
Improved Automatic Optic Nerve Radius Estimation from High 
Resolution MRI

Robert L. Harrigana,*, Alex K. Smithb,c, Louise A. Mawnd, Seth A. Smithc,e, and Bennett A. 
Landmana,b,c,e

aElectrical Engineering, Vanderbilt University, Nashville, TN, USA 37235

bBiomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235

cInstitute for Imaging Science, Vanderbilt University, Nashville, TN, USA 37235

dOphthalmology and Neurological Surgery, Vanderbilt University, Nashville, TN, USA 37232

eRadiology, Vanderbilt University, Nashville, TN, USA 37235

Abstract

The optic nerve (ON) is a vital structure in the human visual system and transports all visual 

information from the retina to the cortex for higher order processing. Due to the lack of 

redundancy in the visual pathway, measures of ON damage have been shown to correlate well with 

visual deficits. These measures are typically taken at an arbitrary anatomically defined point along 

the nerve and do not characterize changes along the length of the ON. We propose a fully 

automated, three-dimensionally consistent technique building upon a previous independent slice-

wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on 

high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be 

three-dimensionally consistent this technique produces more anatomically viable results. We 

compare this technique with the previously published slice-wise technique using a short-term 

reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more 

reproducible in the center of the ON. The center of the ON contains the most accurate imaging 

because it lacks confounders such as motion and frontal lobe interference. Long-term 

reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this 

new technique and shown to be similar to short-term reproducibility, indicating that the ON does 

not change substantially within 11 months. The increased accuracy of this new technique provides 

increased power when searching for anatomical changes in ON size amongst patient populations.
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1. INTRODUCTION

The human optic nerve (ON) is integral to visual performance as it carries all visual 

information posterior from the retina to the cortex for visual processing and is thus 

compromised in a number of diseases, most notably, multiple sclerosis (MS) [1], as well as 

several forms of optic neuropathy [1, 2]. Optic neuritis is known to be closely linked with 

MS as 25% of optic neuritis events eventually develop into MS [3]. However, despite this 

known association there are no current radiological biomarkers which can predict the 

eventual development of MS or the degree of visual recovery following an optic neuritis 

event. Therefore, while the ON is essential to visual function, it is challenging to image and 

quantify due to the fact that it is a small structure which is constantly in motion. The ON is 

surrounded by a sheath of cerebrospinal fluid (CSF). The size of this CSF sheath has been 

shown to correlate with intracranial pressure which may be associated with increased 

mortality and less favorable neurological outcomes [4]. Qualitatively, tools have been 

developed to visualize ON degradation utilizing high-resolution MRI but automatic 

quantitative methods are lacking.

Manual or computer-assisted measurements are still the tiresome standard for quantification 

of the ON. Hickman et al. used manual contouring to measure ON cross-sections in a 

longitudinal analysis and found patterns consistent with acute inflammation followed by 

long-term atrophy [5, 6]. These measurements of optic nerve size are often taken at arbitrary 

points along the length of the ON and thus suffer because they would require significantly 

more time manually labeling cross sections to investigate local changes along the length of 

the nerve due to a lack of automated analysis techniques. A more detailed analysis of the ON 

may reveal anatomical patterns as well as other temporal patterns in disease state evolution. 

Automated segmentation methods have largely focused on segmenting the ON and CSF as a 

single structure, deeming it too challenging to measure the two independently [7, 8]. 

However, a previously presented slice-wise method addressed some of these concerns but 

yielded results which were useful in aggregate but could be difficult for interpretation on the 

single subject-level [9, 10]. Therefore, we propose a fully automated, three-dimensionally 

consistent technique, building upon the previous independent slice-wise technique, to 

estimate the radius of the ON and surrounding CSF on high-resolution heavily T2-weighted 

isotropic MRI.

2. METHODOLOGY

Proposed Method

Radius estimation begins with a previously described multi-atlas segmentation method [11], 

which automatically segments the orbits, optic chiasm and ON including the surrounding 

CSF for initialization purposes. This method uses 35 manually labeled atlas images, which 

include both healthy controls as well as ON head drusen, optic neuritis and MS patients. The 

target image to be segmented is registered to each of the 35 atlas images using an affine 

registration [12] to achieve a coarse alignment of the eye globes. The globe labels are 

summed for all 35 atlases to achieve a pseudo-probability map which is thresholded at 0.5 

(or 18 atlas images indicating globe for a particular voxel). The centroids of each eye globe 

are extracted from this coarse hard segmentation and extended 30mm left, right and 
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anteriorly, 40mm superiorly and inferiorly and 60mm posteriorly to define the cropping 

region. An affine and non-rigid registration of the cropped region to the cropped atlas 

images results in a more accurate transformation of the atlases to target space [13]. The 

manual labels of the atlas images are then transformed to the target space using these 

registrations and are fused using joint label fusion [14]. The segmentation of the ON 

includes both the ON and surrounding CSF so we must refine our segmentation to separate 

the two structures and measure them independently. The centroids of the ON label in the 

coronal plane are used as an initial estimate of the centerline of the ON. A cubic regression 

is performed to smooth the centerline and fill in any missing slices [15]. Patches are then 

extracted along this centerline for fitting to the following intensity model.

