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Abstract

High data volumes produced by state-of-the-art optical microscopes encumber research. Taking 

advantage of the laminar structure of many biological specimens we developed a method that 

reduces data size and processing time by orders of magnitude, while disentangling signal. The 

Image Surface Analysis Environment that we implemented automatically constructs an atlas of 2D 

images for arbitrary shaped, dynamic, and possibly multi-layered “Surfaces of Interest”. Built-in 

correction for cartographic distortion assures no information on the surface is lost, making it 

suitable for quantitative analysis. We demonstrate our approach by application to 4D imaging of 

the D. melanogaster embryo and D. rerio beating heart.

Advances in microscopy keep increasing data acquisition rates and have enabled the study of 

multi-scale dynamic problems such as following cells across entire embryos or distribution 

of molecules across the cell membrane1–4. However, increased data size makes storage, 

processing and transfer difficult and expensive. For light sheet microscopy in particular, this 

is broadly acknowledged as the bottleneck to mainstream adaptation5. The data problem is 

most severe when specimen structure does not align with the microscope, so that only a 

small fraction of the recorded region of interest contains desired information. This is a 

common situation, as biological samples often have laminar structure, consisting of one or 

multiple curved and possibly closed surfaces6,7. In this case analysis of multi-scale images 

also poses conceptual problems: even where it is computationally feasible to process data in 

three dimensions, such as large scale nuclear tracking8, interpretation in orthographic 

projections or cross-sections is challenging. By describing the data in Cartesian coordinates 

one cannot disentangle different layers or sides of a single layer in a straightforward way.

Here we present a solution to these problems by taking into account the structure of the 

specimen, rather than force the lab frame of reference. Instead of a Region Of Interest, for 

layered specimen it is natural to consider a Surface Of Interest (SOI), and move into the 

tissue frame by organizing the data in terms of coordinates on the surface. This effectively 

reduces the dimension of the data from three to two and is directly analogous to making 

maps of earth, where geographic data is shown on a flat grid of longitude and latitude. 

Previous approaches realized the benefit of dimensional reduction for bio image data 

processing, sometimes referring to it as unrolling1,9,10. However, these were tailored to 

specific tissues and effectively lost information by neglecting to deal with two central issues 

in cartography. First, mapping curved surfaces to the plane inevitably involves some form of 

geometric distortion, which prevents one from using the conventional ways of measuring 

geometric quantities such as size, shape, direction and velocity in the maps. Second, to put 
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together a global picture of the surface, one has to be able to seamlessly navigate across map 

edges11. The limited scope and cartographic shortcomings of previous approaches prevent 

dimensional reduction from becoming a standard for handling large data.

We introduce a conceptual framework for tissue cartography as a compression method for 

arbitrarily shaped Surfaces Of Interest and overcome current limitations using established 

mathematics. By implementing our framework in an open source MATLAB toolbox for 

tissue cartography called ImSAnE (Image Surface Analysis Environment), we created a 

practical tool for data reduction and analysis of layered tissues. ImSAnE maps surfaces of 

interest to the plane, stores geometric metadata required for faithful measurements, and 

builds an atlas containing multiple overlapping maps to create a global picture. We 

demonstrate the power of our method and benchmark performance using SPIM recordings 

of a gastrulating fruit fly embryo and beating zebrafish heart. Finally, we show that our 

method removes out of surface clutter and can be applied to other microscopy data.

Before considering the general case, we explored the large class of tissues whose shape, like 

earth, can be projected onto a cylinder and which we will refer to as cucurboids. We use the 

fruit fly embryo to explain the method because it provides the additional simplification of a 

static shape, with much of the tissue moving along the surface of the egg during early 

gastrulation. As shown in Fig 1a, reducing data size by restricting to a SOI comes down to 

creating a mask. But different from a ROI, such a mask should contain only pixels lying on a 

smooth surface through the raw data, generally making the SOI data many orders of 

magnitude smaller. A smooth SOI was created for cucurboids by fitting a small number of 

interpretable shape parameters (SI). One could keep only pixels in the mask and analyze 

using 3D methods. However, the difficulties in processing and interpreting 3D data are 

readily solved by cartography, which refines this idea by storing the surface pixels in directly 

interpretable 2D images. These images are produced by assigning coordinates to the surface 

and then interpolating the data at the 3D positions corresponding to a regular grid of 2D 

surface coordinates (Fig 1a). Surface coordinates - also known as a parameterization - were 

tailored to the embryo and other cucurboids by generalizing familiar map projections of 

earth (SI).

