Nagy and Kampmann BMC Bioinformatics (2017) 18:347
DOI 10.1186/512859-017-1759-9

CRISPulator: a discrete simulation tool for

pooled genetic screens

Tamas Nagy' and Martin Kampmann??"

Abstract

BMC Bioinformatics

@ CrossMark

Background: The rapid adoption of CRISPR technology has enabled biomedical researchers to conduct CRISPR-
based genetic screens in a pooled format. The quality of results from such screens is heavily dependent on the
selection of optimal screen design parameters, which also affects cost and scalability. However, the cost and effort
of implementing pooled screens prohibits experimental testing of a large number of parameters.

Results: We present CRISPulator, a Monte Carlo method-based computational tool that simulates the impact of
screen parameters on the robustness of screen results, thereby enabling users to build intuition and insights that

will inform their experimental strategy.

CRISPulator enables the simulation of screens relying on either CRISPR interference (CRISPRi) or CRISPR nuclease
(CRISPRn). Pooled screens based on cell growth/survival, as well as fluorescence-activated cell sorting according to
fluorescent reporter phenotypes are supported. CRISPulator is freely available online (http://crispulator.ucsf.edu).

Conclusions: CRISPulator facilitates the design of pooled genetic screens by enabling the exploration of a large
space of experimental parameters in silico, rather than through costly experimental trial and error. We illustrate its
power by deriving non-obvious rules for optimal screen design.
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Background
Genetic screening is a powerful discovery tool in biology
that provides an important functional complement to
observational genomics. Until recently, screens in mam-
malian cells were implemented primarily based on RNA
interference (RNAi) technology. Inherent off-target ef-
fects of RNAI screens present a major challenge [1]. In
principle, this problem can be overcome using optimized
ultra-complex RNAI libraries [2, 3], but the resulting scale
of the experiment in terms of the number of cells required
to be screened can be prohibitive for some applications,
such as screens in primary cells or mouse xenografts.
Recently, several platforms for mammalian cell screens
have been implemented based on CRISPR technology
[4]. CRISPR nuclease (CRISPRn) screens [5, 6] perturb
gene function by targeting Cas9 nuclease programmed
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by a single guide RNA (sgRNA) to a genomic site inside
the coding region of a gene of interest, followed by
error-prone repair through the cellular non-homologous
end-joining pathway. CRISPR interference (CRISPRi) and
CRISPR activation (CRISPRa) screens [7] repress or acti-
vate the transcription of genes by exploiting a catalytically
dead Cas9 to recruit transcriptional repressors or
activators to their transcription start sites, as directed
by sgRNAs.

CRISPRn and CRISPRi have vastly reduced off-target
effects compared with RNA, and thus overcome a major
challenge of RNAi-based screens. However, other chal-
lenges to successful screening [1] remain. The majority
of CRISPRi and CRISPRn screens have been carried out
as pooled screens with lentiviral sgRNA libraries. While
this pooled approach has enabled rapid generation and
screening of complex libraries, successful implementation
of pooled screens requires careful choices of experimental
parameters. Choices for many of these parameters repre-
sent a trade-off between optimal results and cost.
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Implementation

Code implementation and availability

CRISPulator was implemented in Julia (http://julialang.org),
a high-level, high-performance language for technical com-
puting. We have released the simulation code as a Julia
package, Crispulator.jl. The software is platform-independ-
ent and is tested on Linux, OS X (macOS), and Windows.
Installation details, documentation, source code, and
examples are all publicly available at http://crispulator.ucs-
fedu (see Availability and Requirements section for more
details ). CRISPulator simulates all steps of pooled screens,
as visualized in Fig. 1 and explained in the Results section.

