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Abstract

Mammography is routinely used to screen for breast cancer (BC). However, the radiological 

interpretation of mammogram images is complicated by the heterogeneous nature of normal breast 

tissue and the fact that cancers are often of the same radiographic density as normal tissue. In this 

work, we use wavelets to quantify spectral slopes of BC cases and controls and demonstrate their 

value in classifying images. In addition, we propose asymmetry statistics to be used in forming 

features which improve the classification result. For the best classification procedure, we achieve 

approximately 77% accuracy (sensitivity=73%, specificity=84%) in classifying mammograms 

with and without cancer.
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1. Introduction

Breast cancer is the most common form of cancer in females and the second most common 

cause of cancer-related death for females in the United States (the National Cancer Institute 

estimated 232,000 new cases and 40,000 fatalities for the year 2014) [1]. Since early 

detection can improve a patient’s prognosis as well as provide less invasive interventions, 

mammography is widely used for screenings with the goal of early detection and treatment 

[2]. However, mammography has limitations. The radiological interpretation of 

mammogram images is complicated by the heterogeneous nature of normal breast tissue and 

the fact that cancers are often of the same radiographic density as normal tissue. As a result, 

sensitivity may be affected, especially in women with dense breasts. The National Cancer 

Institute estimates 20% of tumors present at the time of screening are undetected [2]. 

Furthermore, researchers have found that, in general, breast tissue is denser among younger 

women, potentially making it even more difficult to detect tumors. In a study of over 

300,000 screening mammograms, Carney et al. observes 31% of cancers are undetected in 

women 40 to 44 years of age as opposed to 17% in women 80 to 89 years of age [3]. 
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Specificity is a concern as well – according to the Lancet, of the 5% of mammograms that 

suggest further testing, as high as 93% show up as false positives [4].

As a result of these challenges, recent research has investigated the use of computer-aided 

detection (CAD). In a 2001 study, over 12,000 screening mammograms were interpreted 

first without the assistance of CAD, then reinterpreted with the suspicious regions marked 

by the CAD system [5]. The authors observed a 19.5% increase in the number of cancers 

detected and an increase in the proportion of early-stage (0 and I) malignancies detected 

from 73% to 78%. Most CAD algorithms rely on pattern recognition and attempt to identify 

physical characteristics, often microcalcifications specifically [6, 7].

More recently, researchers have taken a different approach to identifying breast cancer on 

mammograms by utilizing the concepts of self-similarity, scaling, and fractality. A 2014 

study using the discrete complex wavelet transform on mammogram images obtained a 

classification procedure based on the spectral slopes and phase variance of mammograms 

with and without cancer with an accuracy rate of nearly 86% [8]. However, it was later 

discovered that the mammograms of the cases were performed on a different mammography 

unit than the mammograms of the controls. Therefore, it is unclear how much of the 

separation in the data is due to the presence of the cancer and how much is due to the 

difference in mammography unit. However, the advantage of this general approach is that it 

captures information contained in the background tissue of images rather than relying only 

on predefined templates of expected cancer morphology. This proposed method does not 

make a priori assumptions about the morphology of potential breast cancers.

In this study, we use wavelets to investigate the spectral slopes of mammograms with and 

without cancer, removing the mammography unit effect since all mammograms were 

obtained from the same scanning unit. In simple terms, the spectral slopes are descriptors of 

the regularity of a signal/image. We show how these slopes may be used in a classification 

procedure to build a classifier for separating cases from controls, cancer from non-cancer. In 

addition, we consider two asymmetry statistics in order to distill additional summaries with 

the goal of improving the classification result.

2. Data

A collection of digitized mammograms for analysis was obtained from the University of 

South Florida’s Digital Database for Screening Mammography (DDSM) [9, 10]. All 

abnormal studies have histological confirmation of breast cancer. Images from this database 

containing suspicious areas are accompanied by pixel-level “ground truth” information 

relating locations of suspicious regions to what was assessed and verified through biopsy. 

