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Abstract
Metabolomics is the newest addition to the “omics” disciplines and has shown
rapid growth in its application to human health research because of
fundamental advancements in measurement and analysis techniques.
Metabolomics has unique and proven advantages in systems biology and
biomarker discovery. The next generation of analysis techniques promises
even richer and more complete analysis capabilities that will enable earlier
clinical diagnosis, drug refinement, and personalized medicine. A review of
current advancements in methodologies and statistical analysis that are
enhancing and improving the performance of metabolomics is presented along
with highlights of some recent successful applications.
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Introduction
Metabolomics is a rapidly growing field of study that endeavors 
to measure the complete set of metabolites (generally considered 
to be the intermediates and products of cellular metabolism less 
than 1 kDa in size) within a biological sample (that is, the metabo-
lome) in order to achieve a global view of the state of the system1.  
Typically, metabolomics is focused only on characterizing the 
water-soluble metabolites, whereas lipidomics is a specialized 
discipline that investigates only lipids2. Water-soluble metabolites 
are part of a mobile, open biological system and as a result can 
readily interact and communicate with the environment, including 
the microbiome3. This is also true for some lipids but to a much 
lesser extent. Consequently, metabolomics has become an essential 
resource for systems biology because of its unique perspective rela-
tive to genomics and proteomics. Numerous studies have measured 
the relative upregulation or downregulation of genes or proteins to 
infer changes in biological function. However, it has been shown 
that even for common metabolic processes, such as glycolysis, a 
change in the cellular concentration of an enzyme does not nec-
essarily lead to a proportional change in metabolic flux4. Thus, 
whereas genomics and proteomics identify what might happen, 
metabolomics identifies what is actually happening in the system. 
This realization demands a different perspective and requires the 
measurement of transcriptional, proteomic, and metabolomic data 
in order to obtain a complete picture of the system’s response to 
environmental or genetic stress.

As another illustration, a “silent mutation” does not produce an 
observable change in phenotype despite an alteration in a gene or 
protein product. Therefore, metabolomics profiling can be used 
to decode the function of silent mutations, such as the Pfk26 and 
Pfk27 genes in Saccharomyces cerevisiae that both encode the  
glycolytic/gluconeogenesis regulator phosphofructokinase 25. Via  
co-response and cluster analysis, these genes were observed to 
exhibit similar metabolite profiles which differed from other genes 
impacting energy metabolism. For these reasons, methods to  
directly measure metabolite concentrations within cells, tissues,  
organs, or other biological samples are crucial for fully under-
standing a system when traditional omics studies (for example, 
genomics, proteomics, and transcriptomics) are deemed insuf-
ficient. To date, nuclear magnetic resonance (NMR)6 and mass 
spectrometry (MS)7 have been the primary analytical techniques 
used to characterize a metabolome. NMR and MS are typically  
combined with univariate and multivariate statistical methods 
to identify major metabolite changes and to identify potential  
biomarkers8. Nevertheless, despite the tremendous growth in the 
field, critical protocols and techniques are still under develop-
ment. Herein, we present recent advances in methodologies and 
statistical analysis that are enhancing and improving the perform-
ance of metabolomics while extending the applications in which  
metabolomics can play a significant role.

Essential components of a metabolomics study
Conceptually, an untargeted metabolomics study is quite simple. 
Biological samples are obtained from two or more experimental 
groups to be compared (healthy versus diseased, wild-type versus 
gene knockout, and so on) and the metabolites are extracted. These 
metabolic extracts then are measured by using numerous instru-
mental techniques, of which NMR and liquid chromatography  

(LC)-MS are the most common. The resulting spectra then are 
subjected to statistical analysis techniques such as principal  
component analysis (PCA) and orthogonal projection onto latent 
structures (OPLS) to determine the most significant spectral fea-
tures that define each group9,10. Finally, these spectral features 
then can be assigned to distinct metabolites and metabolic path-
ways by using spectral libraries of known metabolites11,12. In this  
manner, untargeted metabolomics is discovery-based since it reveals 
previously unknown information about how a system responds to 
environmental or genetic stress. Conversely, targeted metabolomics 
focuses on analyzing a specific set of metabolites on the basis 
of some prior knowledge about the system. As a result, targeted 
metabolomics studies tend to be more sensitive and quantitative and 
have a higher reproducibility and a lower false-positive rate relative 
to untargeted metabolomics.

