
Theoretical and Empirical Comparison of Big Data Image
Processing with Apache Hadoop and Sun Grid Engine

Shunxing Baoa, Frederick D. Weitendorfa, Andrew J. Plassarda, Yuankai Huob, Aniruddha
Gokhalea,b, and Bennett A. Landmana,b

aComputer Science, Vanderbilt University, Nashville, TN, USA 37235

bElectrical Engineering, Vanderbilt University, Nashville, TN, USA 37235

Abstract

The field of big data is generally concerned with the scale of processing at which traditional

computational paradigms break down. In medical imaging, traditional large scale processing uses

a cluster computer that combines a group of workstation nodes into a functional unit that is

controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host

imaging data. However, data transfer from storage to processing nodes can saturate network

bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., “short” processing times

and/or “large” datasets. Recently, an alternative approach using Hadoop and HBase was presented

for medical imaging to enable co-location of data storage and computation while minimizing data

transfer. The benefits of using such a framework must be formally evaluated against a traditional

approach to characterize the point at which simply “large scale” processing transitions into “big

data” and necessitates alternative computational frameworks. The proposed Hadoop system was

implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical

models for wall-clock time and resource time for both approaches are introduced and validated. To

provide real example data, three T1 image archives were retrieved from a university secure, shared

web database and used to empirically assess computational performance under three

configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths.

Empirical results match the theoretical models. Based on these data, a comparative analysis is

presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.

Keywords

Apache Hadoop; Sun Grid Engine; Verification

1. INTRODUCTION

As imaging datasets and computing grid sizes grow larger, traditional computing's

separation of data and computational nodes creates a problem. Moving data from where it is

centrally stored to computational nodes can saturate a network with relatively few active

processes. Under certain conditions, the bottleneck in the computing architecture becomes

the network bandwidth. An inexpensive solution is to locate the data on the computational

nodes to avoid the problem of saturating the network by copying data. This is already

implemented by some “big data” architectures, e.g., Apache Hadoop [1-5]. Previously,

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2017 February 11; 10138: . doi:10.1117/12.2254712.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DICOM to NiFTI conversion had been identified as an area where significant gains in

scalability could be realized by using big data frameworks [6]. In [6], we use HBase that is

built upon Hadoop to logically and physically sort the data by indexed row keys. We propose

a novel data allocation policy within HBase to strongly enforce collocation of hierarchically

row key for storing slice-wise DICOM data. In this way, a group-wise DICOM retrieval

occurs locally without involving the network [7]. However, this creates new questions, e.g.:

when does this novel Hadoop/HBase framework perform better than traditional high

performance computing clusters like Sun grid engine (SGE) [8]? In this case, there are many

parameters of concern, such as the cluster size, machine cores, node memory, distribution of

resources, image processing job, etc. [9-12]. This work develops theoretical models to

characterize the performance of SGE and Hadoop and verify the models empirically. The

theoretical models have two parts. The first is wall-clock time, which represents the total

time as experienced by the user. The second part is resource time, which measures elapsed

time on each node when a process starts across all nodes. The models are further verified

based on a real lab-based cluster environment focusing on custom image processing.

2. METHODS

2.1 Computation modules

Hadoop and HBase is to enable co-location of data storage and computation while

minimizing data transfer, while SGE separates data storage from computation. Figure 1

summarizes both methods’ working flows. It is worth mentioning that there are mainly two

kinds of map jobs in Hadoop[13]. A data-local map involves local data within a node.

However, it is notable that if no single node contains all requested data for a single job (due

to a large request or local storage scarity), the minimal necessary data will be retrieved over

the internet. A rack-local or non-local map will retrieve data through other data nodes.

Ideally only data-local maps will occur. In reality, around 5% of maps tend to be rack-local

as evidenced by previous DICOM to NiFTI conversion experiments, which we had trained

on a data / core balanced cluster [6]. The “balanced” means data is distributed equally to

every machine, and every machine have the same number of cores. In the rest of the paper,

we use “Hadoop” to simplify representing our novel Hadoop/HBase framework.

2.2 Theoretical model

We summarize the modeled parameters that affect both wall-clock time and resource time in

Table 1.

(1). Wall-Clock Time—Wall-clock time is what the user sees and experiences. Equation

(1) is an overview wall-clock time model basing on Figure 1. It contains three types of I/O:

data retrieval , processing , storage .

