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Abstract

The field of big data is generally concerned with the scale of processing at which traditional 

computational paradigms break down. In medical imaging, traditional large scale processing uses 

a cluster computer that combines a group of workstation nodes into a functional unit that is 

controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host 

imaging data. However, data transfer from storage to processing nodes can saturate network 

bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., “short” processing times 

and/or “large” datasets. Recently, an alternative approach using Hadoop and HBase was presented 

for medical imaging to enable co-location of data storage and computation while minimizing data 

transfer. The benefits of using such a framework must be formally evaluated against a traditional 

approach to characterize the point at which simply “large scale” processing transitions into “big 

data” and necessitates alternative computational frameworks. The proposed Hadoop system was 

implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical 

models for wall-clock time and resource time for both approaches are introduced and validated. To 

provide real example data, three T1 image archives were retrieved from a university secure, shared 

web database and used to empirically assess computational performance under three 

configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. 

Empirical results match the theoretical models. Based on these data, a comparative analysis is 

presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.
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1. INTRODUCTION

As imaging datasets and computing grid sizes grow larger, traditional computing's 

separation of data and computational nodes creates a problem. Moving data from where it is 

centrally stored to computational nodes can saturate a network with relatively few active 

processes. Under certain conditions, the bottleneck in the computing architecture becomes 

the network bandwidth. An inexpensive solution is to locate the data on the computational 

nodes to avoid the problem of saturating the network by copying data. This is already 

implemented by some “big data” architectures, e.g., Apache Hadoop [1-5]. Previously, 
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DICOM to NiFTI conversion had been identified as an area where significant gains in 

scalability could be realized by using big data frameworks [6]. In [6], we use HBase that is 

built upon Hadoop to logically and physically sort the data by indexed row keys. We propose 

a novel data allocation policy within HBase to strongly enforce collocation of hierarchically 

row key for storing slice-wise DICOM data. In this way, a group-wise DICOM retrieval 

occurs locally without involving the network [7]. However, this creates new questions, e.g.: 

when does this novel Hadoop/HBase framework perform better than traditional high 

performance computing clusters like Sun grid engine (SGE) [8]? In this case, there are many 

parameters of concern, such as the cluster size, machine cores, node memory, distribution of 

resources, image processing job, etc. [9-12]. This work develops theoretical models to 

characterize the performance of SGE and Hadoop and verify the models empirically. The 

theoretical models have two parts. The first is wall-clock time, which represents the total 

time as experienced by the user. The second part is resource time, which measures elapsed 

time on each node when a process starts across all nodes. The models are further verified 

based on a real lab-based cluster environment focusing on custom image processing.

2. METHODS

2.1 Computation modules

Hadoop and HBase is to enable co-location of data storage and computation while 

minimizing data transfer, while SGE separates data storage from computation. Figure 1 

summarizes both methods’ working flows. It is worth mentioning that there are mainly two 

kinds of map jobs in Hadoop[13]. A data-local map involves local data within a node. 

However, it is notable that if no single node contains all requested data for a single job (due 

to a large request or local storage scarity), the minimal necessary data will be retrieved over 

the internet. A rack-local or non-local map will retrieve data through other data nodes. 

Ideally only data-local maps will occur. In reality, around 5% of maps tend to be rack-local 

as evidenced by previous DICOM to NiFTI conversion experiments, which we had trained 

on a data / core balanced cluster [6]. The “balanced” means data is distributed equally to 

every machine, and every machine have the same number of cores. In the rest of the paper, 

we use “Hadoop” to simplify representing our novel Hadoop/HBase framework.

2.2 Theoretical model

We summarize the modeled parameters that affect both wall-clock time and resource time in 

Table 1.

(1). Wall-Clock Time—Wall-clock time is what the user sees and experiences. Equation 

(1) is an overview wall-clock time model basing on Figure 1. It contains three types of I/O: 

data retrieval , processing , storage . 

