair through the homologous
recombination pathway by interacting with both histone and
DNA components of the nucleosome.27 Moreover, another
study reported that SACwas amajor gatekeeper preventing the
progression of oocytes harboring DNA damage.28 Based on
these studies, it is tempting to propose that ZYMY3 is also
involved in DSB repair during meiosis of spermatocytes, the
failure of which activates SAC and causes apoptotic elimination
of damaged cells. However, we were unable to acquire
evidences for this hypothesis. The originally observed immu-
nostaining signal in sex body was most likely nonspecific
because it was also detected in KO testes; the immunostaining
patterns of γH2AX in pacSC of bothWTand KO testeswere not
different and indicated DSBswere repaired normally. Despite of
these observations, we still cannot reject this hypothesis
confidently as subtle DNA damages may exist but escape from
detection owing to the low resolution of the methods used in the
present study. In the future, we will continue to test this
hypothesis by using more sensitive techniques to detect
regional epigenetic modifications as well as DNA damages.

Materials and Methods
Mice. All animal protocols were approved by the Animal Care and Use Committee
of the Model Animal Research Center, the host for the National Resource Center for
Mutant Mice in China, Nanjing University and the Animal Care and Use Committee

of the Institute of Zoology, Chinese Academy of Science. In vitro transcription of
Cas9 mRNAs from pST1374-Cas9-N-NLS-flag-linker and sgRNAs from pUC57-
sgRNA expression vectors was performed as described previously.29 The
sequences of sgRNA oligos are listed in Supplementary Table S2. Cas9 mRNA/
sgRNA injection to zygotes obtained by mating of CBA males with superovulated
C57BL/6J females was also performed as described previously.30 Female mice with
a frame shift and premature termination at an out-of-frame stop codon were chosen
as founder animals. Pregnancies were established when female Zmym3+/− mice
were mated to wild-type males.

Culture, differentiation, and gene KO of mouse SSCs. Mouse SSCs
were obtained from the testes of pup (5–7 dpp) or adult mice by following
procedures previously reported.31 The induction of c-KIT+ cells from SSCs were
conducted by following our protocol recently pulished.19 The KO of Lsd1 in SSCs
was performed using an inducible Cas9-SSC line (iCas9-SSC) established
recently.21 Sequences for sgRNAs targeting Lsd1 were included in Supplementary
Table S2.

RNA extraction, qRT-PCR, and RNA sequencing. The isolation of
spermatocytes was carried out by first sorting out tetraploid cells from total testicular
cells and then selecting spermatocytes based on their forward scatter and side
scatter features in FACS analysis (Supplementary Figure S6a). The purity of
spermatocytes was higher than 80% as shown by the immunostainings of SYCP3
and γH2AX. Total RNA from mouse testis cells and mSSCs was extracted using
Trizol (Invitrogen, Carlsbad, CA, USA) according to the standard protocol. After
reverse transcription of purified RNA performed using Reverse Transcription System
(G3250, Promega, USA) according to the manufacturer’s protocols, qPCRs were
conducted with UltraSYBR Mixture (CW0956, CoWin Biotech, Beijing, China) by
following the manufacturer’s instructions on a LightCycler 480 platform (Roche

Table 1 Differentially expressed genes in cultured Zmym3 WTand KO SSCs and isolated spermatocytes by RNA-Seq analysis

Subset Enriched GO terms Genes

Rn-u (qo0.01) Regulation of transcription, DNA-templated ZFP12, ZFP40, MAF1, ZKSCAN3, ZFP788, ZFP786, MAP3K7, EPC1,
MDFIC, RNF38, ZFP687, ZFP503, ZFAT, ZFP882, INSR, NFX1,
ZFP518A, ZFP422, ZFP423, SATB2, KHDRBS3, RBL2, ZFX, ZHX1,
ZFP629, ZFP128, ZFP592, ZFP827, ZFP120, ZFP280C, IGSF1, NCOA5,
PRDM5, ZFP697, MAPK8, ZFPM1, ZFP516, ZFP229, ZFP511, ZFP369,
ZSCAN12, MEAF6, ZFP715, ERBB4, ZFP612, ZFP398, ZFP318,
ZFP113, ZFP319, AI987944, ZFP768, ZFP316, ARNT, ZFP317,
MED12L, MYCBP2, HIC2, ZFP956, RB1CC1, ZFP410, TRP53INP2,
NKX3-1, MLLT1, ZFP217, ZFP810, SLC30A9, CHD5, ZFP251, ZFP382,
TGFBR1, KLF11, KCTD1, ZBTB41, ZFP445, ZFP709, ZFP746, ZFP809,
SP3, ZFP282, ZFP488, HOXB6, ZFP800, ZFP536, HDAC8, KLF4