(1)

(2)

(3)

We begin with a previously described model [16] which can be seen in Equation (1) to fit the 

ON and CSF sheath in the coronal plane and extract the radii of both. Briefly, the model is a 

difference of two Gaussian distributions, as defined in Equation (3), which closely resembles 

the intensity profile of the ON in the coronal plane in our heavily T2-weighted imaging. The 

covariance matrix in Equation (3) allows for the model to become elliptical to account for 

off-axis imaging of the ON. The model is fit to the ON in the coronal plane using an iterative 

conjugate gradient descent optimization method [17].

In the novel variant of the method proposed herein, three-dimensional consistency is 

enforced through an iterative fitting procedure of this model. The length of the ON is 

initially fit with the model and each of the eight parameters are smoothed using a 5-element 

moving window average. Any points falling outside of a threshold n standard deviations 

away from the regression, nσθ, are considered outliers and those slices are reinitialized with 

the regression value as their initial parameter values. The error term for the gradient descent 

is also winsorized at a value of ζ. The tolerance for n and ζ are simultaneously decreased 

with each iteration until a smooth set of parameters is converged upon.

The model parameters are correlated with the radii of the ON and CSF sheath through a 

random forest regression[18] using 1 million synthetic training images. Six of the eight 

model parameters are used for the regression, the centroids are omitted as they are 
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dependent solely on field of view. The standard deviation parameters, [σx,σy], are 

transformed to be a minimum and maximum term. It was experimentally observed that these 

terms can interchange for a single radius given the complementary angles of a nerve relative 

to the imaging plane. By characterizing the terms as a minimum and maximum, we force the 

radius transformation to be rotationally invariant to the fitting process and improves 

smoothness of the transformation. The 1 million training images were generated by 

simulating partial volume effects of imaging two concentric tubular structures with 0.6 mm 

isotropic voxels using a Monte Carlo simulation. This model is then tilted at randomly 

selected varying angles relative to the imaging plane and the size of each of the concentric 

tubes is varied randomly to generate the training set. The regression is validated using 

tenfold cross validation which shows the predicted radii to correlate with the true underlying 

simulated radii with an explanatory R-squared greater than 0.95 for both ON and CSF radii.

Data Acquisition

Ten healthy subjects age 24 to 36 years (average: 28.25, median: 27 years, 6 male/4 female) 

were enrolled in the imaging study, after obtaining consent from the local institutional 

review board. Imaging was acquired on a 3T Philips Achieva (Philips Medical Systems, 

Best, The Netherlands) with a 2-channel multi-transmit body coil for transmission and an 8 

channel head coil for reception. After tri-planar localization, we acquired all volumes in the 

axial plane. These images were collected with a Volume ISotropic Turbo spin echo 

Acquisition (VISTA) imaging sequence with the following parameters: 3D TSE TR = 

4000ms, TE = 455ms, α = 90°, FOV= 180 × 180 × 20mm3, acquired resolution = 0.55 × 

0.55 × 0.55mm3, reconstructed resolution = 0.35 × 0.35 × 0.35mm3, SENSE factor = 2, fat 

saturation = SPIR, NSA=2 and total scan time = 7:48. Subjects were scanned with a baseline 

scan and again within 30 days of the original scan for short-term reproducibility. Inter-scan 

time was from 4 to 29 days (average: 19.4 days, median: 23 days). Figure 1 shows an 

example short term scan-rescan image pair. Five of the 10 subjects were also imaged 11 

months later for a long-term follow-up scan with the same acquisition scheme.

Analysis: Short- and Long-Term Reproducibility

The original slice-wise analysis method [9] and the proposed method are performed on the 

above data for comparison. The shape of the ON often results in a variable number of 

coronal slices between individuals and within individuals across different scans. For 

comparison each ON was interpolated to be the same length as the longest ON in the 

population, we refer to this as posterior normalized slice. Scan-rescan error is quantified as 

the absolute difference for each point along the ON. Scale-invariant smoothness (Equation 

5) for each method is computed as the standard deviation of the difference between 

neighboring points scaled by the absolute mean difference of all neighboring points within 

the nerve. All tests for significance are performed using Wilcoxon sign-rank (p<0.05).