Simulated genome

A genome is defined by assigning a numerical, “true”
phenotype to a number of genes, N. All simulations pre-
sented here have N=500 genes. In the example shown
in Fig. 2, 75% of genes were assigned a phenotype of 0
(wild-type), and 5% of genes were modeled as negative
control genes, also with a phenotype of 0. 10% of genes
were assigned a positive phenotype randomly drawn (un-
less otherwise indicated) from a Gaussian distribution with
p = 055 and o = 0.2 (clamped between [0.1, 1.0]), and 10%
of genes were assigned a negative phenotype randomly
drawn from an identical distribution except with p = -0.55
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and clamping [-1.0, -0.1] (Fig. 2). Next, each gene was ran-
domly assigned a phenotype-knockdown function (Fig. 3)
to simulate different responses of genes to varying levels of
knockdown. 75% of genes were assigned a linear function
that linearly interpolates between 0 and the “true” pheno-
type from above as a function of knockdown, the remaining
25% of genes were assigned a sigmoidal function with an
inflection point, p, drawn from a distribution with a mean
of 0.8 and standard deviation of 0.2; the width of the inflec-
tion region, k, (over which a phenotype increased from 0 to
the “true” phenotype, /) was drawn from a normal distribu-
tion with a mean of 0.1 and a standard deviation of 0.05.
The function fwas defined as follows:

0, x < p-k
1, x2p+k
1= (6)-1.05/4|
1 { sign(4)-1.05
- 1 _
2 6]+ 1 +1], p-k<x<p+k
where § = s

min (p, min(l—p,k))
This specific sigmoidal function was chosen over the
more standard Gompertz function and the special case
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Fig. 2 Phenotype distribution in an example simulated genome. A typical distribution is shown, which includes 75% of genes without phenotype
(green), 5% of negative control genes (pink), 10% of genes with a positive phenotype (blue), and 10% of genes with a negative phenotype
(vellow). The frequencies of each category and strengths of the phenotypes are set by the user and are library specific (see text for more details).
N genes are randomly given phenotypes from this artificial genome and used in later steps of the simulation

of the logistic function because it is highly tunable and
has a range between 0 and / on a domain of [0, 1].

Simulated sgRNA libraries

CRISPRn and CRISPRi sgRNA libraries are generated to
target the simulated genome. For the results featured here,
each gene was targeted by m =5 independent sgRNAs. For
CRISPRi screens, each sgRNA was randomly assigned a
knockdown efficiency from a bimodal distribution (Fig. 4):
10% of sgRNAs had low activity with a knockdown drawn
from a Gaussian (1 = 0.05, o = 0.07), 90% of guides had
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Fig. 3 Relationship between gene knockdown level and resulting
phenotype for CRISPRi simulations. This relationship is defined for
each gene, and represents either a linear function (orange) or a
sigmoidal function (blue), as defined in the Implementation section

high activity drawn from a Gaussian (u = 0.90, ¢ = 0.1). We
assumed such a high rate of active sgRNAs based on our
recently developed highly active CRISPRi sgRNA libraries
[8]. For CRISPRn screens, high-quality guides all had a
maximal knockdown efficiency of 1.0 and were 90% of the
population (the 10% low-activity CRISPRn guides were
drawn from the same Gaussian (u = 0.05, 0 = 0.07) as
above). The initial frequency distribution of sgRNAs in the
library was modeled as a log-normal distribution such that
a guide in the 95th percentile of frequencies is 10 times as
frequent as one in the 5th percentile (Fig. 5), which is
typical of high-quality libraries in our hands [7].

Simulated screens
Every step of the pooled screening process is simulated
discretely. Infections are modeled as a Poisson process
with a given multiplicity of infection, . The initial pool of
cells is randomly infected by sgRNAs based on the fre-
quency of each sgRNA in the library. A A = 0.25 is used
unless otherwise noted, which is commonly used to ap-
proximate single-copy infection [9]. Only cells with a sin-
gle sgRNA are then used in subsequent steps, which
is P(x = 1; Poisson(\ = 0.25)) = 19.5% of the initial pool.
For CRISPRi screens, phenotypes for each cell were
determined based on the sgRNA knockdown efficiency
(from above) and based on both the phenotype and the
knockdown-phenotype relationship of the targeted gene.
For CRISPRn screens, phenotypes for each cell were set
using sgRNA knockdown efficiency (specific for CRISPRn
screens, see previous section) and the gene phenotype.
Our setup was such that if a cell was infected with a low-
quality CRISPRn guide, it behaved similarly to one
infected with a low-quality CRISPRi guide, i.e. mostly in-
distinguishable from WT. All cells with high-quality
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Fig. 4 An example sgRNA activity distribution for a simulated CRISPRi library. The 80-90% high quality guides is typical for second-generation CRISPRi
[8] libraries. We define high quality sgRNAs as sgRNAs that have high activity and lead to a > 60% knockdown. Low quality sgRNAs are essentially
indistinguishable from the negative controls and will lead to minimal effects on phenotype as they cause <20% knockdown of a given gene

guides CRISPRn guides had a 1/9, 4/9, or 4/9 chance of
having 0%, 50%, or 100% knockdown efficiency, respect-
ively (see Results for the underlying rationale). This
knockdown efficiency was then used with the knockdown-
phenotype relationship and true phenotype of the gene to
calculate the observed phenotype.