For SGE, data is loaded from and stored to network storage, so VsourceR and VsourceW is 

related with average bandwidth. All data I/O in execution host occur in the pre-allocated 

memory for the job, so VhostR and VhostW can be ignored compared with bandwidth. For 

Hadoop, the worst case of input data retrieval from HBase and output data storage to HBase 

directly involves local hard disk [7]. When the input data is processed on a host, it is 
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temporally saved on a place on hard disk, and the output also generated on a temp place of 

local drive. Thus, VsourceR, VsourceW, VhostR and VhostW are all related with the local disk 

reading/writing speed (VdiskR/VdiskW).

(1)

Wall-clock time summary: Equation (2) is a summarized model for wall-clock time. 

Twc_network is the time for jobs to load data from the network for both SGE and Hadoop 

scenarios. Twc_local is for jobs that load data locally, and it only serves for the Hadoop 

scenario.

(2)

Wall-clock time for jobs only loading data locally Twc_local: Firstly, we make an 

assumption for the model Twc_local that if the Hadoop map task is a data-local map task, all 

data retrieval/storing are happened locally, and the minimal necessary data movement from 

other nodes over network due to large request are ignored in this model. Therefore, #Round 
is determined by data and core allocation of the cluster - i.e., if the cluster is a core-balanced, 

the wall-clock time of all tasks is defined by the machine with the most data as Figure 2 

illustrates. If the cluster is core-unbalanced, we need to take into consideration the ratio 

between number of jobs will be dispatched for each machine and the cores on that machine 

as in equation (3) presented. For the number of jobs per machine, according to the input 

dataset's row key in HBase, we can know the dataset belongs to which region of HBase 

table. The place of region stands for the node that the job will be run [7]. Then for each 

machine, once we find the maximum ratio of , the “short plate” machine will decide the 

value of #Round.

(3)

If we need to process all HBase table's data, we can easily use the distribution of table's 

regions to find the number of local jobs for each machine as equation (4) demonstrated.

(4)
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Wall-clock time for job containing data network transfer Twc_network: As equation (5) 

presented, all data in SGE is transferred through the network, and jobs are equally 

distributed to the free cores of machines, namely jobs do not care where data is. Hence the 

value of #Round for SGE is simply decided by . Ideally, there is no data transfer in 

the Hadoop MapReduce approach. However, as mentioned in section 2.1, there are about 5% 

rack-local maps in our trained experiment so that it also involves network transfer. And for 

Hadoop, disk reading / writing speed should be considered in the time model due to the data 

retrieval, processing and storage working flow.

(5)

Network saturation release point: Under a fixed bandwidth, data traveling through a 

network can affect the number of running cores. We made an assumption that the value of 

allowed concurrent running cores #allowed_core without arising network congestion is 

showed in equation (6). If the total number of running cores #core that a cluster can provide 

is more than #allowed_core, heavier data loading may cause network saturation and make 

real bandwidth Breal for each job smaller than or equal to the given fixed cluster bandwidth 

B. Under network congestion circumstances, job completion time gets delayed because job 

has to spend more time waiting for data movement by network I/O. The relationship of 

average Breal of all jobs and cluster's B within one round parallel job processing cycle is 

introduced in equation (7). Moreover, we define the network saturation release point (NSRP) 

is at the point when #allowed_core equals to #core. Equation (8) summarizes the Breal 

before and after a NSRP.

(6)
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(7)

(8)

(2). Resource Time—Resource time is time elapsed time on each node when a process 

starts across all nodes as displayed in equation (9). For SGE, the resource time is decided by 

the sum of all job's processing time and data transfer through network. Breal may affect the 

resource time of SGE since when network saturation occurs, the core has to wait for data 

being loaded to the node. Ideally, there is few data movements for Hadoop/HBase, except 

the small proportion for rack-local maps. The resource time usage for Hadoop is determined 

by total job time, data retrieval via the network in rack-local map and local disk reading/

writing.