For SGE, data is loaded from and stored to network storage, so VsourceR and VsourceW is

related with average bandwidth. All data I/O in execution host occur in the pre-allocated

memory for the job, so VhostR and VhostW can be ignored compared with bandwidth. For

Hadoop, the worst case of input data retrieval from HBase and output data storage to HBase

directly involves local hard disk [7]. When the input data is processed on a host, it is

Bao et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

temporally saved on a place on hard disk, and the output also generated on a temp place of

local drive. Thus, VsourceR, VsourceW, VhostR and VhostW are all related with the local disk

reading/writing speed (VdiskR/VdiskW).

(1)

Wall-clock time summary: Equation (2) is a summarized model for wall-clock time.

Twc_network is the time for jobs to load data from the network for both SGE and Hadoop

scenarios. Twc_local is for jobs that load data locally, and it only serves for the Hadoop

scenario.

(2)

Wall-clock time for jobs only loading data locally Twc_local: Firstly, we make an

assumption for the model Twc_local that if the Hadoop map task is a data-local map task, all

data retrieval/storing are happened locally, and the minimal necessary data movement from

other nodes over network due to large request are ignored in this model. Therefore, #Round
is determined by data and core allocation of the cluster - i.e., if the cluster is a core-balanced,

the wall-clock time of all tasks is defined by the machine with the most data as Figure 2

illustrates. If the cluster is core-unbalanced, we need to take into consideration the ratio

between number of jobs will be dispatched for each machine and the cores on that machine

as in equation (3) presented. For the number of jobs per machine, according to the input

dataset's row key in HBase, we can know the dataset belongs to which region of HBase

table. The place of region stands for the node that the job will be run [7]. Then for each

machine, once we find the maximum ratio of , the “short plate” machine will decide the

value of #Round.

(3)

If we need to process all HBase table's data, we can easily use the distribution of table's

regions to find the number of local jobs for each machine as equation (4) demonstrated.

(4)

Bao et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wall-clock time for job containing data network transfer Twc_network: As equation (5)

presented, all data in SGE is transferred through the network, and jobs are equally

distributed to the free cores of machines, namely jobs do not care where data is. Hence the

value of #Round for SGE is simply decided by . Ideally, there is no data transfer in

the Hadoop MapReduce approach. However, as mentioned in section 2.1, there are about 5%

rack-local maps in our trained experiment so that it also involves network transfer. And for

Hadoop, disk reading / writing speed should be considered in the time model due to the data

retrieval, processing and storage working flow.

(5)

Network saturation release point: Under a fixed bandwidth, data traveling through a

network can affect the number of running cores. We made an assumption that the value of

allowed concurrent running cores #allowed_core without arising network congestion is

showed in equation (6). If the total number of running cores #core that a cluster can provide

is more than #allowed_core, heavier data loading may cause network saturation and make

real bandwidth Breal for each job smaller than or equal to the given fixed cluster bandwidth

B. Under network congestion circumstances, job completion time gets delayed because job

has to spend more time waiting for data movement by network I/O. The relationship of

average Breal of all jobs and cluster's B within one round parallel job processing cycle is

introduced in equation (7). Moreover, we define the network saturation release point (NSRP)

is at the point when #allowed_core equals to #core. Equation (8) summarizes the Breal

before and after a NSRP.

(6)

Bao et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(7)

(8)

(2). Resource Time—Resource time is time elapsed time on each node when a process

starts across all nodes as displayed in equation (9). For SGE, the resource time is decided by

the sum of all job's processing time and data transfer through network. Breal may affect the

resource time of SGE since when network saturation occurs, the core has to wait for data

being loaded to the node. Ideally, there is few data movements for Hadoop/HBase, except

the small proportion for rack-local maps. The resource time usage for Hadoop is determined

by total job time, data retrieval via the network in rack-local map and local disk reading/

writing.

(9)

2.3 Experiment Design

Three parallel experiment environments are setup for both Hadoop and SGE. The

experiment design does not aim to share the benefit of processing group hierarchical related

imaging data similar in [6]. However, our goal is to verify the behavior of our Hadoop

scenario that maximize the localization of data retrieval/processing/storage for a job. We

make the experiment simpler that compressing 3,310 T1 images to the .gz format. Each job

compresses only one NiFTI image with 2GB memory available and generate one

compressed images. All T1 images for Hadoop scenario are saved into a newly created

HBase table. We estimate achievable empirical average bandwidth as 70 Mb/second; disk

Bao et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

read speed as 100 Mb/second with write speed as 65 Mb/second. The total input size of the

images is 70.7 GB and the processing generates 21.5 GB of compressed files as output. To

explore the impacts of processing time, we manually increase the processing time by adding

a sleep function without any data retrieval to make the job length of the experiment take an

additional 15 – 105 seconds on a fixed dataset to mimic different job processing speed. Also,

we vary cluster size to assess the scalability of SGE and Hadoop cluster from 6 – 21

machines.