FACS sorting was simulated by convolving the theoret-
ical phenotypes of each cell independently with a Gaussian
(1 = 0, 0) where o is a tunable “noise” parameter, reflecting
biological variance in fluorescence intensity of isogenic
cells. Populations of cells in FACS can be identified by the
fitting of Gaussian mixture models [10], giving support for
this approach. The number of cells prior to this step is
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Fig. 5 Initial frequency distribution of plasmids encoding each
sgRNAs in the library. An example of a typical distribution (in our
experience) is shown, in terms of the spread of frequencies. During
the chemical synthesis of oligos encoding each sgRNA in the library,
there is variation in the initial frequency of each oligo and this is
library-specific. The frequency distribution of a library used by a
specific researcher can be determined empirically by next-generation
sequencing of the plasmid library prior to conducting the screen

termed the bottleneck representation and is tunable. Post-
convolution, cells were sorted according to their new, “ob-
served” phenotype and then the bottom X percentile and
top 1-X percentile (where X is a real value between 0
and 50) were taken as the two comparison bins.

Growth experiments were simulated as follows: (1) in
the time frame that WT cells (true phenotype = 0) divide
once, cells with the maximal negative phenotype, -1, do
not divide, and cells with maximal positive phenotype div-
ide twice. For cells with phenotypes in between 0 and +1,
cells randomly pick whether they behave like WT cells or
maximal phenotype cells weighted by their phenotype (i.e.
cells with phenotypes close to 0 behave mostly like WT
cells). (2) After one timestep where WT cells double once,
a random subsample of the cells is taken. The size of the
bottleneck is tunable. (3) This is repeated n number of
times. Finally, the samples of cells at t=0 and £=#n are
taken as the two populations for comparison.

Sample preparation was simulated by taking the fre-
quencies of each guide in the cells after selection and con-
structing a categorical distribution with the frequencies as
the weights. Next-generation sequencing was then simu-
lated by sampling from this categorical distribution up to
the number of total reads. This approach for modelling
next-generation sequencing of pooled libraries has been
used successfully in earlier Monte Carlo simulations [11].

Evaluation of screen performance

Based on the simulated sequencing read counts, P values
and gene-level phenotypes were calculated for each gene
essentially as previously described [3, 7]. Briefly, ob-
served sgRNA phenotypes were calculated as log, ratios
of sgRNA frequencies in two cell populations. Gene-
level phenotypes were calculated by averaging the
sgRNA phenotypes. P values were calculated based on
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the Mann—Whitney rank-sum test by comparing the
phenotypes of sgRNAs targeting a given gene with the
phenotypes of negative control sgRNAs. Genes were
ranked by the product of the absolute gene-level pheno-
type and their —log;oP value to call hit genes. Screen
performance was quantified in two ways (Fig. 6): As the
overlap of the top 50 called hit genes with the top 50 ac-
tual hit genes (based on true phenotype), or as the area
under the precision-recall curve (AUPRC). AUPRC was
chosen over the more common area under the receiver
operator characteristic (AUROC) due to the highly-
skewed nature of the generated dataset (<20% of dataset
is made up of true hits, based on the typical number of
hits detected by CRISPR screens [5-7]). AUPRC is better
able to distinguish performance differences between
approaches on highly skewed datasets as compared to
AUROC [12]. The AUPRC was calculated using a lower
trapezoidal estimator, which had been previously shown to
be a robust estimator of the metric [13]. The “signal” of an
experiment was defined as the median signal for true hit
genes (ones initially labeled as having a positive or negative
phenotype). The true hit gene signal was calculated as the
average ratio of the log, fold change over the theoretical
phenotype of all guides targeting that gene. Guides that
dropped out of the analysis were excluded from the signal
calculation. “Noise” was quantified as the standard devi-
ation of negative-control sgRNA phenotypes, and the “sig-
nal-to-noise” ratio was the ratio of these two metrics. For
display purposes, all are normalized in each graph.