Mapping closed surfaces to the plane introduces artificial edges that lead to problems with 

segmentation and tracking. Cartographic distortion further impairs automated image 

segmentation, which typically relies on directional and scale information. Although it is well 

known these problems are inevitable in flattening curved surfaces (review in SI), the type of 

distortion and the position of the cuts depend on the parameterization. The solution is to 

create an atlas that breaks the surface down into a number of overlapping regions with 

different coordinate systems. In Fig. 1b the surface is broken into overlapping posterior and 

anterior regions covering the poles and two cylinder regions covering the entire surface 

except for diametrically opposite lateral cuts between the poles. The polar regions are 

parameterized by angle and distance from the pole while the cylinders are parameterized by 

angle and position along the anterior-posterior axis. Similar to the distortion near the north 

and south poles in familiar Mercator projections of earth, the cylinder in Fig. 1c is heavily 

distorted near the anterior and posterior poles of the embryo, and has edges corresponding to 

the poles and a lateral cut. The anterior and posterior maps in Fig. 1c, on the other hand, 
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show the poles with very low distortion (quantified in SI Fig. 2). Where parameterizations 

overlap, points on the surface will have two different sets of coordinate values, from which 

the transition map between the coordinates can be automatically constructed, effectively 

stitching the maps together. This way, the atlas provides a global picture in which each 

position on the surface is captured away from edges and at low distortion.

While introducing multiples maps reduces distortion enough to automate image 

segmentation using conventional Euclidean methods, quantitative measurements would 

require an impractical number of maps. Fortunately one can make faithful measurements by 

storing geometric metadata containing the relation between surface coordinates and 3D 

position (SI). ImSAnE implements general cartographic measurements for the first time. 

Figure 1d shows perfect agreement between 2D cartographic and direct 3D measurements of 

area, length and angle. In contrast, uncorrected 2D measurements show large error 

depending on the local distortion of the map.

To evaluate the performance gained from our approach, we repeated atlas construction for 

the fly embryo data at different sub-samplings. We then benchmarked data size, loading time 

and performance at elementary image analysis operations. The data reduction (Fig 2a) and 

processing time (Fig 2b) for large data follow a two-thirds power-law that can be explained 

by linear scaling of many operations with the number of pixels. This dramatically improves 

relative gain as data size increases. Even for relatively small data sets, one gains an order of 

magnitude, while for typical SPIM datasets one gains three orders of magnitude (Fig 2ab). 

After an initial step of atlas construction on a powerful computer, bottlenecks in storage and 

network transfer are therefore resolved and data can be shared and analyzed on a laptop. Fig 

2c compares features of our method to existing 3D and 2D approaches.

In general analogies to earth don’t hold. We therefore extended our method to surfaces of 

arbitrary shape. We also made it possible to foliate a tissue in a ‘stack’ of nested SOIs, 

which is vital for many applications such as apical basal organization and quantitative 

intensity measurements. To demonstrate this generalization we use a zebrafish heart (Fig 

3a). Taking advantage of standard methods from computer graphics we first produce a 

smooth triangle mesh, representing the surface without shape assumptions (Fig 3b, SI Fig 4). 

To build an atlas for a general SOI in ImSAnE we then divide the surface into user defined 

or automatically generated overlapping regions, as shown in Fig 3c. Next, surface 

coordinates are generated automatically using conformal parameterization, which preserves 

shape (but not size, SI text, SI Fig 6) and has the rare property that it can be constructed for 

arbitrary surface regions in a computationally efficient way. Mapping surface data and 

making transition maps then proceeds as before. To create a multi-layer SOI we move the 

defining surface along the normal direction (Fig 3d). Surface coordinates are carried 

between layers along the surface normal, effectively generating a stack of maps, as shown in 

Figure 3e together with a summed intensity projection. In the cross section one can see the 

myocardium lying on top of the endocardium, flattened by the mapping.

Consistency of the approach requires that we can make global measurements by adding up 

measurements from individual layers and different maps in the atlas. To test this we 

compared the summed intensity in the non-overlapping parts of the atlas to the total intensity 
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in the 3D mask around the SOI and found near perfect agreement (Fig 3f). Agreement is also 

found for other observables, and perhaps surprisingly, even the volume of the heart can be 

measured in two-dimensions (SI).

Tissue shape can change dramatically with time. Observation of local dynamics on the 

surface, such as nuclear movement requires temporal continuity of maps. To this end we 

constrained the parameterization at each time to resemble the previous time and tested the 

result by using an automated tracking method to faithfully follow a group of cells shown in 

Fig 3g. We were able to use the nuclear trajectories as landmarks for quantifying local 

changes in shape and size (Fig 3h), which is important for understanding tissue mechanics.