Table 2 presents the detail of the experiment setup. Each machine was used as a Hadoop

Datanode and HBase RegionServer for data locality [7]. All machines were also configured

using SGE. There is an additional Machine for both methods serving as cluster master.

Our goals are to empirically verify 1) if each of the scenarios can match the wall-clock /

resource time theoretical models basing on estimated network saturation release point

NSRP; 2) test if the cluster can present a scalable performance, i.e., when SGE has more

cores, the saturation length will be longer than seen with less cores with the increasing of

data processing time per job (Tj), 3) how balanced/unbalanced data and core allocation can

affect both computing architectures.

2.4. Datasets

The experiment uses 3,310 T1 images retrieved from a secure, shared web database

application for MRI data that was gathered from healthy subjects/volunteers and subjects/

volunteers with ADHD; the Tennessee Twin Study based on psychopathology risk and its

subjects constitute a portion of the neuroimaging sub-study of the Baltimore Longitudinal

Study on Aging.

3. RESULTS

Figure 3 presents the verification result for Hadoop and SGE on wall clock time. The wall-

clock time usage for SGE is a bit over what would be expected by theoretical model and

could be explained by non-modeled overhead in SGE, such as job dispatching. When cores

increase under the fixed number of jobs and size of datasets, the network saturation persists

longer for SGE, and the wall clock time is limited because of data transfer. The turning

points (NSRP) for SGE match the theoretical point when allowed maximum running cores

without causing network saturation is larger than the cluster's cores, which can also be

verified by result (when dataset processing time is 30 s for SGE 72 cores scenario, 60 s for

SGE 132 cores scenario and 90 s for SGE 209 cores). When the cluster has 132 cores,

Hadoop's time becomes gradually longer than SGE; the reason is that data in HBase is not

perfectly distributed. According to the experiment setup in Table 2, the total processing time

is decided by the node which has one more region. Our model can also predict Hadoop 72

cores scenario since the data / core allocation is approximately balanced. Hadoop 209 cores

result is more complex and does not perfectly match theoretical model. Neither core nor data

allocation for this scenario are balanced. Through the result, we can see that when most jobs

are running on the limited machines, Hadoop randomly dispatches some jobs to idle cores,

thus the final wall-clock time is smaller than theoretical models suggest. The final number of

rack-local maps for Hadoop 209 cores is almost 30%, which is much larger than our

Bao et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

previously observed model parameter (5%) based on a balanced cluster. On the other hand,

SGE balanced the job and data distribution; namely, the average number of running cores is

greater than seen with Hadoop.

For Figure 3 (B), because only little data movement was allowed, Hadoop with 72 and 132

cores falls on the theoretical ideal resource usage line much faster than SGE with the same

number of cores. Even on an unbalanced cluster, Hadoop with 209 cores can also match the

theoretical trend. Variation in available network bandwidth is a potential explanation for the

132 core SGE not matching the theory-derived expected result for the 5-45 seconds/dataset

range. The result reveals the real average bandwidth Breal is faster than assumed on 70 Mb/s

in section 2.3. That the SGE cluster with more cores was saturated longer also matches

theoretical models, and once the dataset processing time is greater than NSRP, all three SGE

scenarios fall on the Hadoop model.

4. CONCLUSION

The theoretical model indicates a trend of wall-clock time spent for a particular image

processing job. For instance, converting a T1 NiFTI image to MNI using Aladin registration

takes at least 2 minutes, so about 400 jobs can run concurrently before network saturation

occurs. Thus, SGE cannot saturate the network under the experiments introduced in section

2. The theoretical model also conveys multiple relationships among job numbers, network

environment and cluster setup. In Figure 4, the common logarithm ratio (log10) ratio for

wall-clock and resource time performance transition of Hadoop's divide SGE's, and the

log10 ratio is get scales in range from [−1,1].

We assume there are 5000 jobs as input. As Figure 4 (A) and (B) represents the ratio when

core/data allocation are balanced (the ideal scenario for Hadoop), which are based on an

assumed lab-based cluster (20 machines, 300 cores, gigabit bandwidth (70 Mb/s), hard drive

(Read 100 Mb/s, Write 65 Mb/s), 2GB memory for each jobs). And the ratio reveals SGE

can perform similarly with Hadoop when the dataset size is relative small (200 MB) but

running time is long, at around 1000 s. However, Hadoop performs much better, at least two-

fold, when dataset size reaches over 500 MB and the processing time is around 1000 s either

wall-clock time or resource time. We can also appreciate that when job processing time is

very long (i.e., over 100 minutes), the resource time of both approaches are close, but

Hadoop can still win on the time data transfer takes.

