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Abstract

Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in 

annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to 

improved treatment and disease prevention. This research investigated the relationship between 

structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients 

from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital 

inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and 

visual function assessments. Orbital magnetic resonance imaging (MRI) and computed 

tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on 

the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding 

index, optic nerve length) and novel volumetric metrics were computed. Using stepwise 

regression, the associations between structural metrics and visual field scores (visual acuity, 

functional acuity, visual field, functional field, and functional vision) were assessed. Across all 

models, the explained variance was reasonable (R2 ~ 0.1–0.2) but highly significant (p < 0.001). 

Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of 

pathologies. This approach yielded a general model for the connection between orbital structural 

imaging biomarkers and visual function.
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1. INTRODUCTION

The onset of eye diseases and impairment of vision are often accompanied by changes in 

physical characteristics of eye orbital structures. These changes in orbital structures may 

play a significant role in the progression or recurrence of eye diseases. Magnetic resonance 

imaging (MRI) of the eye orbit can be used to assess the risk and progression of optic 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 July 21.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2017 February 11; 10133: . doi:10.1117/12.2254613.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diseases and visual loss [22]. Imaging data after damage to the orbit of the eye in trauma 

situations can be related to decline in visual function [21]. Orbital metrics of the eye such as 

Barrett Index have also been shown to be associated with dysthyroid optic neuropathy in 

patients with Graves’ orbitopathy [19–20].

Other studies show on a case-by-case basis that orbital structure does not just have an effect 

on eye function, but can also be used as a predictive measure for the decline of visual 

function [19–21]. The orbit is a complex environment— many different factors affect orbital 

structure and loss of vision. However, these studies suggest that a deeper relationship exists 

between orbital structure and the onset of optic conditions. The goal of this study was to 

explore the relationship between clinical and structural metrics by correlating large sets of 

structural metrics (e.g., Barrett Index) with the clinically obtained visual field scores (e.g., 

visual acuity score). This was done in order to determine if a relationship between the two 

could be obtained, or if a general statistical model for the relationship between the orbital 

structure metrics of the eye and visual field scores can be determined.

The subjects in this study were selected because they had either computed tomography (CT) 

or magnetic resonance imaging (MRI) performed on the orbit of the eye as a regular part of 

their clinical care. They all had clinical visual disability scores available as well. An 

experienced undergraduate manually labeled approximately 20 subjects of each MRI and CT 

imaging modality. Then, multi-atlas segmentation was performed to segment the extraocular 

rectus muscles, eye globes, optic nerves, and orbital fat [2,3]. Twenty-one different structural 

metrics were then calculated from the segmentation pipelines. For each visual metric, a 

stepwise regression function fit a generalized linear model to a Poisson distribution in order 

to determine the amount of variance in visual function metrics that can be explained by the 

structural metrics of the eye orbit.

2. METHODS

2.1 Patient Data

The relationship between visual function and MRI/CT-derived orbital structures were 

investigated in a retrospective cohort of patients at Vanderbilt University Medical Center. 

Subjects were selected based on both having met clinical criteria for eye disease and 

undergoing CT or MRI imaging as part of their regular clinical care. The eye diseases 

incorporated in this study are: Thyroid Eye Disease: toxic diffuse goiter without thyrotoxic 

crisis or storm (242.00), endocrine exophthalmos (376.2*), thyrotoxic exophthalmos 

(376.21), exophthalmic opthalmoplegia (376.22); Orbital Inflammation: acute inflammation 

of the orbit (376.0), acute inflammation of the orbit unspecified (376.00), orbital cellulitis 

(376.01), orbital periotisis (376.02), chronic inflammation of orbit unspecified (376.10), 

orbital granuloma (376.11), orbital myositis (376.12); Optic Nerve Edema: benign 

intracranial hypertension (348.2); Glaucoma: low-tension open angle glaucoma (365.12); 

Intrinsic Optic Nerve Disease: optic neuritis (377.3), optic neuritis unspecified (377.30), 

optic pappilitis (377.31), retrobular neuritis (acute), nutritional optic neuropath (377.33), 

toxic optic neuropathy (377.34), other optic neuritis (377.39), other disorders of the optic 

nerve (377.4), ischemic optic neuropathy (377.41), hemorrhage in optic nerve sheaths 

(377.42), optic nerve hypoplasia (377.43), other disorders of the optic nerve (377.49).
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The study was conducted on 470 subjects (324 female + 146 male) over 598 scan sessions 

(365 CT + 233 MR). Each of the sessions had an instance of visual function testing available 

within 6 months of the scan. Visual function was assessed using the American Medical 