Protocols for obtaining and extracting the metabolome have been 
well developed and exhaustively reviewed for a wide range of  
biological samples, including cell cultures, urine, blood/serum,  
and both animal- and plant-derived tissues13–16. Although these 
protocols are readily available, the variable stability of metabo-
lites means that even minor changes in procedure can have a  
major impact on the observed metabolome. The fast turnover rate 
of enzymes and the variable temperature and chemical stability of 
metabolites require that metabolomics samples be collected quickly 
and handled uniformly and that all enzymatic activity be rapidly 
quenched in order to minimize biologically irrelevant deviations 
between samples that may result from the processing protocol16,17. 
Thus, the optimization of the sample preparation protocol is essen-
tial to a successful metabolomics study. Conversely, the most likely 
source of bias is improper handling of the metabolomics samples. 
An important consideration is that the complete metabolome cannot 
be captured in a single extraction protocol. This is in stark contrast 
to modern genomics, which can reliably cover the entire genome 
of an organism. A metabolomics extraction protocol will usually 
focus on only a subset of metabolites (for example, water-soluble 
metabolites or lipids). Furthermore, an extraction protocol may 
focus on either a highly reproducible and quantitative extraction 
of a restricted set of metabolites (that is, targeted metabolomics) or 
the global collection of all possible metabolites (that is, untargeted 
metabolomics) with a possible reduction in precision. In general, 
200 to 500 metabolites may be observed by targeted metabolomics, 
whereas upwards of 1,500 metabolites have been detected in  
untargeted metabolomics studies18.

Following extraction and subsequent data collection, the final and 
perhaps most crucial step is metabolite assignment, which typically 
is accomplished by a comparison with spectral libraries of known 
metabolites. This is not a trivial task since the number of possible 
metabolites can be prohibitively large, and a large segment of the 
metabolome is either unknown or lacking a reference spectrum. For 
example, the human metabolome is estimated to contain around 
150,000 metabolites18, but the Human Metabolome Database11 con-
tains only around 74,000 metabolites (as of 1 June 2017). Thus, 
there are still many unknown metabolites and a true estimate of the 
size of the human metabolome is challenging19. Another complicat-
ing factor is that different organisms may have completely unique 
metabolomes. For instance, plants have over 45,000 known sec-
ondary metabolites20. Finally, there may be ambiguities in making  
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a metabolite assignment because of chemical shift overlap or iden-
tical masses (for example, isomers). As a result, the assignment of 
metabolites to spectral features may be as low as 4 to 5%21.

A tale of two methods: mass spectrometry or nuclear 
magnetic resonance?
Perhaps the most important choice that can be made in a metabo-
lomics study is which instrumental platform is used. Although a 
wide range of instruments have been used for metabolomics, 
including capillary electrophoresis, infrared spectroscopy, and 
Raman spectroscopy, only NMR and MS are routinely used for 
metabolomics. NMR and MS are often applied in metabolomics 
investigations because of their inherent complementarity, which 
results from their distinct advantages and disadvantages22. NMR is 
highly reproducible and quantitative, has simple sample preparation 
protocols, and is able to measure analytes over a wide range of sol-
vent conditions23. Despite these advantages, the main limitation of 
NMR is its low sensitivity, which restricts its application to meas-
uring the most abundant metabolites in the sample (micromolar to 
millimolar range). This has been noted as a significant hurdle that 
has slowed the widespread adoption of NMR by the metabolomics 
community22,24. Conversely, the high sensitivity and low detection 
limits of MS enable the detection of subtle metabolic changes that 
are invisible by NMR. With this increase in sensitivity, the detection 
of thousands of peaks is relatively common25, but untargeted MS 
metabolomics studies often are not quantitative in nature. Since MS 
detectors rely on ionization processes, MS is restricted to detect-
ing metabolites that readily ionize. Correspondingly, a significant 
reduction in observable metabolites may occur depending on the 
specifics of the sample being considered26. For a detailed overview 
of the utility of various MS detectors to metabolomics, see the 
review article by Dunn et al.27 (2005).