This image analysis is based on 79 cases and 45 controls, all scanned on the HOWTEK 

scanner at the full 43.5 micron per pixel spatial resolution. Each case study contains 

craniocaudal (CC) and mediolateral oblique (MLO) projection mammograms from a 

screening exam. However, only the CC projection mammogram for a single breast, either 

with cancer or without, is analyzed.
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Each image is split into five sub-images, each of size 1024 × 1024 pixels. Dividing the 

images in this way allows the capturing of only breast tissue, and smaller portions of the 

image data may be analyzed at a time. Figure 1 shows examples of a mammogram with 

cancer and one without cancer, split into five sub-images each.

3. Introduction to Wavelets

Wavelets are a mathematical tool for extracting information from different types of data. 

Often, discussions of wavelets focus on the study of one-dimensional signals, but wavelet 

techniques may also be applied to the study of multidimensional images; a two-dimensional 

wavelet transform is presented here. The wavelet transform is similar to the Fourier 

transform, which represents signals as a summation of sinusoidal building blocks, or basis 
functions. One key difference, however, is that the wavelet transform is localized in both 

frequency and time, while the standard Fourier transform is only localized in frequency. In 

other words, the Fourier transform tells us what frequencies are present in a signal, and the 

wavelet transform tells us what frequencies are present and when. Wavelets are used for a 

variety of purposes, including the compression, denoising, and filtering of signals as well as 

measuring the degree of self-similarity in a signal. An excellent reference is [11]. Statistical 

aspects of wavelets are discussed in [12] and [13].

Wavelet transforms lead to coefficients (numerical values) representing the nature of a given 

signal at different locations/resolutions. These coefficients may be used to form the wavelet-
based spectra of the signal, showing the relationship between the resolution of the signal and 

the averaged magnitudes of the coefficients. By assessing the wavelet-based spectra, we may 

better understand the mathematical characteristics of the overall signal. If the energies (an 

engineering term for squared coefficients in the wavelet decomposition) decay regularly, this 

signifies scaling in the data, meaning all resolutions contribute to the overall observed 

phenomenon. In this case, a measure of regularity can be calculated as the rate of energy 

decay. More precisely, if the logarithms of average energies in different scales decay linearly 

with the scale index, then the slope of this decay is describing the regularity of the original 

signal/object. Thus the spectral slope of the wavelet-based spectra can precisely measure the 

degree of a signal’s regularity. For details about wavelet-based spectra and their application 

to assessing regularity of signals/images we direct the reader to [11],[14],[15], and [16].

4. The Scale-Mixing Transform and Spectral Slope

In order to analyze the mammogram images, we apply a 2-D wavelet transform to each of 

the five non-overlapping 1024 × 1024-pixel regions in both sets of images (cases and 

controls). For each region, we use the obtained matrix of wavelet coefficients to define the 

wavelet spectra. There are several ways to define the 2-D wavelet transform. We have 

selected the scale-mixing wavelet transform (as in [17]), due to its computational and 

discriminatory properties. For more technical details on the 2-D scale-mixing wavelet 

transform, see Appendix A. When implementing the transform, the choice of decomposing 

wavelet is equivalent to the choice of filter. Our experience is that the classification results 

are generally robust to the choice of wavelet/filter. The Symmlet 8-tap filter is used, as it 
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provides a good compromise between smoothness and locality. These properties of wavelets 

are both important, but counterpoised.

Figure 2 shows the log energy spectra formed for single corresponding regions from the 

images in Figure 1. As described in the previous section, the decreasing lines are formed by 

the logarithm of averaged squared wavelet coefficients, or energies, at different scales of the 

image which are indexed by dyadic level. As the dyadic level increases, the aspects of the 

image represented are more detailed. The slope measures the change in energy between 

adjacent dyadic levels of the transformed matrix.

In this side-by-side analysis, the slope of regressed energies in the diagonal hierarchy across 

the range of dyadic levels is more negative for the cancerous breast tissue, indicating more 

regularity. In the one-dimensional case (e.g. time series), high regularity means having long-

term positive autocorrelation. In other words, a high value in the series will probably be 

followed by another high value, and the values a long time into the future will also tend to be 

high. This concept of regularity may also be translated to the two-dimensional case (e.g. 

images), as is illustrated in Figure 3.