(4)
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(5)

3. RESULTS

Short-Term Reproducibility Results

The 3D constrained results are smoother along the length of the ON, as computed by scale-

invariant smoothness (p=0.0025), providing more anatomically plausible results since the 

ON does not change size rapidly. Figure 2 shows a qualitative comparison of the slice-wise 

results and the 3D constrained results. The 3D constrained results are much smoother along 

the length of the ON providing more anatomically plausible results since the ON does not 

change size rapidly. Figure 3 shows the absolute error between the baseline and short term 

follow-up scans for the aligned ON points. The circles are mean absolute error for a single 

nerve, with colors representing each subject. The individual points which are dots are the 

absolute difference between two measurements outside the middle third of the ON, the 

points which are pluses are the absolute difference between two points within the middle 

third of the ON again with color corresponding to subjects. The black box indicates error of 

one voxel and the line of unity separates points with lower slice-wise error (above) and 

lower 3D constrained error (below). We can see that the majority of the circles and pluses 

are grouped within the box indicating absolute difference of less than one voxel for the 

entirety of the nerve and the points within the central third of the ON respectively. There are 

a large number of CSF sheath measurements (13%) within the central third of the ON which 

were previously larger than one voxel reproducibility which are now less than one voxel, of 

the CSF measurements previously outside one voxel nearly all (89%) are now within one 

voxel.

Long-Term Reproducibility

Figure 4 shows a comparison of the short- and long-term reproducibility using the proposed 

method for the five subjects with long-term follow-up data. The symbols are the same as 

Figure 3 with circles representing a subject’s ON, pluses indicating individual points within 

the central third of the ON and dots representing individual points outside the central third. 

The black box is drawn at resolution and we can see that the majority of points fall within 

one voxel difference. The subject-wise ON reproducibility, represented by circles, is largely 

centered along the line of unity indicating that the short- and long-term reproducibility of the 

ON measurements are similar. While the subject-wise CSF reproducibility trends above the 

line indicating larger differences between the baseline and long-term follow-up scans than 

between baseline and the short-term follow-up scans.

4. DISCUSSION

We have demonstrated the superiority of our proposed three-dimensionally consistent ON 

radius estimation procedure as compared to the previous slice-wise radius estimation 

procedure in generating anatomically viable results which are reproducible with error of less 
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than the voxel resolution. Future work should address challenges faced in accurately 

characterizing the anterior ON in the presence of retrobulbar motion and the posterior ON in 

the presence of frontal lobe CSF to improve characterization along the entire length of the 

ON. A larger cohort of subjects with long-term follow-ups will be necessary to evaluate the 

long-term changes in ON morphology with more certainty.

Long-term reproducibility has been shown to be similar to short-term reproducibility 

indicating that the ON and surrounding CSF do not change substantially within a one year 

period. Histological studies have shown that there is a slow loss of axons in the optic nerve 

with normal aging [19–21], but the morphological differences in a 1 year period are 

expected to be very small based on minimal (if any) change in the optic disk [22–26]. To 

date, the authors are not aware of studies that have longitudinally followed human optic 

nerve morphometry in vivo.

The large variability in ON size suggests that a much larger number of subjects will be 

required to characterize normal ON variability [26]. With a larger set of controls [10] 

evaluated with this method they could be compared against disease populations, such as 

acute optic neuritis or MS to investigate possible imaging biomarkers for disease severity or 

prognosis.

Automatically characterizing the entire ON from globe to chiasm will allow for more 

meaningful searches for imaging biomarkers by the clinical community possibly revealing 

latent local changes in the ON which offer prognostic value.

All tools used and developed in this work are available in open source from their respective 

authors. The ON-CSF measurement code is primarily written in MATLAB (The 

MathWorks, Inc., Natick, Massachusetts, United States) and bundled into an automated 

program (i.e., “spider” [27]) that combines these tools using PyXNAT [28] and DAX[29] for 

XNAT [30] and is available through the NITRC project MASIMATLAB (http://

www.nitrc.org/projects/masimatlab).
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Figure 1. 
An example subject’s short term scan-rescan imaging showing scan 1 (left), scan 2 (middle) 

19 days apart shown in radiological standard orientation. The right plot shows the 

measurement of the left optic nerve for scan 1(blue) and scan 2(red) illustrating the noise in 

the slice-wise measurements which warrant three-dimensional constraint.
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Figure 2. 
Example radius estimation from slice-wise estimation (left) and constrained estimation 

(right) on the same ON from Figure 1 showing the smoothness of the constrained estimation 

method results.
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Figure 3. 
Comparison of scan-rescan absolute error for the ON (left) and CSF (right). Large circles 

indicate the mean absolute error for a given nerve. Dots indicate individual points between 

nerves with the color corresponding to each subject. Pluses are individual points between 

nerves within the central third of the length of the nerve, the area which is most accurately 

imaged. The lines are drawn along unity and at resolution (0.6mm). Note that pluses tend to 

be localized within the box indicating reproducibility within a voxel for the central third of 

the nerve as well pluses being localized below the line of unity indicating the proposed 

method has lower absolute error between scans.
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Figure 4. 
Comparison of short- and long-term scan-rescan absolute error for the ON (left) and CSF 

(right). Large circles indicate the mean absolute error for a given nerve. Dots indicate 

individual points between nerves with the color corresponding to each subject. Pluses are 

individual points between nerves within the central third of the length of the nerve, the area 

which is most accurately imaged. The lines are drawn along unity and at resolution (0.6mm). 

Note that pluses tend to be localized within the box indicating reproducibility within a voxel 

for the central third of the nerve.
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