A SOI acts as an effective filter by isolating data lying on a smooth surface and disposing of 

unwanted information elsewhere. Therefore, we suspected that it can improve image quality 

in data that would otherwise not seem to benefit from our approach because it is not 

prohibitively large or the specimen is close to flat. To confirm this we recorded an E-

cadherin labeled Drosophila pupal wing, which consists of a layer of columnar cells covered 

by a layer of large squamous cells (Fig 4). The membrane signal from the two tissue layers, 

which is otherwise hard to separate (Fig 4a), is cleanly partitioned by making a SOI for each 

(Fig 4b). Signal improvement is highlighted for a cross section in Fig 4c. By mapping the 

signal from the different SOI back to 3D in different colors, we create virtual tissue markers 
(Fig 4d). In SI Fig. 3 we show improvement for a scanning confocal recording of a 

Drosophila wing disc (SI Fig. 3ab) and a widefield recording of the Drosophila notum (SI 

Fig. 3cd).

We have presented a method for efficiently handling large bio image data sets containing 

laminar specimen by reducing a dynamic Surface Of Interest of arbitrary shape to an atlas of 

two-dimensional images. No measurement error is introduced by this reduction, enabling 

complete analysis of a surface using only the much smaller atlas. It is broadly usable as the 

implementation in ImSAnE allows a user to automatically build an atlas and make 

measurements without knowing the underlying mathematics, and easily interfaces with other 

software by using open file formats. Application is not restricted to early development, but 

should include plant leaves12, super-resolution recordings of single cells3,13, or branching 

organs14. While projects like OpenSPIM15 have increased accessibility and affordability of 

light sheet microscopy, the resources required for handling large data still form an obstacle 

to mainstream use. We believe that our general framework for tissue cartography will 

contribute to clearing the way.

Methods

ImSAnE

The pipeline starts with SOI identification, which consists of two preprocessing steps, and is 

then followed by tissue cartography. The preprocessing steps are identification of a rough 

surface mask and generation of a smooth Surface of Interest, which can be performed by 

using built-in methods or external software, interfacing through standard file formats. Tissue 

cartography consists of atlas generation and measurements, done in ImSAnE. The text and 

SI further detail parametrization and measurement. To generate transition maps between 
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parametrizations, we interpolate one coordinate grid over the other in the overlap of regions, 

taking advantage of the MATLAB function interp2. Self-contained tutorials explaining how 

to use ImSAnE are included in the supplementary software.

Code availability

ImSAnE is freely available under the GPL and included as a supplementary software zip 

file. Updates will be available from http://www.tissuecartography.org.

SOI generation in figures

For each data set in the manuscript there is a supplementary tutorial containing parameters 

required to produce the SOIs. For Fig 1 and Fig 4 we used built-in preprocessing methods, 

producing a rough surface by edge detection and a smooth SOI by fitting. For Fig 1 we fitted 

shape parameters while for Fig 4 we fitted a thin plate spline. For Fig 3, we used external 

preprocessing methods: Ilastik16 to generate a rough surface and Poisson surface 

reconstruction in Meshlab to generate a smooth surface triangulation. Parametrization for 

Fig 1 is described in the text and detailed in SI. To generate the conformal parametrization 

for Fig 3 we used17, which reduces this to a generalized eigenvalue problem. For all other 

time points we solved this linear equation under an added constraint to ensure continuity: at 

each time step, for two arbitrary positions, the closest surface position in the next frame 

must be assigned the same surface coordinate.

Analysis in figures

To segment and track individual cells shown in Fig 1bc and Fig 3e, we used Ilastik, 

following the pixel classification and automated tracking workflows. The lattice shown in 

Fig 1bc was extracted from Ilastik generated membrane segmentation using the MATLAB 

bwmorph function. 3D measurements shown in Fig 1d where performed based on 3D 

positions of cells and vertices: To measure track length, we summed the distance traveled 

between each time point. We used standard formulas for polygon area and angle to 

respectively measure the area of cells and angles between edges in our lattice representation 

(see SI for further detail). Uncorrected 2D measurements of length, angle and area where 

based on the flattened images using analogous methods in 2D. Cartographic measurements 

in Fig 1 as well as Fig 3 were done using ImSAnE built-in functions that weigh each 

measurement with a local distortion correction factor derived from the metric, explained in 

detail in the SI. The laptop used to perform data analysis is running Mac OS 10.9 and has a 

2.8 GHz Intel Core i7 CPU with 16GB RAM.

The benchmark graphs shown in Fig 2 were generated from isotropically down-sampled 

versions of the data from Fig 1. Data storage was assessed with the Linux disk usage tool: 

Dynamic shape benchmarks where based on a single time point, while for static surfaces we 

used the average of indicated number of frames. Data access time was benchmarked using 

the MATLAB profiler, using MATLAB imread to read 3D data and the ImSAnE SOI reader 

using MATLAB imread. Processing time for typical image analysis operations was 

benchmarked by a Gaussian filter with MATLAB convn, and erosion with MATLAB 

imerode, all with linear kernel size 13. Data transfer rates where computed based on 

dynamic data size in Fig 2a. Benchmark analyses were performed using a computer with 
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16×2.4 GHz Intel Xeon CPU E5620, 96 GB RAM and western digital wdc WD4000FYYZ 

hard discs running Ubuntu Linux 12.04.