In conclusion, the spectral slope of a transformed image represents an informative summary 

statistic appropriate for classifying images with and without cancer. It is interesting to note 

that in many biological and medical signals and images, presence of pathology causes 

signals/images to be more regular, that is, their spectral slopes to be more negative. This is 

an almost universal phenomenon noted in scaling of EKG, EEG, x-ray radiography, ocular 

responses, DNA nucleotide signals, etc.

5. Asymmetry Statistics

The scale-mixing transform results in several hierarchies of scales, formed by the matrix of 

wavelet coefficients. The so-called diagonal hierarchy was used in the previous section to 

define spectra and assess its informative slope. Adjacent to the diagonal hierarchy on each 

side there are two hierarchies that measure “fluxes of energies” among coefficients, in which 

the scale of the x-coordinate differs from the scale of the y-coordinate. By looking at the 

difference in energies between these two scale-mixing hierarchies we can assess the degree 

of anisotropy in the image. Specifically, we consider two statistics representative of 

differences in energies of two diagonally-symmetric mixed detail levels. First, we consider a 

studentized asymmetry statistic, defined as

(1)

where ē(j,j+1) and  represent sample mean and variance of squared wavelet 

coefficients in the tessellation rectangle indexed by scales (j, j + 1). The number of 

coefficients in this rectangle is n(j,j+1). For diagonally symmetric rectangle indexed by (j + 1, 
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j), the notation indices j and j + 1 exchange places. Of course, by construction, n(j,j+1) = 

n(j+1,j).

Since wavelets decorrelate, these sets of energies are approximately independent. Since the 

number of coefficients n(j,j+1) is typically large, the Central Limit Theorem ensures that the 

statistic tj is approximately standard normal under the null hypothesis of isotropy. Figure 4 

shows the wavelet coefficients contributing to the statistic in (1), for several values of index 

j. Note that in regions above the diagonal hierarchy, the level of detail is greater in the 

horizontal direction than in the vertical direction. In regions below the diagonal hierarchy, 

the resolution of vertical and horizontal levels is reversed.

In addition to statistic tj from (1), we consider a fold change asymmetry statistic, defined as

(2)

where the notation is as in tj. Use of an asymmetry statistic of this form is motivated by fold 

change statistics often used in analyzing similarly structured microarray data [18]. When 

n(j,j+1) is large, under assumptions of isotropy and independence of wavelet coefficients, the 

fold statistic in (2) approximately follows a normal distribution with mean 1 and standard 

deviation . (To see why this is the case, denote n(j,j+1) = n(j+1,j) simply as n. 

Under the assumption of isotropy, nē(j,j+1) and nē(j+1,j) are approximately independent , as 

sums of squares of zero-centered wavelet coefficients. Under the fractional Brownian motion 

(fBm) model, the Gaussianity and approximate independence of wavelet coefficients follows 

from [19]. Thus, the ratio fj is approximately F-distributed, fj ~ Fn,n, with mean  and 

variance  . For n large, the mean approaches 1 and variance behaves as . Also, 

for n large, Fn,n can be approximated by a normal distribution, due to Central Limit Theorem 

for exchangeable random variables.)

In order to demonstrate how directional (in this case vertical and horizontal) features in an 

image may be captured through an asymmetry statistic, we compute the asymmetry statistics 

for two highly anisotropic 256 × 256 pixel images of cardiac tissue [20]. The two images, 

one of central nuclei and striations having strong vertical features and one of skeletal muscle 

vasculature having strong horizontal features, are shown in Figure 5. The asymmetry 

statistics at various dyadic level pairings for these two images are displayed in Table 1. The 

lower dyadic level pairings represent more coarse features of each image, while the higher 

dyadic level pairings represent more fine features of each image. The systematic differences 

in asymmetry statistics may be seen for the coarser level pairings (j = 2, 3, and 4). The finer 

level pairings (j = 5, 6) are not capable of “seeing” the images’ directional differences.

Referring back to Figure 4, the studentized asymmetry statistics for the image with 

prominent vertical features are positive and the fold change asymmetry statistics are greater 

than 1, meaning there is more energy in regions above the diagonal hierarchy. In contrast, 

the studentized asymmetry statistics for the image with prominent horizontal features are 
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negative and the fold change asymmetry statistics are less than 1, meaning there is more 

energy in regions below the diagonal hierarchy.