Results

Here, we present a Monte Carlo method-based compu-
tational tool, termed CRISPulator, which simulates how
experimental parameters will affect the detection of dif-
ferent types of gene phenotypes in pooled CRISPR-based
screens. CRISPulator is freely available online (http://
crispulator.ucsf.edu) to enable researchers to develop an
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intuition for the impact of experimental parameters on
pooled screening results, and to optimize the design of
pooled screens for specific applications. A previously
published simulation tool, Power Decoder [11], ad-
dresses some of the parameters of interest for RNAi-
based, growth-based screens. Our goal in developing
CRISPulator was to enable the simulation of CRISPRi
and CRISPRn screens for additional modes of pooled
screening, such as FACS-based screens or multiple-
round growth based screens, and to enable the explor-
ation of more experimental parameters. Instead of
measuring screen performance in terms of the power of
identifying individual active shRNAs, we focus instead
on the correct identification of hit genes, which is the
primary goal of experimental genetic screens.

CRISPulator simulates all steps of pooled screens (Fig. 1).
Briefly, a theoretical genome is generated in which genes
are assigned quantitative phenotypes (Fig. 2). The user can
set the size of the “genome”, N, which corresponds to the
number of genes targeted by the CRISPR library, e.g. a
genome-wide human library would have N ~20,000.
Additionally, the user can set the magnitude of both nega-
tive and positive phenotypes and their frequency in the
genome. These values should be set based on the expected
strength of the selection process and expected frequency of
“hits.” For example, for growth-based screens under
standard culture conditions, mostly negative phenotypes
are expected [5-7], whereas a comparable number of genes
with positive phenotypes can be observed in screens
in the presence of selective pressures, such as toxins
[7] or drugs [5, 6, 14, 15].

Independently, the quantitative relationship between
gene knockdown level and resulting phenotype is de-
fined for each gene (Fig. 3). We will refer to a gene as a
“linear gene” if the relationship between knockdown and
phenotype is linear. Such linear genes are routinely ob-
served in CRISPRi screens [7, 16]. A different class of
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top hit genes, ie. 50. b Area under the precision-recall curve (AUPRC)

Fig. 6 Metrics to evaluate screen performance. a “Venn diagram” overlap between the 50 genes with the strongest actual phenotypes, and the
top 50 hit genes called based on the screen results — expressed as the ratio of the number of genes in the overlap over the number of called
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genes, which we will refer to as “sigmoidal genes” dis-
plays a more switch-like behavior, where a phenotype is
only observed above a certain level of knockdown [1].
As described in the Implementation section, the simu-
lated genes contains both linear and sigmoidal genes, as
observed for actual screens.

Next, a sgRNA library targeting this genome is de-
fined. Each gene is targeted by a number of independent
sgRNAs, m, that is set by the user and depends on the
CRISPR library that they choose to use. Major libraries
such as hGeCKOv2 [5] and hCRISPRi-v2 [8] have m =6
and m =5, respectively. For CRISPR], the technical per-
formance of each sgRNA is randomly assigned based on
a user-defined distribution of sgRNA activities. A typical
distribution, based on second-generation CRISPRi librar-
ies [8] is shown in Fig. 4. For CRISPRn, 90% of sgRNAs
are assumed to be highly active; however, the outcome
of the DNA repair process resulting from sgRNA-
directed DNA cleavage is stochastic. We assume that 2/
3 of repair events at a given locus lead to a frameshift,
and that the screen is carried out in diploid cells. All
cells with active CRISPRn guides had a 1/9, 4/9, or 4/9
chance of having 0%, 50%, or 100% knockdown effi-
ciency, respectively. The assumption that only bi-allelic
frame-shift mutations lead to a phenotype in CRISPRn
screens for most sgRNAs is supported by the empirical
finding that in-frame deletions mostly do not show
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strong phenotypes, unless they occur in regions encod-
ing conserved residues or domains [17]. To mitigate this
issue, some CRISPRn screens have been conducted in
quasi-haploid cell lines [6]. Future CRISPRn libraries
may be designed to specifically target conserved residues,
or incorporate algorithms that maximize the chance of
frame-shift repair events. Once such libraries are vali-
dated, the stochastic outcomes for an active CRISPRn
sgRNA can be updated to reflect the improved libraries.