Data

Fly Stocks used: GAP43-mCherry (embryo); ubi:ECad-GFP (wing). Fusion of the embryo 

multi view data displayed in Fig 1 was performed using a front end to Elastix18 written in 

python. Data used in Fig 3 was taken from19 SI Video9 and kindly provided by M. Mickoleit 

and J. Huisken. Data for Fig 4 was recorded using a Leica SP8 during the Santa Barbara 

QBio‘13 summer school.
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Fig. 1. Tissue cartography on Drosophila melanogaster embryo undergoing gastrulation
(a) The pipeline from left to right: identification of a SOI (grey) in the raw data (cyan), 

followed by partitioning into overlapping regions and parameterization (yellow lines). 

Finally, the image data is mapped to the parameter plane. (b) Partition of the apical embryo 

surface in anterior, posterior and cylinder regions. Solid lines represent region boundaries. 

Red: posterior, yellow: anterior, cyan and green: cuts in cylinder regions, pink: poles. Blue 

shaded domain indicates overlap of anterior and posterior regions. Membrane labeled 

surface data of one time point is shown in grey scale. Cell trajectories in orange and white. 
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Also shown is a representative patch of segmented cells color-coded for coordination 

number with white vectors highlighting two edges. (c) Atlas of the embryo, showing 

anterior, posterior and cylinder maps from left to right. Color code as above. Inset shows 

close up of segmented cell patch in cylinder map. (d) Comparison of 3D to cartographic and 

uncorrected 2D measurements. Color code corresponds to region boundary as in (b). From 

left to right: Length of track 1 and 2 measured in the posterior hemi-embryo and cylinder 

region. Area of lattice and angle between highlighted vectors measured in anterior hemi-

embryo and cylinder region.
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Fig. 2. Performance gain from tissue cartography
(a) Storage per time point in atlas versus raw data. Atlas normalized by number of surface 

coverings. Color codes for time dependence. Black: dynamic shapes require storage of atlas 

and geometric metadata for each time point; blue: static shapes with 10 time points only 

require storage of geometric metadata once, reducing the average storage per time point; red: 

as blue for 200 time points, further reducing average storage. Blue Square indicates average 

storage for the embryo data from Fig 1, green diamond for heart data from Fig 3. (b) Access 

and processing times for atlas and raw data in (a). Black: time required to load the data. 
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Colors: typical processing times. Blue: Gaussian filter, magenta: erosion, red: theoretical 

data transfer at 5 MB/s of dynamic surface from (a). (c) Feature table of 3D, uncorrected 2D, 

and cartographic projections, comparing performance in routine tasks, data disentanglement, 

and feasibility of data post-processing methods.
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Fig. 3. Tissue cartography for a complex dynamic surface
(a) Zebrafish heart, red: endocardium, cyan: myocardium. (b) Smooth triangulation of 

myocardium Surface Of Interest. Inset shows zoom into highlighted region on atrium. (c) 

Overlapping regions on SOI, solid lines indicate region boundaries. For clarity, only the 

orange boundary is shown on the other regions. Arrow indicates valve. (d) Multi-layer SOI 

for zebrafish heart in (a), yellow lines indicate layers. White layer highlights surface in (b). 

(e) Conformal maps from orange region to plane for multiple layers arranged in flattened 

stack. Summed intensity projection on right with position of cross section below indicated 

by dashed line. In cross section, layer in (c) is highlighted in white. (f) Cartographic 
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intensity measurements from different layers and regions add up faithfully for all times. Top: 

total intensity of regions in (c) for all layers, excluding overlap, normalized by 3D summed 

intensity within surface mask. Bottom: uncorrected summed intensity shows large error. 

Colors match region colors in (b). (g) Maps vary smoothly with time. Three time points 

show a group of tracked nuclei connected by a dashed line. (h) Area enclosed by tracked 

cells over time, normalized by maximum.
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Fig. 4. Data improvement and virtual tissue markers from SOIs
(a) Maximum intensity projection of membrane labeled D. melanogaster pupal wing. Note 

difficulty in distinguishing two tissue layers. Left inset: detail with arrow indicating 

peripodial membrane. Right insets: cross section through data close to the fold with SOIs 

superimposed on top and yellow circles innoisdicating peripodial membrane on bottom. (b) 

Separated SOIs showing same inset region as (a). (c) Intensity profiles of cross section 

through inset regions in (ab) at position indicated by cyan ticks shows disentanglement of 

signal from different layers. Red and green highlights respectively show MIP signal 

contributions from columnar and peripodial layers. (d) Recombining separated signal in 

different colors creates Virtual Tissue Markers. 3D rendering of both layers, plane indicates 

cross section used for (c).
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