As we pointed out, distributions of the asymmetry statistics are well approximated by 

normal distribution when n(j,j+1) is large, which is the case for j = 5, 6. When level j is 

coarse, the distributions of asymmetry statistics are impacted by dependence, skewness, and 

choice of wavelet. In order to calibrate the asymmetry statistics in such cases, we may find 

the degree of deviation from isotropy (uniformity in all orientations) via parametric 

bootstrap: We simulate a large number (say 1,000) of fractional Brownian fields (fBfs) with 

the same spectral slope as the image to be analyzed. Fractional Brownian fields are 

theoretical spatial processes that can mimic the diagonal spectral slope, but possess isotropy, 

and theoretically the asymmetry statistics should not be significant. Next, we find the 

empirical bootstrap distributions of each asymmetry statistic from simulated fields. Finally, 

we evaluate where in these bootstrap distributions the actual image’s asymmetry statistics 

fall by computing associated achieved significance levels (ASLs). The ASLs are analogous 

to p-values, with values close to zero indicating significant deviation from isotropy.

For example, consider the 256 × 256 portion of the chest radiograph shown in Figure 6 [21]. 

First, we find the spectral slope (−2.8529) and generate 1,000 fBfs with the same slope. We 

then compute asymmetry statistics corresponding to each fBf and generate the empirical 

bootstrap distributions of the asymmetry statistics at the three coarsest scale levels. Figures 7 

and 8 show these bootstrap distributions (histograms) and where the actual image’s 

asymmetry statistics fall in the distributions (red vertical lines). This chest radiograph has 

asymmetry statistics falling in the left tails of the distributions, indicating high horizontal 

directionality (t statistic ASLs (coarse to fine): 0.061, 0.001, 0; f statistic ASLs (coarse to 

fine): 0.051, 0, 0). Therefore, the asymmetry statistics pick up the coarse horizontal 

directionality of the rib contour in the image.

6. Comparing Descriptors for Cases and Controls

As mentioned in section 4, the spectral slope is typically more negative for the 

mammograms with cancer than for the mammograms without cancer. However, from each 

mammogram 5 subimages are taken, thus increasing the sample size, but inducing 

dependence. In order to quantify the influence of any descriptor distilled from mammograms 

on the disease status, we perform a two-way nested ANOVA, under the model

(3)

with standard identifiability constraints Σi αi = 0, Σj βj(i) = 0, i = 1, 2.

In (3), yijk represents the spectral slope for each possible region of each mammogram, αi, i = 

1, 2 represents the effect of case/control on the slope, and βj(1), j = 1, …, 79 and βj(2), j = 1, 

…, 45 represent effects of subjects on the slope for the cases and controls, respectively. This 

analysis separately models the effects of the subject and whether the mammogram belongs 

to the cancerous group. We assume that scaling is independent across subregions, accounting 
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for the status (αi) and the subject nested in the status (βj(i)). Table 2 contains the two-way 

nested ANOVA results, showing that cases and controls produce significantly different 

spectral slopes (effects α̂
1 = −0.0462 for the cases, and α̂

2 = 0.0462 for the controls). This 

model accounted for significant differences in spectral slopes among subjects not relevant to 

the disease status. For our classification procedure, we use slopes yijk − ε̂ijk to represent each 

image.

We fit analogous two-way nested ANOVA models for values of both the studentized 

asymmetry statistic and the fold change asymmetry statistic at each detail level. For both 

asymmetry statistics, cases and controls produce significantly different values at all but the 

coarsest levels of detail. Both t and f statistics tend to be higher for cases compared to 

controls. The subject effect is significant for each asymmetry statistic at every detail level. 

Tables 3 and 4 contain the two-way nested ANOVA results for values of the t and f statistics, 

respectively, at dyadic level pairing 5 and 6 (as an example). For this level pairing, the fitted 

t statistic coefficients are  for cases and  for controls. The fitted f 

statistic coefficients are  for cases and  for controls. As with 

slopes, we use asymmetry statistic values with subtracted fitted residuals to represent each 

image.