Lastly, the initial frequency distribution of lentiviral
plasmids encoding each sgRNA is specified (Fig. 5).
These values are again library-specific and have to be set
by the user. The frequency distribution can be deter-
mined empirically by next-generation sequencing of the
library, and the distribution shown in Fig. 5 approxi-
mates distributions we routinely observe for our libraries
generated in our laboratory.

Simulation of the screen itself discretely models infec-
tion of cells with the pooled sgRNA library, phenotypic
selection of cells and quantification of sgRNA frequen-
cies in selected cell populations by next-generation se-
quencing. Based on the resulting data (Fig. 7), hit genes
are called using our previously described quantitative
framework [3], as detailed in the Implementation sec-
tion. The performance of the screen with a specific set
of experimental parameters is evaluated by comparing
the called hit genes to the actual genes with phenotypes

-
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defined by the theoretical genome. It is quantified either
as overlap of the list of top called hits with the actual list
of top hits, or as area under the precision-recall curve
(AUPRC), a metric commonly used in machine learning
[18] (Fig. 6).

A central consideration for all pooled screens is the
number of cells used relative to the number of different
sgRNAs in the library. We refer to this parameter as rep-
resentation, and distinguish representation at the time of
infection, representation at times during phenotypic se-
lection, and — by extension — representation at the se-
quencing stage (where it is defined as the number of
sequencing reads relative to the relative to the number
of different sgRNAs). From first principles, higher repre-
sentation is desirable to reduce Poisson sampling noise
(“jackpot effects”), and has been shown empirically to im-
prove results of pooled screens [3, 11, 19, 20]. In practical
terms, higher representation is also more costly and

difficult to achieve, for example when working with non-
dividing cell types such as neurons [21]. A major applica-
tion of CRISPulator is the exploration of parameters to
guide the choice of suitable representation at each step of
the screen to enable researchers to strike the desired bal-
ance between screening cost and performance.

CRISPulator implements two distinct strategies for
phenotypic selection. In fluorescence-activated cells sort-
ing (FACS)-based screens, cell populations are separated
based on a fluorescent reporter signal that is a function
of the phenotype. We [22] and others [23] have success-
fully implemented such screens by isolating and compar-
ing cell populations with the highest and the lowest
reporter levels. More commonly, pooled screens are
conducted to detect genes with growth or survival phe-
notypes [5-7] by comparing cell populations at an early
time point with cells grown in the absence or presence
of selective pressures, such as drugs or toxins.
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We first asked how representation at the infection, se-
lection and sequencing stages affects FACS- and growth-
based screens (Fig. 8). The performance of FACS-based
screens was most sensitive to the representation at the
selection bottleneck, and least sensitive to representation
at the infection stage, highlighting the importance of col-
lecting a sufficient number of cells for each population
during FACS sorting, ideally more than 100-fold the
number of different library elements. By contrast, the
performance of growth-based screens was similarly sen-
sitive to representation at all stages.

For FACS screens using a given number of cells, an
important decision is how extreme the cutoffs defining
the “high-reporter” and “low-reporter” bins should be.
CRISPulator simulation suggests that separating and
comparing the cells with the top quartile and bottom
quartile reporter activity results in the optimal detection
of hit genes (Fig. 9). Closer inspection revealed that
while both signal (sgRNA frequency differences between
the two populations) and the noise (due to lower repre-
sentation in the sorted population) decrease with larger
bin sizes, the signal-to-noise ratio reaches a local max-
imum around 25% (Fig. 10), close to the bin size chosen
fortuitously in published studies [22, 23].

For growth-based screens, the duration of the screen
influences the signal (by amplifying differences in fre-
quency due to different growth phenotypes) but also the
noise (by increasing the number of Poisson sampling
bottlenecks generated by cell passaging or repeated appli-
cations of selective pressure). Interestingly, CRISPulator
suggests that the effect of screen duration on optimal per-
formance is different for genes with positive and negative
phenotypes, and strongly depends on the presence of
genes with positive phenotypes (Fig. 11). While genes with