(9)

2.3 Experiment Design

Three parallel experiment environments are setup for both Hadoop and SGE. The 

experiment design does not aim to share the benefit of processing group hierarchical related 

imaging data similar in [6]. However, our goal is to verify the behavior of our Hadoop 

scenario that maximize the localization of data retrieval/processing/storage for a job. We 

make the experiment simpler that compressing 3,310 T1 images to the .gz format. Each job 

compresses only one NiFTI image with 2GB memory available and generate one 

compressed images. All T1 images for Hadoop scenario are saved into a newly created 

HBase table. We estimate achievable empirical average bandwidth as 70 Mb/second; disk 
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read speed as 100 Mb/second with write speed as 65 Mb/second. The total input size of the 

images is 70.7 GB and the processing generates 21.5 GB of compressed files as output. To 

explore the impacts of processing time, we manually increase the processing time by adding 

a sleep function without any data retrieval to make the job length of the experiment take an 

additional 15 – 105 seconds on a fixed dataset to mimic different job processing speed. Also, 

we vary cluster size to assess the scalability of SGE and Hadoop cluster from 6 – 21 

machines.

Table 2 presents the detail of the experiment setup. Each machine was used as a Hadoop 

Datanode and HBase RegionServer for data locality [7]. All machines were also configured 

using SGE. There is an additional Machine for both methods serving as cluster master.

Our goals are to empirically verify 1) if each of the scenarios can match the wall-clock / 

resource time theoretical models basing on estimated network saturation release point 

NSRP; 2) test if the cluster can present a scalable performance, i.e., when SGE has more 

cores, the saturation length will be longer than seen with less cores with the increasing of 

data processing time per job (Tj), 3) how balanced/unbalanced data and core allocation can 

affect both computing architectures.

2.4. Datasets

The experiment uses 3,310 T1 images retrieved from a secure, shared web database 

application for MRI data that was gathered from healthy subjects/volunteers and subjects/

volunteers with ADHD; the Tennessee Twin Study based on psychopathology risk and its 

subjects constitute a portion of the neuroimaging sub-study of the Baltimore Longitudinal 

Study on Aging.

3. RESULTS

Figure 3 presents the verification result for Hadoop and SGE on wall clock time. The wall-

clock time usage for SGE is a bit over what would be expected by theoretical model and 

could be explained by non-modeled overhead in SGE, such as job dispatching. When cores 

increase under the fixed number of jobs and size of datasets, the network saturation persists 

longer for SGE, and the wall clock time is limited because of data transfer. The turning 

points (NSRP) for SGE match the theoretical point when allowed maximum running cores 

without causing network saturation is larger than the cluster's cores, which can also be 

verified by result (when dataset processing time is 30 s for SGE 72 cores scenario, 60 s for 

SGE 132 cores scenario and 90 s for SGE 209 cores). When the cluster has 132 cores, 

Hadoop's time becomes gradually longer than SGE; the reason is that data in HBase is not 

perfectly distributed. According to the experiment setup in Table 2, the total processing time 

is decided by the node which has one more region. Our model can also predict Hadoop 72 

cores scenario since the data / core allocation is approximately balanced. Hadoop 209 cores 

result is more complex and does not perfectly match theoretical model. Neither core nor data 

allocation for this scenario are balanced. Through the result, we can see that when most jobs 

are running on the limited machines, Hadoop randomly dispatches some jobs to idle cores, 

thus the final wall-clock time is smaller than theoretical models suggest. The final number of 

rack-local maps for Hadoop 209 cores is almost 30%, which is much larger than our 
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previously observed model parameter (5%) based on a balanced cluster. On the other hand, 

SGE balanced the job and data distribution; namely, the average number of running cores is 

greater than seen with Hadoop.