7. Classification Results

To classify subjects on the basis of derived features from their mammograms, we employed 

Support Vector Machines (SVM) [22]. An SVM is a discriminative classifier formally 

defined by a separating hyperplane. Given labeled training data (supervised learning), the 

SVM algorithm outputs an optimal hyperplane which categorizes new subjects; an excellent 

reference is [23]. Table 5 displays the SVM classification results by choice of kernel (linear, 

quadratic, or radial basis) with and without asymmetry statistics for 1,000 iterations. For 

each iteration, the data set is split into a 70% training set (87 images) and a 30% testing set 

(37 images). For each procedure, the spectral slopes are used as features to train the model. 

The addition of asymmetry statistics of either form as features in the classification 

significantly raises the specificity and overall accuracy. The best results using only spectral 

slopes in the classification are obtained using the linear kernel (accuracy = 62.68%). The 

best overall results are achieved using the linear kernel and including both spectral slopes 

and fold change asymmetry statistics in the classification (accuracy = 76.59%).

The performance of logistic regression as a classification tool was also assessed, but this 

classifier consistently performed worse than the SVM classifier with linear kernel by around 

three percentage points in accuracy. For example, the logistic regression model with spectral 

slopes and fold change asymmetry statistics as inputs resulted in a classification procedure 

with 73.68% accuracy (sensitivity = 71.85%, specificity = 77.96%). Typically, in our 

experience, logistic regression and SVM with linear kernel perform comparably. However, 

when features are correlated, SVMs can be superior [24]. The correlation among fold change 

values for a single image could explain the slight difference in the performance of the two 

classifiers in this case.
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8. Conclusion

Mammography is routinely used to screen for breast cancer. However, the interpretation of 

mammograms by radiologists is made difficult by the heterogeneous nature of normal breast 

tissue and the fact that cancers are often of the same radiographic density as normal tissue. 

CAD algorithms have been developed to assist in the identification of suspicious regions. 

However, most CAD algorithms rely on pattern recognition and attempt to identify 

predefined physical characteristics of calcification, masses, and important asymmetries. 

Wavelet based scaling makes no a priori assumptions about the morphology of a cancer, but 

rather detects it by departure from normal background. By using scaling properties of 

mammogram images, we have captured information contained in the background tissue of 

images which is not utilized when only considering lesion morphology. Using features based 

on spectral slopes and our defined asymmetry statistics, we have achieved an SVM 

classification procedure with 76.59% accuracy on the testing sample. Importantly, the 

mammograms of both the cases and controls were performed on the same mammography 

unit, so this level of separation is not due to any image acquisition effect. We suggest that 

this classifier may be used in conjunction with other methodologies in order to improve the 

detection of breast cancer through mammography. If the tool proves robust on further 

investigation, it may be useful in outlining cases that require heightened scrutiny or even 

addition of supplemental screening modalities, especially in cases where the patient has 

dense background parenchymal tissue, a factor known to decrease mammographic 

sensitivity.
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(4)

where the symbols h, v, d stand for horizontal, vertical and diagonal directions, respectively, 

since the atoms capture image features in the corresponding directions.

Consider the wavelet atoms

(5)

(6)

where i is one of h, v, or d, as in (4) and (j1, j2) ∈ ℤ2, then any function X ∈ ℒ2(ℝ2) can be 

represented as

and the 2-D scale-mixing wavelet transform is obtained. Notice that (j1, j2) in (5) and (6) can 

be indexed as well as (j1, j1 + s), where s ∈ ℤ. The scale-mixing detail coefficients are 

defined as

(7)

The scale-mixing detail coefficients are linked to the original image (2-D time series) 

through a matrix equation. Suppose that a 2n × 2n image (matrix) A is to be transformed into 

the wavelet domain. If the rows of A are transformed by a one-dimensional transform given 

by the 2n × 2n wavelet matrix W, then the object WA′ represents a matrix in which the 

columns are transformed rows of A. If the same is repeated on the rows of WA′ the result is

Roberts et al. Page 10

Stat Med. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8)

Matrix B will be called the scale-mixing transform of matrix A, and will be the basis for 

defining the scale-mixing spectra. The scale-mixing wavelet transform was previously used 

in the literature, but not as extensively as the traditional 2-D transform. Some references are 

[25, 26, 17, 27]. It is also known as “hyperbolic” [27] and “rectangular” [26]. In its complex 

version this transform was utilized in [28].