positive phenotypes (increased growth/survival) were
detected more reliably after longer screens, genes with
negative phenotypes (decreased growth/survival) were
optimally detected in screens of intermediate duration,
and their detection in longer screens rapidly declined if
genes with stronger positive phenotypes were present in
the simulated genome. While genes with positive
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Fig. 11 Effect of positive phenotypes on growth-based screens. For
growth-based screens, the presence of genes with positive phenotypes
(fitter than wild type) strongly influences hit detection as a function of
screen duration. Screens were simulated for a set of genes in which
10% of all genes had negative phenotypes (less fit than wild type),
and 2% of genes had positive phenotypes. The strength of positive
phenotypes was varied, as encoded by the heat map. Hit detection
was quantified separately for genes with negative phenotypes (top
row) and genes with positive phenotypes (bottom row). Simulations
were carried out for screens with different durations, as measured by
the number of passages. Lines and light margins represent means and
95% confidence intervals, respectively, for 25 independent simulation
runs. In a and ¢, hit detection is measured as Area under the Precision-
Recall curve (AUPRQ), as detailed in the Implementation section
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phenotypes are rare in screens based on growth in stand-
ard conditions [5-7], selective pressures, such as growth
in the presence of toxin, can reveal strong positive pheno-
types for genes conferring resistance to the selective pres-
sure [7]. The optimal screen length for growth-based
screens was dictated by a local maximum of the signal-to-
noise ratio, which itself depended on the representation:
screens with lower representation were performing better
at shorter duration (Fig. 12). Our results therefore predict
that especially for growth-based screens using selective
pressures, and screens implemented with low representa-
tion, short durations are preferable.
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A question that is vigorously debated in the CRISPR
screening field is whether CRISPRn or CRISPRi based
screens perform better. As both technologies are rapidly
evolving, this question has not been settled. For ex-
ample, in a side-by-side test of early implementations of
these technologies, CRISPRn outperformed CRISPRi
[24]. However, the second version of the genome-wide
CRISPRI screening platform performed comparably to the
best current CRISPRn platforms [8]. CRISPulator is not
suitable to compare CRISPRi performance to CRISPRn
performance — instead, it is suitable to simulate the im-
pact of experimental parameters within one of these
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Fig. 12 Effect of duration of growth-based screens on performance. Screens were simulated for a set of genes in which 10% of all genes had
negative phenotypes (less fit than wild type). Simulations were carried out for screens with different durations, as measured by the number of
passages, and for different representations at the transfection, bottleneck and sequencing stages. Metrics for signal, noise, and signal-to-noise ratio
are defined in the Implementation section. Lines and light margins represent means and 95% confidence intervals, respectively, for 25 independent
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screening modes. We were, however, able to make a pre-
diction regarding the relative performance of CRISPRi and
CRISPRn for different types of genes. While CRISPRn and
CRISPRi screens performed similarly overall in the
simulations described above (Figs. 8, 9, 10 and 11),
separate evaluation of genes with linear versus sigmoidal
phenotype-knockdown relationship revealed that CRISPRn
outperforms CRISPRi for the detection of sigmoidal genes
(which require very stringent knockdown to result in a
phenotype), whereas CRISPRi performs relatively bet-
ter for genes with a linear knockdown-phenotype re-
lationship (Fig. 13).

Discussion

CRISPulator recapitulated rules for pooled screen design
previously articulated for RNAi-based screens based on
experimental and simulated data [11, 19, 20]. CRISPulator
also revealed several non-obvious rules for the design of
pooled genetic screens, illustrating its usefulness. Varying
of several parameters in combination reveals areas in the
multidimensional parameter space that are relatively ro-
bust, while in other areas, screen performance is highly
sensitive to parameter changes (Figs. 11 and 12). Of par-
ticular practical importance to researchers designing or
optimizing pooled screens are the following novel
predictions:

(1)For FACS-based screens in which 2 cell populations
are collected based on a continuous fluorescence
phenotype, the best binning strategy is to collect the
top quartile and bottom quartile of the population
based on fluorescence (Fig. 9). This optimum is
robust with respect to variation in other parameters
we tested (Fig. 9).

(2)Optimal parameter choices for growth-based
screens, in particular the number of passages,
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depend strongly on the genes with positive
phenotypes (Fig. 11). While genes with positive
phenotypes are rare in growth-based screens of
cancer cell lines under standard culture conditions
[5-7], a large number of genes with strongly positive
phenotypes can be observed in screens in which
cells are cultured in the presence of selective
pressures, such as toxins [7] or drugs [5, 6, 14, 15].
Therefore, these seemingly similar modes of
screening will require different parameters for
optimal performance.