Association Functional Vision Score (FVS), which is calculated based on visual acuity and 

visual field testing acquired through routine clinical care. FVS is described through a subset 

of four other scores. The Visual Acuity Scores (VAS) of the left and right eyes was 

combined with the better VAS of both eyes in a weighted manner to calculate the Functional 

Acuity Score (FAS). The Visual Field Scores (VFS) of the left and right eyes were combined 

with the better VFS of both eyes in a weighted manner to calculate the Functional Field 

Score (FFS). The FVS is calculated using the resulting FAS and FFS. [1]

2.2 Image Processing

Segmentation of the MRI data for computation of image-derived anatomical metrics was 

based off a previously described multi-atlas segmentation method [2, 3], which 

automatically segments the optic nerves (including the CSF sheaths), extraocular rectus 

muscles, eye globes, and orbital fat. This method uses 20 manually labeled atlas images, 

which include healthy controls as well as ON head drusen, optic neuritis and multiple 

sclerosis (MS) patients. Four atlases, T1W, T2W, FLAIR and proton density weighted 

images, each consisting of 20 images, were used in this study. Each target scan type was 

manually assigned to an atlas. The target image to be segmented was registered to each of 

the 20 atlas images using an affine registration [4]. The sum of the globe labels was used as 

a probability map, and the area corresponding to >50% globe probability, or 10 atlases, was 

used to compute the centroids of the two eye globes. These centroids were dilated by 30mm 

in the left-right direction, 40mm in the superior-inferior direction, 60mm posterior direction, 

and 30mm anterior direction. The cropped images were segmented using an affine and non-

rigid registration of cropped atlases [5]. The manual labels of the atlas images were 

transformed to the target space using these registrations and are fused using non-local 

STAPLE (NLSS) [6, 7].

The multi-atlas segmentation pipeline was used to segment the CT scans, to identify the 

optic nerves (including the CSF sheaths), extraocular rectus muscles, eye globes, and orbital 

fat. The segmentation pipeline non-rigidly registered a set of manually labeled example 

scans to each new patient scan. Next, NLSS was used to combine the labels from each of the 

examples to identify the orbital structures in the target scan. Kalman filters were used to 

isolate the Superior Rectus Muscle, Inferior Rectus Muscle, Lateral Rectus Muscle and 

Medial Rectus Muscle from the muscle labels obtained from the multi-atlas segmentation 

pipeline [8].

From the segmented orbital structures from the CT and MR pipelines, a MATLAB program 

computed both traditional radiology measures and novel volumetric metrics and generated a 

set of descriptive features for each patient. For each of the segmented structures, volume and 

size features were calculated. These include: volume, maximum diameter, and average 

diameter for the superior, inferior, medial, and lateral rectus muscles [9–12]; volume and 

diameter of the globe[13–16]; and length, volume, average area, and maximum diameter of 

the optic nerve[17,18]. Features that describe the eye orbit as a whole were also calculated. 
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These include: orbital volume; Barrett index[19]; and the volume crowding index[20]. All 

21 features are calculated bilaterally for each patient.

2.3 Statistical Modeling

For each of the nine visual function targets (right eye visual acuity score, left eye visual 

acuity score, both eyes visual acuity score, right eye visual field score, left eye visual field 

score, both eyes visual field score, functional acuity score, functional field score, functional 

vision score), a forward stepwise univariate regression procedure (stepwiseglm, MATLAB 

2016a, Mathworks, Natick, MA) was conducted with the structural metrics listed above. 

Significant individual correlates (t statistic) were reported along with the overall model fit (F 

statistic) and R2 for each regression. The models were created both with and without 

incorporating the type of scan (CT/MRI) as a parameter. The models without CT/MRI as a 

parameter are referred to as “without flags.” The models with CT/MRI data as a parameter 

are referred to as with “flags.”

The base regression model (no CT/MRI flags) was y = β1x1 + ⋯+βnxn where y is a visual 

function metric and x1 ⋯ xn are structural metrics derived from the CT/MRI data. The 

regression model with CT/MRI flags was

(1)

where xCT/MRI is a 0/1 metric that specifies the type of scan that the structural metrics 

x1⋯xn were derived from. The distribution of the response variable was fit to a Poisson 

distribution.

3. RESULTS

3.1 Image Processing

Using the multi-atlas segmentation pipeline, 1,003 images, consisting of 611 MRI and 392 

CT, were labeled with optic nerves (including the CSF sheaths), extraocular rectus muscles, 

eye globes, and orbital fat. After a manual quality analysis was conducted, 205 MRI images 

352 CT images progressed in this research. The eye orbit structural metrics were correctly 

calculated and aligned with clinical visual function data.