MS also suffers from reproducibility problems since contaminants  
within the sample can change the ionization efficiency of  
metabolites2. Specifically, quantitation is challenging in untargeted 
MS since peak intensity is dependent on ionization efficiency, 
which varies between metabolites and also is strongly depend-
ent on experimental conditions that may result in varying ion  
suppression28. One issue of particular relevance to MS is the  
relatively narrow nominal mass and mass defect distribution of the 
metabolome which results in significant peak overlap29. This can 
be resolved by coupling MS to a chromatographic method, most 
commonly LC or gas chromatography (GC), to resolve overlapping 
peaks and to aid in the metabolite identification based on retention 
time and the properties of the stationary phase.

GC was the first separation technique applied to the analysis of 
metabolic mixtures; for example, GC-MS was used to identify 
biomarkers for diagnosing phenylketonuria in 197030. GC-MS 
is particularly beneficial for the analysis of volatile metabolite  
mixtures since minimal sample preparation is required; in some 
cases, samples can be directly analyzed. Furthermore, a number 
of applications of GC-MS uniquely involve detecting volatile 
metabolites; two examples are the measurement of exhaled breath  
condensates for diagnosing lung cancer31 and the monitoring of  
volatile paper degradation products from historic books32. An  
obvious disadvantage of GC-MS is its reliance on analyte  
volatility, where metabolites of low volatility or low temperature 

stability may be modified or destroyed17. Limited metabolite vola-
tility can be overcome through the use of derivatization schemes, 
but derivatization is time-consuming. More importantly, differences 
in the efficiency of the derivatization33 and differences in the sta-
bility of the derivatized metabolites17 may dramatically perturb the 
apparent concentrations of the metabolites, possibly leading to an 
erroneous biological conclusion.

LC was not widely used for metabolomics until the 1980s27 and 
this was due to technical limitations with interfacing LC and mass  
spectrometers. A main advantage of LC over GC is that most 
metabolites can be detected intact and without modification from a 
deravitizing agent. Additionally, LC provides an accurate analysis 
of thermally unstable or reactive metabolites since the separation 
typically occurs at room temperature. However, the introduction 
of a liquid phase does introduce a higher variability in retention 
times34, an increase in ion suppression due to matrix effects35, and a 
lower resolution relative to GC.

NMR and MS tend to observe a distinct set of metabolites from 
the same metabolomics sample. Consequently, there is a grow-
ing trend in metabolomics to perform tandem studies in which the  
same sample is analyzed by both NMR and MS36–39. In this  
manner, the coverage of the metabolome is significantly increased 
by taking advantage of the strengths of both methods. NMR identi-
fies trends in metabolic alteration along core metabolic pathways 
and provides a context for the interpretation of the low-abundance 
metabolites identified by MS. Of course, the combined use of NMR 
and MS leads to a proportional increase in data set size with the 
added complexity of the simultaneous processing, analysis, and 
interpretation of two dissimilar data types.

Data processing and interpretation
Metabolomics experiments generate large data sets that require spe-
cialized tools for analysis. Numerous software packages for data 
pre-processing and statistical analysis are available and have been 
reviewed elsewhere40,41. Unfortunately, no single software exists 
that can simultaneously perform all of the critical steps needed for 
an analysis of a combined NMR and MS data set. Although the sta-
tistical techniques applied to NMR and MS data sets are largely the 
same, each technique requires a unique set of pre-processing tools 
and algorithms prior to modelling. For example, an NMR spectrum 
has to be Fourier-transformed and phased, whereas centroiding 
and de-isotoping are required in MS. Owing largely to these data 
type–specific processing requirements, newly developed software 
is almost exclusively restricted to one method or the other. Con-
versely, there has been minimal effort in developing tools capable 
of working with both NMR and MS data sets40.

There are two general approaches to integrating NMR and MS data 
sets into a single coherent study. The first involves samples simply 
being independently analyzed by each method. The separate data 
sets then are compared in order to identify consistencies in the met-
abolic alterations observed by each technique. The main advantage 
of the approach is simplicity since it does not require any significant 
protocol changes. Also, the confidence of a metabolite assignment 
may be significantly increased if it is identified by both methods. 
Furthermore, a measure of internal consistency may be achieved 
if metabolite concentrations can be estimated by both methods. 
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However, significant information can be lost during this process 
since, for example, ambiguity in peak assignments sometimes can 
be resolved by information from the other method. There is also a 
lack of statistical correlation since the data sets are independently 
analyzed. Although the manual curation of independent data sets 
is the dominant method currently used by metabolomics investiga-
tors, it also suffers from reproducibility problems due to potential 
biases in data interpretation (for example, metabolite assignment 
methods) among other issues.