(3)Optimal passage number for growth-based screens
also depends on the representation at bottleneck.
Signal-to-noise reaches an optimum for lower
passage numbers for screens with lower representation
(Fig. 12), indicating that if high representation is not
achievable (e.g. due to a limitation in available cells
numbers), passage number should be reduced,
relative to screens in which high representation
can be achieved.

The simulated sequencing reads generated by CRISPula-
tor (Fig. 7) recapitulate patterns observed in experimental
data (Fig. 14), thereby facilitating the interpretation of sub-
optimal experimental data and providing a tool to predict
which experimental parameters need to be changed to ob-
tain data more suitable for robust hit detection.

Since certain parameters used by CRISPulator (such as
the quality of sgRNA libraries or the signal-to-noise of
FACS-based phenotypes) are estimates informed by pub-
lished data, but not directly known, the predicted screen
performance does not represent absolute performance met-
rics. Rather, the goal is to predict the relative performance
of screens conducted with different experimental parame-
ters to enable researchers to optimize those parameters.

While the simulations presented here focus on
CRISPRn and CRISPRa, CRISPulator can also be used to

All genes
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0.8

“Linear” genes

“Sigmoidal” genes

= CRISPRn
CRISPRI

Bin size Bin size Bin size

Fig. 13 Comparison of CRISPRn and CRISPRi screen performance for genes with different knockdown-phenotype relationships. Simulations of
FACS-based screens were run for 100X representation at the transfection, bottleneck and sequencing stages. The simulated genome contained
75% of genes with a linear knockdown-phenotype relationship and 25% of genes with a sigmoidal knockdown-phenotype relationship, as defined
in the Implementation section. Performance in hit detection was quantified as AUPRC either for all genes, or only for linear or sigmoidal genes.
Lines and light margins represent means and 99% confidence intervals, respectively, for 100 independent simulation runs
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simulated data shown in Fig. 6. Grey dots: non-targeting sgRNAs, dots
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sequencing reads for each sgRNA in two populations separated based
on a fluorescent reporter signal are shown. a Screen carried out with
high representation at all stages. b Screen with low representation
at the infection stage. ¢ Screen with low representation at the

selection stage

simulate CRISPRa gain-of-function screens, by reinter-
preting the knockdown/phenotype relationship of genes
(Fig. 3) as overexpression/phenotype relationships. Once
more datasets from CRISPRa screens have been pub-
lished, the empirical data can inform realistic choices of
parameters for CRISPRa screen simulations.

Many of the lessons from CRISPulator should in
principle also apply to RNAi-based screens. However,
RNAi-based screens are notorious for off-target effects
[1], which are difficult to predict, and which we chose
not to model in CRISPulator.

Conclusions

CRISPulator facilitates the design of pooled genetic
screens by enabling the exploration of a large space of
experimental parameters in silico, rather than through
costly experimental trial and error. For pooled genetic
screens in animal models, such as mice, choices of ex-
perimental parameters can also have ethical implica-
tions, namely the numbers of animals required to power
the study. As larger numbers of pooled genetic screens
are published, we will further refine the assumptions
underlying the simulation using empirical data.

Availability and requirements
Project name: Crispulator

Project home page: http://crispulator.ucsf.edu/

Repository page: https://github.com/tlnagy/Crispulator.jl

The repository provides the package, Jupyter note-
books to generate key figures, unit tests, and a
command-line interface. The package can also be in-
stalled using the Julia Package Manager by running
“Pkg.update(); Pkg.clone ("https://github.com/tlnagy/
Crispulator.jl.git"); Pkg.build ("Crispulator”)” inside the
Julia command-line interface (REPL)

Operating system(s): any supporting Julia 0.5+ (tested
on Linux, Mac, Windows)

Programming language: Julia >=0.5

Other requirements: Gadfly>=2.0.0, StatsBase, Distri-
butions, DataFrames, HypothesisTests, Iterators, Color-
Brewer, Gadfly, ArgParse, Compat >= 0.17.0, YAML

These packages are all installed automatically when in-
stalling Crispulator using the Julia package manager.

Licence: The Apache License 2.0 (http://www.apa-
che.org/licenses/LICENSE-2.0)
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