Figure 9 illustrates the 2-D scale-mixing wavelet transform, using the box with cross image. 

The scale-mixing 2-D transform is operationally appealing. The images are usually of 

moderate size and constructing appropriate W is computationally fast. Since W is 

orthogonal, the inverse transform is straightforward,

By inspecting the tessellation in Figure 9 (left), several hierarchies of detail spaces can be 

identified. The diagonal hierarchy interfaces coefficients with the same component scales 

and coincides with the diagonal hierarchy in the traditional 2-D spectrum. Just above and 

below the diagonal hierarchy are hierarchies of detail spaces that interface the scales that 

differ by 1. For example, for the hierarchy above the diagonal, the scales along x-direction 

are interfaced by the next coarser scale along y-direction. For the hierarchy below the 

diagonal, the roles of x and y are interchanged. Figure 10 (a) shows three hierarchies of 

detail coefficients: the diagonal hierarchy (circles) and the hierarchies in which dyadic scales 

differ by 1 (triangles and squares).

9.1. Definition of Scale-Mixing Wavelet Spectra

The scale-mixing spectrum is defined in terms of the scale-mixing coefficients (7) as

(9)

where s ∈ ℤ is fixed. The empirical counterpart of (9) is

(10)

In (10),  denotes the average of squared detail coefficients (7) at level (j, j + s). 

Notice that the case s = 0 in (10) corresponds to the traditional diagonal 2-D spectrum, see 

Figure 10.
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Figure 1. 
Mammogram images, with cancer (left) and without cancer (right), split into five sub-images 

each.
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Figure 2. 
Log energy spectra for a single region of a case (left) and the log energy spectra for the 

corresponding region of a control (right)
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Figure 3. 
Examples of images with low (left), moderate (middle), and high (right) regularity.
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Figure 4. 
Illustration of wavelet coefficients contributing to the asymmetry statistics. Red lines 

connect the regions of the wavelet-transformed image used in the calculations, which are 

above and below the diagonal hierarchy.
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Figure 5. 
Images with strong directional features: vertical (left) and horizontal (right).
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Figure 6. 
Chest radiograph (left) and the portion analyzed for deviation from isotropy (right)
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Figure 7. 
Empirical bootstrap distributions (histograms) for the t statistic at the three coarsest levels 

and where the chest radiograph subimage’s asymmetry statistics fall in the distributions (red 

vertical lines). This image has asymmetry statistics falling in the left tails of the 

distributions, indicating high horizontal directionality (t statistic ASLs (coarse to fine): 

0.061, 0.001, 0).
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Figure 8. 
Empirical bootstrap distributions (histograms) for the f statistic at the three coarsest levels 

and where the chest radiograph subimage’s asymmetry statistics fall in the distributions (red 

vertical lines). This image has asymmetry statistics falling in the left tails of the 

distributions, indicating high horizontal directionality (f statistic ASLs (coarse to fine): 

0.051, 0, 0).
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Figure 9. 
Tessellations for some 2-D scale-mixing wavelet transform of depth 4 (left), and 2-D scale-

mixing wavelet transform of the box with cross image (right).
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Figure 10. 
Three detail-space hierarchies generating the scale-mixing 2-D transform, where (j1, j2) is 

indexed as (j, j + s), s ∈ ℤ. Circles correspond to s = 0, triangles to s = 1, and squares to s = 

−1;
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Table 5

SVM classification results. The best results are achieved using the linear kernel and including both spectral 

slopes and fold change asymmetry statistics in the classification.

Mean Accuracy Rate Mean Sensitivity Mean Specificity

Slopes Only

Linear 0.6268 0.7039 0.4952

Quadratic 0.6027 0.6855 0.4607

Radial Basis 0.6017 0.5978 0.6099

Slopes + Asymmetry t

Linear 0.6731 0.6685 0.6819

Quadratic 0.6684 0.6930 0.6314

Radial Basis 0.6332 0.6901 0.5474

Slopes + Asymmetry f

Linear 0.7659 0.7250 0.8379

Quadratic 0.7195 0.7414 0.6856

Radial Basis 0.7296 0.7800 0.6513
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