For Figure 3 (B), because only little data movement was allowed, Hadoop with 72 and 132 

cores falls on the theoretical ideal resource usage line much faster than SGE with the same 

number of cores. Even on an unbalanced cluster, Hadoop with 209 cores can also match the 

theoretical trend. Variation in available network bandwidth is a potential explanation for the 

132 core SGE not matching the theory-derived expected result for the 5-45 seconds/dataset 

range. The result reveals the real average bandwidth Breal is faster than assumed on 70 Mb/s 

in section 2.3. That the SGE cluster with more cores was saturated longer also matches 

theoretical models, and once the dataset processing time is greater than NSRP, all three SGE 

scenarios fall on the Hadoop model.

4. CONCLUSION

The theoretical model indicates a trend of wall-clock time spent for a particular image 

processing job. For instance, converting a T1 NiFTI image to MNI using Aladin registration 

takes at least 2 minutes, so about 400 jobs can run concurrently before network saturation 

occurs. Thus, SGE cannot saturate the network under the experiments introduced in section 

2. The theoretical model also conveys multiple relationships among job numbers, network 

environment and cluster setup. In Figure 4, the common logarithm ratio (log10) ratio for 

wall-clock and resource time performance transition of Hadoop's divide SGE's, and the 

log10 ratio is get scales in range from [−1,1].

We assume there are 5000 jobs as input. As Figure 4 (A) and (B) represents the ratio when 

core/data allocation are balanced (the ideal scenario for Hadoop), which are based on an 

assumed lab-based cluster (20 machines, 300 cores, gigabit bandwidth (70 Mb/s), hard drive 

(Read 100 Mb/s, Write 65 Mb/s), 2GB memory for each jobs). And the ratio reveals SGE 

can perform similarly with Hadoop when the dataset size is relative small (200 MB) but 

running time is long, at around 1000 s. However, Hadoop performs much better, at least two-

fold, when dataset size reaches over 500 MB and the processing time is around 1000 s either 

wall-clock time or resource time. We can also appreciate that when job processing time is 

very long (i.e., over 100 minutes), the resource time of both approaches are close, but 

Hadoop can still win on the time data transfer takes.

On a data / core unbalanced cluster, the wall-clock time for Hadoop is affected. Figure 4(C) 

and (D) presume the same data allocation proportion as the Hadoop with 72 cores and 209 

cores scenario in Table-2. The ratio value smaller than ‘0’ can be treated as a break down 

time for SGE as the red line indicated, and the user should try to move from their 

‘traditional’ grid framework to a Hadoop ‘big data’ framework. The smaller cluster is more 

balanced so the performance is better than in the Hadoop 209 scenario. This is because for 

bigger clusters, data is approximately balanced, but here there is one machine that contains 3 

cores, which is much smaller than the average. So here the wall-clock time section 

distribution is different when compared with Figure 4(A). However, based on our 

experiment, Hadoop can randomly send some waiting jobs to other free cores (Figrue 3(A) 
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Hadoop 209 cores scenario), so the performance result should be considered a worst case. 

Additional investigation into factors with imbalanced clusters is warranted.
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Figure 1. 
Hadoop and SGE data retrieval, processing and storage working flow basing on Multi-atlas 

CRUISE (MaCRUISE) segmentation [14, 15]. The data in an HBase table is approximately 

balanced to each Regionserver. The Regionserver collocates with a Hadoop Datanode to 

fully utilize the data collocation and locality[7]. We design our proposed computation 

models using only the map phase of Hadoop's MapReduce [13]. In this phase, the data is 

retrieved locally; if the result were moved to reduce phase, more data movement would 

occur, because the reduce phase does not ensure process local data. Within the map phase, 

all necessary data is retrieved and saved on a local directory and gets furtherly processed by 

locally installed binary executables command-line program. After that, the results of 

processing are uploaded back to HBase. For SGE, the user submits a batch of jobs to a 

submit host, and this host dispatches the job to execution hosts. Each execution host 

retrieves the data within a shared NFS and stores the result back to the NFS.
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Figure 2. 
Assume there are 10 jobs are ready to process. Each block represents the input dataset for 

each jobs. Three machines are all have same number of cores. If there is no data transfer, all 

data processing time is defined by the medium's processors, if all datasets have the same 