On a data / core unbalanced cluster, the wall-clock time for Hadoop is affected. Figure 4(C)

and (D) presume the same data allocation proportion as the Hadoop with 72 cores and 209

cores scenario in Table-2. The ratio value smaller than ‘0’ can be treated as a break down

time for SGE as the red line indicated, and the user should try to move from their

‘traditional’ grid framework to a Hadoop ‘big data’ framework. The smaller cluster is more

balanced so the performance is better than in the Hadoop 209 scenario. This is because for

bigger clusters, data is approximately balanced, but here there is one machine that contains 3

cores, which is much smaller than the average. So here the wall-clock time section

distribution is different when compared with Figure 4(A). However, based on our

experiment, Hadoop can randomly send some waiting jobs to other free cores (Figrue 3(A)

Bao et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hadoop 209 cores scenario), so the performance result should be considered a worst case.

Additional investigation into factors with imbalanced clusters is warranted.

Acknowledgement

This work was funded in part by NSF CAREER IIS 1452485. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
NSF. This study was in part using the resources of the Advanced Computing Center for Research and Education
(ACCRE) at Vanderbilt University, Nashville, TN. This project was supported in part by ViSE/VICTR VR3029 and
the National Center for Research Resources, Grant UL1 RR024975-01, and is now at the National Center for
Advancing Translational Sciences, Grant 2 UL1 TR000445-06.

References

1. Apache Hadoop Project Team. Apache Hadoop. 2016. http://hadoop.apache.org/

2. Borthakur D. The hadoop distributed file system: Architecture and design. Hadoop Project Website.
2007; 11:21. 2007.

3. Yang C-T, Chen L-T, Chou W-L, et al. Implementation of a medical image file accessing system on
cloud computing. :321–326.

4. Jai-Andaloussi S, Elabdouli A, Chaffai A, et al. Medical content based image retrieval by using the
Hadoop framework. :1–5.

5. Taylor RC. An overview of the Hadoop/MapReduce/HBase framework and its current applications
in bioinformatics. BMC bioinformatics. 2010; 11(Suppl 12):S1.

6. Bao, S., Plassard, A., Landman, B., et al. Cloud Engineering Principles and Technology Enablers for
Medical Image Processing-as-a-Service. Vancouver, Canada: Apr 4-7. 2017 accepted

7. Apache HBase Team. Apache hbase reference guide. 2016. http://hbase.apache.org/book.html

8. Gentzsch W. Sun grid engine: Towards creating a compute power grid. :35–36.

9. Appuswamy R, Gkantsidis C, Narayanan D, et al. Scale-up vs Scale-out for Hadoop: Time to
rethink?. :20.

10. Medernach E. Workload analysis of a cluster in a grid environment. :36–61.

11. Sadashiv N, Kumar SD. Cluster, grid and cloud computing: A detailed comparison. :477–482.

12. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional
DICOM images. Journal of digital imaging. 2004; 17(3):205–216. [PubMed: 15534753]

13. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications
of the ACM. 2008; 51(1):107–113.

14. Huo Y, Plassard AJ, Carass A, et al. Consistent cortical reconstruction and multi-atlas brain
segmentation. NeuroImage. 2016

15. Huo Y, Carass A, Resnick SM, et al. Combining multi-atlas segmentation with brain surface
estimation. :97840E–97840E-8.

Bao et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hadoop.apache.org/
http://hbase.apache.org/book.html

Figure 1.
Hadoop and SGE data retrieval, processing and storage working flow basing on Multi-atlas

CRUISE (MaCRUISE) segmentation [14, 15]. The data in an HBase table is approximately

balanced to each Regionserver. The Regionserver collocates with a Hadoop Datanode to

fully utilize the data collocation and locality[7]. We design our proposed computation

models using only the map phase of Hadoop's MapReduce [13]. In this phase, the data is

retrieved locally; if the result were moved to reduce phase, more data movement would

occur, because the reduce phase does not ensure process local data. Within the map phase,

all necessary data is retrieved and saved on a local directory and gets furtherly processed by

locally installed binary executables command-line program. After that, the results of

processing are uploaded back to HBase. For SGE, the user submits a batch of jobs to a

submit host, and this host dispatches the job to execution hosts. Each execution host

retrieves the data within a shared NFS and stores the result back to the NFS.