The second approach to combining NMR and MS data sets is to 
simultaneously integrate each data set into a single statistical 
model using a multiblock analysis. Multiblock analysis encom-
passes a variety of methods that combine multiple data sets prior 
to conventional multivariate analysis. In addition to combining 
multiple instrumental data sources42, multiblock analysis has been 
successfully employed to combine data sets from different omics  
disciplines43. Multiblock methods are preferable to independent 
analysis since the relative contributions of each data set still can 
be quantified, but importantly the larger combined data set is likely 
to result in models with greater predictive ability and resolving 
power than either method alone44. However, the software tools to 
perform multiblock analyses are crude and often rely on custom 
sets of pre-processing routines using multiple software packages. 
The lack of integrated analysis tools and software is a major road-
block in metabolomics, especially in light of the growing interest in  
combining NMR and MS data sets.

Recent advances in metabolomics
Dynamic nuclear polarization
NMR metabolomics investigations, especially those concerned with 
achieving a high confidence in metabolite identification, require 
two-dimensional NMR methods to resolve the overlap present in 
one-dimensional spectra. In general, this requires isotopic label-
ling with NMR-active nuclei like 13C and 15N because of their low 
natural abundance. In the last few years, dynamic nuclear polariza-
tion (DNP) has evolved from a structural biology tool in the area 
of solid-state NMR to have potential applications in solution-state 
metabolomics45. In DNP, a solid, frozen metabolomics sample at 
about 1.5 K is polarized in the presence of microwave-irradiated 
free-radicals, which induces a temporary hyperpolarization in spin-
active nuclei through a transfer of polarization from electrons to 
nuclei. The sample then needs to be rapidly melted and transferred 
to an NMR spectrometer to take advantage of the greatly enhanced 
sensitivity (>10,000-fold)46. The dramatic increase in sensitivity 
avoids the need for isotopic labelling, especially for in vivo sam-
ples, and may permit the detection of low-abundance metabolites. 
Nevertheless, DNP experiments are limited by T

1
 relaxation rates, 

resulting in a short measurement window of the dynamically polar-
ized samples. DNP also requires substantial hardware modifications 
and accessories (for example, microwave generator) to rapidly thaw 
and shuttle samples back and forth from the NMR spectrometer. 
DNP has also been applied to 13C-labeled metabolites that then are 
used as a tracer compound for in vivo imaging47. This requires close 
proximity of the polarizer and magnetic resonance imaging spec-
trometer to allow for rapid transfer, dissolution, and injection of 
the 13C-labeled metabolite given the relatively short T

1
 of 30 to 40 

seconds for a 13C-labeled carboxyl group. Despite these technical  
obstacles, DNP has been successfully used to monitor a single 

metabolite (for example, pyruvate) in living tissue (for example, 
heart) by magnetic resonance imaging48. Besides the short meas-
urement time, another challenge with the application of DNP to 
in vivo imaging is the limited number of 13C-labeled metabolites 
that can be polarized and tolerated at the concentrations needed for 
imaging (25 to 80 mM) and that are also a useful biological probe. 
In addition to pyruvate, bicarbonate, fumarate, urea, glutamine, and 
dehydroascorbate have been used for in vivo imaging47. Despite 
fundamental issues of reproducibility and limitations in sample 
preparation, DNP protocols and technology are rapidly advancing 
and one day could become a routine tool for metabolomics49.

