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Abstract

The enantioselective intermolecular sp3 C–H functionalization at allylic and benzylic positions 

was achieved using rhodium-catalyzed reactions with 4-phenyl-N-methanesulfonyl-1,2,3-triazole. 

The optimum dirhodium tetracarboxylate catalyst for these reactions was Rh2(S-NTTL)4. The 

rhodium-bound α-imino carbene intermediates preferentially reacted with tertiary over primary C–

H bonds in good yields and moderate levels of enantioselectivity (66-82% ee). This work 

demonstrates that N-sulfonyltriazoles can be applied to the effective C–H functionalization at sp3 

C–H bonds of substrates containing additional functionality.

Graphical Abstract

The selective functionalization of C–H bonds is becoming a powerful approach for the 

construction of various organic compounds of academic and medicinal interest.1–3 Of the 

many new methods4 to achieve selective C–H functionalization, donor-acceptor 

metallocarbenes have emerged as privileged reactive intermediates for the functionalization 

of sp3 C–H bonds because their reactions are often highly site-selective, diasteroselective, 

and enantioselective.5 Donor-acceptor metallocarbenes are typically generated by extrusion 

of dinitrogen from aryldiazoacetates in the presence of dirhodium(II)-tertracarboxylate 
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catalysts, and these intermediates insert into C–H bonds through a concerted mechanism 

where site-selectivity is determined by the competing influences of the steric bulk of the 

dirhodium carbene complex and the ability of the insertion site carbon to stabilize 

developing positive charge.6

As an alternative to aryldiazoacetates, 4-aryl-N-sulfonyl-1,2,3-triazoles have become 

valuable synthons in Rh(II)-catalyzed reactions in recent years because these heterocycles 

are in equilibrium with their open-chain α-diazo imine forms in solution.7 Consequently, N-

sulfonyl-1,2,3-triazoles undergo many similar Rh(II)-catalyzed transformations known to 

their diazo ester congeners such as cyclopropanation, [3+2] dipolar cycloaddition, arylation, 

and [4+3] cycloaddition reactions.8

In contrast, the utility of N-sulfonyl-1,2,3-triazoles for selective intermolecular C–H 

functionalization reactions, to date, has been limited to a single study.9,10 In 2011, Fokin and 

coworkers showed that α-diazo imines generated from the requisite 4-aryl-N-sulfonyl-1,2,3-

triazole precursors undergo intermolecular C–H functionalization reactions with 

hydrocarbons (as cosolvent) in the presence of Rh2(S-NTTL)4 or Rh2(S-PTAD)4 at room 

temperature (Scheme 1, A).9 Comparatively, when 4-aryl-N-sulfonyl-1,2,3-triazoles were 

reacted with tetrahydrofuran or 1,3-dioxolane, both favorable substrates for C–H 

functionalization reactions with α-diazoesters,11 no observable C–H functionalization 

products were reported. Instead, ring-expanded products were obtained, derived from 

rearrangement of oxo-nium ylide intermediates (Scheme 1, B).12 Presumably because of 

these results, there are no further reports on intermolecular sp3 C–H functionalization with 

N-sulfonyltriazoles. Thus, we decided to explore whether N-sulfonyl triazoles could be used 

for C–H functionalization of other activated C–H bonds. Herein we describe our initial 

evaluation of C–H functionalization of allylic and benzylic C–H bonds (Scheme 1, C).

We began our studies by optimizing the reaction of 4-phenyl-1-methanesulfonyl-1,2,3-

triazole (1) with trans-4-methyl-2-pentene (2) (Table 1). After a brief survey of dirhodium 

tetracarboxylate catalysts (see the Supporting Information for de- was identified as the 

optimal catalyst for tails), Rh2(S-NTTL)4 this transformation.13 Thus, taking compound 1 
and 2.0 equiv of 2 in CHCl3 (0.5 M with respect to 1) and stirring the reaction mixture for 

18 h at ambient temperature with 1 mol % Rh2(S-NTTL)4 led to the formation of C–H 

insertion product 3a (after in situ reduction of the intermediate sulfonyl imine) in 74% 

isolated yield with a >30:1 regioselective preference for the tertiary C–H insertion over the 

primary C–H insertion product 3b in 77% ee (Table 1, entry 1). Increasing the amount of 

alkene 2 from 2.0 to 4.0 equiv resulted in a slight improvement in the isolated yield (83%) 

and enantioselectivity (84% ee) (Table 1, entries 2–3). Changes to the concentration of 

triazole 1 (Table 1, entries 4–5) had little effect on the isolated yield and enantioselectivity. 

Increasing the reaction temperature to 40 ºC (Table 1, entry 6) resulted in a decrease in yield 

of 3a, while lowering the reaction temperature to 0 ºC resulted in no product formation 

(Table 1, entry 7). Shorter reaction times resulted in slightly diminished yield and no 

advantage was observed when using molecular sieves (Table 1, entries 8–10). Using other 

chlorinated solvents such as CH2Cl2 and 1,2-dichloroethane (Table 1, entries 11 and 13) 

typically resulted in slightly diminished isolated yields with modest increases in 

enantioselectivity to 85% and 86% ee, respectively. Other solvents such as α,α,α-
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trifluorotoluene14 (Table 1, entry 16) gave lower isolated yields and enantioselectivity, and 

coordinating solvents, such as ethyl acetate, (Table 1, entry 18) were ineffective for this 

transformation. The absolute configuration of 3a was determined to be (S)- by X-ray 

crystallographic analysis.15 The absolute configurations of the other C–H functionalization 

products are tentatively assigned assuming the same face selectivity during the approach of 

the substrate to the rhodium-bound carbene.