Ru-n (qo0.01) Cell cycle ARHGEF2, STOX1, SYCP2, MCM3, SYCP1, SMC2, LATS2, SPDYA,
RIF1, PMP22, UBE2S, HELLS, STAG1

KO-up (qo0.05) Spermatogenesis RNF17, MEI4, MYCBPAP, MOV10L1, SYCP1, CLOCK
Negative regulation of transcription from RNA
polymerase II promoter

EID1, HNF1B, HMGN2, E2F7, E2F8, SOX2, WWC1, MAEL, PAWR,
TCF7L2, GLI3, TGFB1, NR1H2, NIPBL, AES, ZKSCAN17, JUND,
NR2F6, POU3F3, BHLHE40, ETV6, SIK1, EGR1, ASXL2, EPAS1,
FOXJ1, ARID5B, RBL1, CDK6, PLK3, PHF19, HDAC1, HIPK1, BTG2,
ID1, JUN, DLX4, SIX1, HIST1H3C, PEG3, NFIB

Positive regulation of transcription from RNA
polymerase II promoter

HNF1B, E2F7, E2F8, JAG1, ZIC1, GLI3, TGFB1, WBP2, HSPH1,
TMEM173, NOBOX, IFRD1, TOP2A, AGAP2, EGR1, ARHGEF2, FOXJ1,
SOX12, GRHL3, SIX4, PRKD2, DCAF6, NME2, JUN, SIX1, KDM6B,
PEG3, SOX2, TCF7L2, ARID2, NR1H2, RGMA, NIPBL, JUND, POU3F3,
ETV6, ETV4, ASXL2, KAT2B, EPAS1, ATAD2, IGF2, CAPRIN2, MNAT1,
ATF4, HDAC1, BMP7, BMPR1A, NFIB

KO-down
(qo0.01)

Collagen fibril organization ADAMTS14, SFRP2, COL3A1, COL1A2, FOXC2, COL1A1, COL5A2,
COL5A1

Embryonic skeletal system morphogenesis HOXB4, HOXB2, HOXB7, HOXB8, HOXB5, SOX11, HOXB6, HSPG2,
FOXC2

Cell adhesion TLN2, TNC, PTPRS, COL28A1, CDH1, ITGA3, STAB2, COL16A1, SRC,
COL5A1, CASS4, COL7A1, LAMA5, ITGA5, COL6A5, COL6A4,
COL6A2, COL6A1, RELN, AATF, EMB, THBS1, THBS2, SPP1

Anterior/posterior pattern specification CTNNBIP1, HOXB4, HOXB2, HOXB7, LHX1, HOXB8, SFRP2, HOXB5,
HOXB6, HOXB9, TCF15

SC:KO-down
po0.05

Spermatogenesis Prm1, Prm2, Prm3, Klhl10, Odf1, Chd5, Sun5, Ccdc63, Oaz3, Spata20,
Galntl5, Atp1a4, Acsbg2
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Diagnostics, Basel, Switzerland). Data were acquired in biological triplicates.
Relative gene expression was calculated based on ΔΔCt method using β-Actin as
an internal control. All primer sequences of selected genes were listed in
Supplementary Table S2. Prior to sequencing, the total RNA was subject to DNase
treatment to eliminate genomic DNA contaminants. The quality of the RNA samples
was assessed by agarose gel electrophoresis and RT-PCR detection of the
expressions of selected genes. RNA samples were prepared for sequencing on the
Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA). Data analysis was
performed as previously described.17 Differentially expressed genes were identified
if their q-values reported by the Cuffdiff software were o0.01 unless otherwise
stated. GO term enrichment analyses were performed using the online DAVID
program. A GO term was considered to be significantly enriched if the enrichment
false discovery rate Bejamini is o0.05.

Data analysis and statistics. Statistical analyses were performed using
t-test. Results are presented as mean±S.D. In all figures, * and ** denote that
Po0.05 and 0.01, respectively. All experiments were independently repeated at
least three times.
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