Disease profiling and personalized medicine
Metabolomics can be used to profile an individual’s responses to 
a drug treatment or other medical therapy by monitoring metab-
olite changes in readily obtainable biofluids (for example, blood 
and urine). A unique advantage of metabolites as biomarkers is the 
likely occurrence of observing a set of multiple metabolites with 
distinctly different concentration changes that are correlated with 
a disease state or treatment response. Correspondingly, multiple 
metabolites, instead of a single biomarker, are expected to yield a 
higher sensitivity and selectivity. For example, plasma baseline lev-
els of xanthine, 2-hydroxyvaleric acid, succinic acid, stearic acid, 
and fructose prior to simvastatin treatment were observed to reliably 
predict a good or poor response in reducing low-density lipoprotein 
cholesterol50. The OPLS model yielded a 70% sensitivity and 79% 
specificity with a corresponding area under the receiver operating 
characteristic curve of 0.84. Thus, metabolomics can be used to pre-
dict whether a patient will respond to a drug in addition to being 
used as a semi-quantitative prognosis of disease progression.

For example, in a recent study of patients with tuberculosis (TB), 
urine samples that were collected over the course of a 6-month 
period became more similar to those of a non-TB control group dur-
ing the course of first-line anti-TB therapy (for example, isoniazid, 
ethambutol, or pyrazinamide). Metabolomics has also been success-
fully employed to identify serum metabolic alterations associated 
with psoriasis51. Importantly, the metabolomics results were con-
sistent with trends previously observed in genomics and proteomics 
studies. The metabolome changes were observed to reverse follow-
ing successful corticosteroid treatment52. Interestingly, the authors 
identified an increased demand for glutamine, which had not been 
previously reported in psoriasis52,53. Glutamine demand is directly 
associated with diseases characterized by increased cellular prolif-
eration, such as in cancers. A significant alteration in β-isosterol, 
which is a commonly employed herbal remedy, was also observed. 
Thus, metabolomics may also be used to identify a patient’s use of 
alternative treatments outside of his or her physician’s knowledge or 
recommendation. In this manner, metabolomics may assist in deter-
mining whether co-administration of a complementary treatment 
was beneficial or detrimental to a patient’s therapeutic outcome.

New trends in data analysis
Much of the data analysis approach in metabolomics has been 
largely borrowed from the field of chemometrics, which pio-
neered the application of PCA and PLS to chemical systems54. 
Although these are powerful statistical tools, the current trend in  
metabolomics data analysis is evaluating the efficacy of new  
algorithms and statistical methods to improve group separation and 
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metabolite identification. PCA, PLS, and OPLS are all commonly 
employed by metabolomics investigators, but newer approaches, 
including support vector machine (SVM)55, random forest (RF)56, 
and self-organizing map (SOM)57 algorithms, have all been recently 
applied to metabolomics data sets.

Despite having been formalized since 199258, SVM has been used 
extensively only in the analysis of gene microarray data, particularly 
due to its performance on data sets characterized by a large number 
of variables and few samples59,60. SVM is also able to identify non-
linear relationships that violate the linearity assumptions of PCA 
and OPLS, making it easily generalizable. SVM has been recently 
applied in biomarker discovery for ovarian cancer, and a model 
using serum-derived LC-MS spectra was able to predict disease 
onset with higher accuracy than the currently accepted method of  
CA-125 serum monitoring61. A major caveat of SVM is its restric-
tion to binary classification problems: it is able to discriminate 
between only two experimental groups. Simply, spectra belong-
ing to two experimental groups are represented as points in  
n-dimensional space, where n corresponds to the number of observed 
metabolites. A hyperplane then is calculated that best separates 
the points from the two groups. The coefficients of the calculated  
hyperplane are used to determine which metabolites are most  
important for discriminating between the two groups. Although 
methods have been proposed to extend SVM to multi-class  
problems, they are often done by breaking down the data set into 
an ensemble of binary groups that oversimplifies the problem and  
leads to uninformative models62.