3.2 Statistical Modeling

Each visual function measurement was regressed with all the structural metrics from both 

eyes as shown in Table 1. These nine regression models were all significant (p < 0.001). The 

structural metrics were separated into left eye structural metrics and right eye structural 

metrics. RVAS and RVFS were regressed with the right eye structural metrics, and LVAS 

and LVFS were regressed with the left eye structural metrics. These four regression models 

were all significant (p < 0.001). As noted in Table 1, the fraction of variance (0.067, 0.06, 

0.069, 0.067) explained by all four models in the second set of regressions were less than the 

amounts of variance (0.108, 0.093, 0.113, 0.096) explained in their corresponding models in 

first set of regressions using structural metrics from both eyes. Each visual function 
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measurement was also regressed with all structural metrics from both eyes and the CT/MRI 

flag. This third set of regressions shown in Table 1 accounted for whether the structural 

metrics were acquired from a CT scan or MRI scan. For five out of the nine visual function 

measurements, incorporating the type of scan into the model allowed the model to explain a 

greater amount of the variance. Based on this regression result, the structural metrics were 

separated into CT metrics and MRI metrics to conduct regression functions using only CT 

scan metrics and only MRI scan metrics. As shown in Table 1, eight out of the nine 

regressions with only CT scan metrics had higher R-squared values than the corresponding 

regressions conducted with CT and MRI metrics combined. All nine regressions with only 

MRI scan metrics had higher R-squared values than the corresponding regressions 

conducted with CT and MRI metrics combined.

4. CONCLUSION

This research explores the macro relationship between eye orbit structural metrics and visual 

function measurements. The results indicate a significant relationship between structural and 

visual metrics. In the models, the reliability of both VAS and VFS increase when stratifying 

by left and right eye. When including CT/MRI flags, the R-squared values for VAS and VFS 

in combined CT and MRI derived structural metrics are 0.019 and 0.075, respectively. 

However, the RVAS/LVAS and RVFS/LVFS R-squared values are 0.108/0.108 and 

0.118/0.101. These results held true for the models generated without the flags as well. 

Observing the right eye and the left eye visual function measurements separately increases 

the variance that described by the model. Furthermore, analyzing CT and MRI structural 

metrics separately also increases the amount of variance described across all models. These 

values are shown in Table 1. Specifically in the case of FFS and FVS, the models including 

only CT scan structural metrics have R-squared values of 0.128 and 0.133 respectively; the 

models including only MR scan structural metrics have R-squared values of 0.18 and 0.144; 

and the combined model values are 0.088 and 0.095.

The analysis in this study was performed on patient data with subjects who suffered from 

Thyroid Eye Disease, Orbital Inflammation, Optic Nerve Edema, Glaucoma, and Intrinsic 

Optic Nerve Disease. A large amount of variance in the visual metrics is described by the 

structural metrics without even separating patients by condition. In the future, the data could 

be analyzed in specific disease cohorts. This type of analysis could result in more significant 

correlations between certain structural metrics and visual metrics in relation to given optic 

condition. Furthermore, the MAS method in conjunction with the structural metric 

calculation could make it easier to predict what type of care a patient may need in the future. 

Further study into the association between structural and visual metrics will likely yield 

interesting insight into the progression of certain diseases and conditions.
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Figure 1. 
Example CT and MRI scans (top row) were expertly labeled (center row, lower row) and 

used in multi-atlas segmentation pipelines.
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Table 1

ICD9 codes for disease cohorts

Disease ICD-9 codes Description

Thyroid Eye Disease 242.00 Toxic diffuse goiter without thyrotoxic crisis or storm

376.2 Endocrine exophthalmos

376.21 Thyrotoxic exophthalmos

376.22 Exophthalmic ophthalmoplegia

Orbital Inflammation 376.0, 376.00 Acute inflammation of orbit

376.01 Orbital cellulitis

376.02 Orbital periostitis

376.1 Chronic inflammation of orbit

376.11 Orbital granuloma

376.12 Orbital myositis

373.13 Abscess of eyelid

Optic Nerve Edema 348.2 Idiopathic intracranial hypertension

377.0, 377.00 Papilledema

377.01 Papilledema, increased intracranial pressure

377.02 Papilledema, decreased ocular pressure

Glaucoma 365.0* Borderline glaucoma

365.1* Open-angle glaucoma

365.2* Primary angle-closure glaucoma

365.3* Corticosteroid-induced glaucoma

365.4* Glaucoma associated with congenital anomalies, dystrophies, and systemic syndromes

365.5* Glaucoma associated with disorders of the lens

365.6* Glaucoma associated with other ocular disorders

365.7* Glaucoma stage, unspecified

365.8* Other specified forms of glaucoma

365.9* Unspecified glaucoma

Intrinsic Optic Nerve Disease 377.3* Optic Neuritis

377.4* Other disorders of optic nerve
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