With these optimized conditions in hand, we then explored the scope of this transformation 

with various alkenes (Table 2). A tri-substituted alkene with two potential sites of reactivity, 

such as trans-(2,4-dimethyl)-2-pentene (4) gave a mixture of the C–H insertion products 7a 
and 7b in 52% combined yield (1.5:1 rr) under the optimized reaction conditions. 

Interestingly, we found that 7b, resulting from primary C–H insertion, was obtained in 94% 

ee whereas 7a, resulting from insertion into the tertiary C–H bond, was obtained in 74% ee. 

Similar higher enantioselectivity for primary C–H insertion versus tertiary C–H insertion 

was seen in the rhodium-catalyzed reactions with ar-yldiazoacetates.5b In the case of 3-

hexene which has a secondary C–H site, product 8 was furnished in 80% yield with 

moderate diastereoselectivity (7:3 dr) and high enantioselectivity (97% and 89% ee for the 

major and minor diastereomer, respectively). When α-terpinene (6) was used as a reaction 

substrate, a reversal of site-selectivity in the C–H insertion reaction was observed. 

Specifically, the product resulting from primary insertion (9) was formed as the major 

product in 51% isolated yield and 96% ee in addition to less than 3% of a mixture of various 

other insertion products. In all of the presented scenarios, no products derived from 

cyclopropanation of the olefin were observed.

With the allylic C–H functionalization reaction established, we then investigated the 

selective functionalization of benzylic C–H bonds (Table 3). Using p-cymene 10 as a model 

substrate, Rh2(S-NTTL)4 again proved to be the best catalyst to produce products 11a and 

11b in terms of yields, regioselectivity, and enantioselectivity (Table 3, entry 1). Other 

catalysts such as Rh2(S-PTAD)4 and Rh2(S-TCPTAD)4 gave diminished yields and/or 

stereoselectivity (Table 3, entries 4–7). Reducing the reaction time to 3 h resulted in slightly 

lower isolated yields (Table 3, entry 3). A similar solvent effect was observed between 

chloroform and 1,2–dichloroethane where the former gave slightly better yields and the 

latter better levels of enantioselectivity (Table 3, entries 1 and 2). In all cases, the tertiary C–

H insertion product 11a was favored over the primary insertion product 11b.

For comparison, when methyl phenyldiazoacetate (12) was used instead of triazole 1 as the 

C–H insertion partner (Eq 1) in the Rh2(S-NTTL)4-catalyzed reaction with p-cymene, the 

tertiary C–H insertion product 13 was formed in 51% yield, but with low enantioinduction 

(20% ee). When the analogous reaction was performed with trans-4-methyl-2-pentene, the 

C–H insertion product 14 was isolated in 41% yield and 20% ee (Eq 2). These results 

suggest that even though Rh2(S-NTTL)4 is generally the most effective chiral catalyst to 

date for the reactions of N-sulfonyltriazoles, its performance is inferior for the reactions of 

aryldiazoacetates.5e
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Further exploration with a variety of isopropylbenzene substrates is presented in Figure 1. 

Substrates such as p-isopropyl anisole, 1,4-diisopyropylbenzene, cumene, and 4-bromo 

cumene all afforded their corresponding tertiary C–H insertion products 15 – 18 in moderate 

yields (24 – 64% yield) and enantioselectivity (66 – 82% ee). Interestingly, when using 

isopropylbenzene as a substrate which does not feature a 1,4-substitution pattern, we 

isolated dihydroindole 18b in 10% yield and 92% ee resulting from an intermolecular [3+2] 

dipolar cycloaddition reaction, in addition to the desired C–H insertion product 18a16

Encouraged by the high levels of enantioselectivity obtained for primary C–H insertion 

products 9 and 11b (95% ee), we finally investigated the insertion of α-diazo imine 

intermediates into primary benzylic positions. Specifically, we found that reacting 4-

methylanisole (19) with triazole 1 under the optimized reaction conditions, produced the 

primary insertion product 20 in 37% yield and 93% ee after LiAlH4 reduction. Even though 

at this stage the yield of the C–H functionalization products at primary benzylic C–H bonds 

is relatively low, these systems are capable of high levels of enantioinduction with Rh2(S-

NTTL)4 as the catalyst, which is promising for future reaction development.

In conclusion, we have demonstrated C–H functionalization reactions of allylic and benzylic 

sp3 C–H bonds using donor-acceptor carbenes generated from 4-aryl-N-sulfonyl-1,2,3-tria-

zoles. These reactions show modest selectivity for tertiary C–H bonds in most cases and 

proceed with good asymmetric induction. In cases where mixtures of tertiary and primary 

insertion products are obtained, we observed the highest levels of enantioselectivity for the 

primary C–H insertion products. Future directions include extending the scope and 

selectivity of this reaction and developing a mechanistic understanding of the 

transformation.
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Figure 1. 
Substrate scope for benzylic C–H functionalization reaction.
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Scheme 1. 
Previous work on intermolecular C–H functionalization using N-sulfonyl-1,2,3-triazoles.
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Scheme 2. 
Reaction of triazole 1 with 4-methylanisole
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Table 2

Substrate scope for allylic C–H functionalization.

a
Traces (< 3%) of a mixture of other insertion products were observed.
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