The RF algorithm is a decision tree–based method that uses ran-
dom subsets of the data to construct multiple models, which then 
are combined to create an average model in a process known as 
bootstrap aggregation. In the decision tree method, samples are 
mapped to a target value (that is, which experimental class the 
sample belongs to) using a set of variable-based decision rules that 
separate the samples into groups corresponding to the target value. 
These newly formed groups can be further subdivided according 
to new variables, and each “branch” of separation is repeated until 
the samples can be fully differentiated. The major advantage of the 
decision tree is its imperviousness to scaling and variable normali-
zation, an extremely common problem in metabolomics data63. The 
disadvantages include an extreme propensity for overfitting and 
having extremely poor generalizability that severely limits its util-
ity. RF addresses this limitation by creating an ensemble of partial 
decision trees that, when combined into an overall model, reduces 
variance and overfitting64. In particular, the RF algorithm, being rel-
atively unaffected by scaling and normalization and easily handling 
both large data sets and missing values, is highly adaptable to the 
realities of real-world data sets. A major disadvantage of RF is that 
the method requires extensive “tuning” of default parameters by 
the investigator in order to obtain the best model. Also, the result-
ing decision tree can be hard to visualize for large data sets65. RFs 
have shown clinical value: they have been used to determine a set 
of serum protein and metabolic biomarkers in prostate cancer with 
higher predictive accuracy than the current prostate-specific antigen 
biomarker66,67. See Gromski et al. (2015) for an excellent review of 
the SVM and RF algorithms that also includes comparisons with 
other mainstream techniques65.

SOM is an approach similar to PCA that reduces multi-dimensional  
problems to a more easily interpretable low-dimensional grid to 
visualize natural clustering trends and groupings within a data 
set. SOM can be applied to the same tasks as PCA but without the 
biases toward high-variance metabolites. SOMs, like SVM, have 
the ability to detect non-linear relationships between detected 
metabolites68. SOMs have been successfully applied to develop 
biomarkers for early-stage renal cell carcinoma as well as to predict 
patient response to surgical intervention with a predictive accuracy 
of 94.74%69. In comparison with the other statistical methods, SOM 
has been severely limited in metabolomics because of a computa-
tionally intensive algorithm and the lack of a pre-packaged soft-
ware, which has significantly diminished its accessibility to the 
wider research community70. Nevertheless, the usage of SOMs 
in metabolomics is steadily rising, and comparative analyses are 
beginning to demonstrate that SOMs are an acceptable alternative 
to more traditional clustering algorithms71.

In addition to statistical methods applied directly to spectral pro-
files, identified metabolites can be used with pathway analysis72 to  
understand metabolite interactions with known pathways or to 
discover mechanisms of action in pharmaceutical natural product 
research73. Metabolomics data sets can generate an overwhelming 
and seemingly disjointed list of metabolites, which pathway anal-
ysis aims to place into a broader biological context by assigning 
metabolites to relevant metabolic pathways. This is done through a  
number of software tools that integrate putatively identified 
metabolites with pathway information from various databases. 
For example, MetaboAnalyst 3.0 is a suite of metabolomics tools  
(http://www.metaboanalyst.ca), which includes modules for metab-
olite enrichment analysis (MSEA), metabolite pathway analy-
sis (MetPA), and an integrated pathway analysis. The user input 
is typically a list of metabolites (with or without concentrations) 
or genes or both. MSEA provides a ranked list of potentially key 
metabolic pathways based on the observed number of metabolites 
associated with that pathway (that is, metabolite set enrichment)74. 
MetPA combines MSEA with a pathway topology analysis to pro-
vide an overall pathway analysis to identify the metabolic pathways 
primarily impacted in the study72. The integrated pathway analysis  
combines both metabolomics and genomics data with enrichment 
analysis and topology analysis to again identify the pathways (in rank 
order) that were primarily impacted in the study75. MetaboSignal  
(https://bioconductor.org/) is an alternative approach to pathway 
analysis which employs directed graphs with network topology 
approaches to compute centrality measures to correlate gene-
metabolite relationships through shortest-path distances76. Thus, 
unlike the MetaboAnalyst 3.0 tools, the output of MetaboSignal 
is a network map of gene-metabolite connectivities. Cytoscape 
(http://www.cytoscape.org/) is a generalized network interac-
tion and visualization tool that works with a variety of data 
sets, including metabolomics data. Cytoscape combined with  
MetScape 3 (http://metscape.ncibi.org/)77 can generate network 
maps  similar to those of MetaboSignal from metabolomics or 
genomics data or both78. MetScape uses known pathways from 
Kyoto Encyclopedia of Genes and Genomes (KEGG)79 and  
Edinburgh Human Metabolic Network (EHMN)80 databases and 
gene set enrichment analysis to generate these networks in order 
to visualize the impacted metabolic pathways. In essence, there is 
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some significant overlap in the capabilities of MetaboAnalyst 3.0,  
MetaboSignal, and Cytoscape/MetScape 3. Importantly, pathway 
analysis provides an interaction network that may identify central-
ized hubs where metabolic pathways coincide or where bottlenecks 
may occur.