processing speed.
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Figure 3 (A). 
Wall-clock time performance for Hadoop and SGE with different cores
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Figure 3 (B). 
Resource time performance for Hadoop and SGE with different cores
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Figure 4. 
Time ratio of Hadoop v.s. SGE based on core / data balanced and unbalanced cluster. The 

balancing can only affect the total job running time. (A) Ratio of total running time on a 

data / core balanced cluster. (B) Ratio of resource time either on a core / data balanced 

cluster. (C) Ratio of total running time on a proposed 72 cores grid setup (approximate 

balanced cluster). (D) Ratio of total running time on a proposed 209 cores grid setup (core / 

data unbalanced cluster). The red lines in (C/D) indicate the parameters for which Hadoop 

and SGE result in equivalent performance for the specified setup.
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Table 1

Theoretical model parameter definition

Definition Description

I/O speed (VsourceR, VsourceW, 
VhostR, VhostW)

I/O speed is the data read/write rate on source where data stores and retrieves, and on host where data 
get processed. Source for SGE is the Network storage accessed by NFS. Source for Hadoop is the hard 
disk allocated for HBase.

Bandwidth (B, Breal): B is the bandwidth of cluster. In our case, it is based on a gigabit network. Breal is the real bandwidth 
that is shared by one job. Once there is a network congestion, the value of Breal is actually smaller than 
or equal to the cluster's given fixed bandwidth B.

Disk speed (VdiskR, VdiskW) Data read/ write speed of local hard drive.

Input/output dataset (datain / 
dataout)

The total data size for one job that is downloaded/uploaded while processing.

Core (#core, #allowed_core, corei) #core is the number of processor cores in the cluster. #allowed_core is the maximum number of allowed 
concurrent cores can be used without causing network congestion. We use corei to represent the number 
of individual cores on each machine.

Job (#job, jobi) #job is the total number of jobs. jobi is the number of jobs will be dispatched to each machine.

Job time per dataset (Tj) Processing time per dataset.

Round (#Round) The total number of round for parallel jobs.

Region (#region, regioni) Each part of a Hbase table is split into several regions (blocks of data).The total number of regions # 
region per Regionserver is approximately balanced[7]. Regioni denotes the number of region on 
specified machine.

Machine ( #machine) The number of machines (workstations) of the cluster.

File ( #file) All files that are involved in the whole process.

Negligible overhead (η) An insignificant overhead that could be eliminated and not counted.

α α is a binary parameter. It helps the equations explain when do they only valid for Hadoop scenario (α = 
1) rather than SGE scenario (α = 0).

β β is a binary parameter. It helps the equations explain when do they only valid for SGE scenario (β = 1) 
rather than Hadoop scenario (β = 0).

γ γ is an experimental empirical parameter to represent the ratio of rack-local map task for Hadoop 
scenario, namely the data is loaded/stored via network. Similarly, the value of γ is always 1 for SGE 
scenario since all data is transferred through network.
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Table 2

Hadoop v.s. SGE experiment cluster setup with same memory allocation and fixed datasets.

Core allocation Hadoop data allocation Estimated NSRP Experiment type

209 cores ( 3 machines with 
32 cores, 10 machines with 
3 cores, 7 machines with 12 
cores, 1 machine with 11 
cores).

43 regions (20 machines with 2 
regions, 1 machine with 32 cores 
has 3 regions).

Until Tj reaches 85 s. T1 NiFTI image compression (5s), and 
manually increase the processing time by 
adding a sleep function (10s, 25 s, 40 s, 55 s, 
70 s, 85 s, 100 s, 115 s respectively)

132 cores balanced on 11 
machines (12 cores/
machine).

34 regions (10 machines with 3 
regions, 1 machine with 4 regions ).

Until Tj reaches 54 s

72 cores balanced on 6 
machines (12 cores/
machines).

11 regions (5 machines with 2 
regions, 1 machines with 1 
regions ).

Until Tj reaches 29 s
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