Bao et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Assume there are 10 jobs are ready to process. Each block represents the input dataset for

each jobs. Three machines are all have same number of cores. If there is no data transfer, all

data processing time is defined by the medium's processors, if all datasets have the same

processing speed.

Bao et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3 (A).
Wall-clock time performance for Hadoop and SGE with different cores

Bao et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3 (B).
Resource time performance for Hadoop and SGE with different cores

Bao et al. Page 12

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Time ratio of Hadoop v.s. SGE based on core / data balanced and unbalanced cluster. The

balancing can only affect the total job running time. (A) Ratio of total running time on a

data / core balanced cluster. (B) Ratio of resource time either on a core / data balanced

cluster. (C) Ratio of total running time on a proposed 72 cores grid setup (approximate

balanced cluster). (D) Ratio of total running time on a proposed 209 cores grid setup (core /

data unbalanced cluster). The red lines in (C/D) indicate the parameters for which Hadoop

and SGE result in equivalent performance for the specified setup.

Bao et al. Page 13

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bao et al. Page 14

Table 1

Theoretical model parameter definition

Definition Description

I/O speed (VsourceR, VsourceW,
VhostR, VhostW)

I/O speed is the data read/write rate on source where data stores and retrieves, and on host where data
get processed. Source for SGE is the Network storage accessed by NFS. Source for Hadoop is the hard
disk allocated for HBase.

Bandwidth (B, Breal): B is the bandwidth of cluster. In our case, it is based on a gigabit network. Breal is the real bandwidth
that is shared by one job. Once there is a network congestion, the value of Breal is actually smaller than
or equal to the cluster's given fixed bandwidth B.

Disk speed (VdiskR, VdiskW) Data read/ write speed of local hard drive.

Input/output dataset (datain /
dataout)

The total data size for one job that is downloaded/uploaded while processing.

Core (#core, #allowed_core, corei) #core is the number of processor cores in the cluster. #allowed_core is the maximum number of allowed
concurrent cores can be used without causing network congestion. We use corei to represent the number
of individual cores on each machine.

Job (#job, jobi) #job is the total number of jobs. jobi is the number of jobs will be dispatched to each machine.

Job time per dataset (Tj) Processing time per dataset.

Round (#Round) The total number of round for parallel jobs.

Region (#region, regioni) Each part of a Hbase table is split into several regions (blocks of data).The total number of regions #
region per Regionserver is approximately balanced[7]. Regioni denotes the number of region on
specified machine.

Machine (#machine) The number of machines (workstations) of the cluster.

File (#file) All files that are involved in the whole process.

Negligible overhead (η) An insignificant overhead that could be eliminated and not counted.

α α is a binary parameter. It helps the equations explain when do they only valid for Hadoop scenario (α =
1) rather than SGE scenario (α = 0).

β β is a binary parameter. It helps the equations explain when do they only valid for SGE scenario (β = 1)
rather than Hadoop scenario (β = 0).

γ γ is an experimental empirical parameter to represent the ratio of rack-local map task for Hadoop
scenario, namely the data is loaded/stored via network. Similarly, the value of γ is always 1 for SGE
scenario since all data is transferred through network.

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bao et al. Page 15

Table 2

Hadoop v.s. SGE experiment cluster setup with same memory allocation and fixed datasets.

Core allocation Hadoop data allocation Estimated NSRP Experiment type

209 cores (3 machines with
32 cores, 10 machines with
3 cores, 7 machines with 12
cores, 1 machine with 11
cores).

43 regions (20 machines with 2
regions, 1 machine with 32 cores
has 3 regions).

Until Tj reaches 85 s. T1 NiFTI image compression (5s), and
manually increase the processing time by
adding a sleep function (10s, 25 s, 40 s, 55 s,
70 s, 85 s, 100 s, 115 s respectively)

132 cores balanced on 11
machines (12 cores/
machine).

34 regions (10 machines with 3
regions, 1 machine with 4 regions).

Until Tj reaches 54 s

72 cores balanced on 6
machines (12 cores/
machines).

11 regions (5 machines with 2
regions, 1 machines with 1
regions).

Until Tj reaches 29 s

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Computation modules
	2.2 Theoretical model
	(1). Wall-Clock Time
	Wall-clock time summary
	Wall-clock time for jobs only loading data locally Twc_local
	Wall-clock time for job containing data network transfer Twc_network
	Network saturation release point

	(2). Resource Time

	2.3 Experiment Design
	2.4. Datasets

	3. RESULTS
	4. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3 (A)
	Figure 3 (B)
	Figure 4
	Table 1
	Table 2