The limited connectivity or altered flow through specific metabolic 
nodes (that is, change in metabolic flux) may identify functionally 
essential biological processes81. These essential pathways then can 
be selectively targeted. By genetically or chemically restricting a 
potentially essential metabolic pathway, it is possible to ascertain 
the relevance of the pathway to a systems response to an envi-
ronmental stress (that is, drug resistance) and potentially reverse or  
negate the response82.

Pathway analysis also allows for the integration of multi-modal 
omics data, such as combining gene-expression and metabo-
lomics data to uncover gene and protein functions. For example, 
metabolite profiles were integrated with genome-wide screen-
ing of single-nucleotide polymorphisms (SNPs) to identify the 
molecular mechanism of the NAT8 and PYROXD2 genes. Briefly, 
SNPs were ranked according to the strength of an association with 
observed metabolites. The regions where these SNPs occur on 
the chromosomes then were screened to determine at what posi-
tion in the genome the gene/protein product responsible for the 
mediation is stored. With this approach, it was suggested that the 
NAT8 and PYROXD2 genes were responsible for mediation of 
serum diethylamine levels83, a novel insight for these previously  
under-annotated genes.

As another illustration, transcriptomic and metabolomic data from 
Arabidopsis thaliana were integrated to characterize the biologi-
cal response resulting from the over-expression of PAP1, a gene 
known to cause profound accumulation of anthocyanins and to 
encode a MYB transcription factor regulating flavonoid biosynthe-
sis. The authors were able to correlate the biosynthesis of cyanidin 
and quercetin derivatives with a specific set of upregulated genes 
that enabled them to identify the function of two uncharacterized 
proteins: a flavonoid 3-O-glucosyltransferase and anthocyanin  
5-O-glucosyltransferase84. Numerous tools are now available for  
pathway analysis of metabolomics data79,85,86, which will signifi-
cantly improve data interpretation and simplify our understanding  
of biological relevance. Thus, pathway analysis is becoming a  
routine component of a detailed metabolomics analysis.

Conclusions: What does the future hold?
The recent advancements in metabolomics outlined herein have 
been shown to enhance its utility in systems biology research and 
to have a beneficial impact on medical research and personalized 
medicine. The measurement of metabolomics profiles has been 
shown to be useful for monitoring treatment efficacies from both  
pharmaceutical and surgical interventions. As our understand-
ing of the relationship between disease state and the chemical 
profile of biofluids grows, metabolomics is expected to become a  
routine approach for monitoring disease development and progres-
sion, as a tool for disease diagnosis, and for understanding the 
underlying molecular mechanisms of drug resistance. Metabolite 
profiles could be obtained at regular intervals and screened for 

changes over a patient’s lifetime as a diagnostic tool and a means 
to monitor a patient’s overall health status. Some of this work  
has already begun; an ongoing Alphabet (parent company of 
Google) “moon-shot project” is a baseline study attempting to 
determine the inherent level of variability in human medical data 
that is not associated with a disease. Though still in its infancy, 
a similar approach using metabolomic profiles may be used to 
determine the inherent variability in biofluid profiles for healthy  
individuals. In this manner, metabolic profiles associated with  
disease onset and progression can be easily distinguished from  
the known variance in healthy individuals.

Some of the biggest challenges remaining in the field of metabo-
lomics involve fundamental limits in experimental methodology.  
Metabolomics requires relatively high-cost instrumentation  
and complex data analysis and still suffers from issues of  
sample-to-sample variability. Although great strides in each of these 
areas have been made, there is still more work to be done before  
metabolomics can become a key and routine part of a clinical 
practice. Nevertheless, metabolomics continues to make important  
contributions to both medical research and general systems biology 
studies. In fact, the ability to directly measure metabolite concen-
tration changes by using a targeted NMR or MS approach would 
greatly benefit investigations into a range of research areas that 
often are overlooked by other methods. In this manner, a metab-
olomics assay that targets a select and specific set of metabolites 
can be used to develop a highly reproducible and quantifiable assay  
that can be translated into a validated clinical assay.
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