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ABSTRACT We prove that the property of excision in
algebraic K-theory is for a Q-algebra A equivalent to the
H-unitality of the latter. Our excision theorem, in particular,
implies Karoubi's conjecture on the equality of algebraic and
topological K-theory groups of stable C*-algebras. It also
allows us to identify the algebraic K-theory of the symbol map
in the theory of pseudodifferential operators.

Recall that a ring I is said to satisfy excision in algebraic
K-theory if for every ring R containing I as a two-sided ideal
the K-groups of I, of R, and of R/I are related to each other
by the functorial long exact sequence

*. ** Kq+l(R/I) *> Kq(I) + Kq(R) -* Kq(R/I) -. ..

Recall from ref. 1 that a 0-algebra A is said to be homo-
logically unital (abbreviated to "H-unital") if the following
complex

b' b'
0 <- A <- A 0% A A-- A 0cA 0* A .

(b'(al C) ..* ant) = j~q- 1((1)'-la, 89 ..* aiai+1 X9 ..* aq)
is acyclic. It has been proven that for a 0-algebra A the
property of excision in algebraic K-theory implies the anal-
ogous property of excision in cyclic homology (2) and that the
latter is equivalent to the H-unitality of A (see refs. 1 and 2).
Our main objective here is to prove that H-unitality, in turn,
implies excision in algebraic K-theory.
THEOREM 1. For a 0D-algebra A, thefollowing conditions are
equivalent:

(i) A satisfies excision in algebraic K-theory; and
(ii) A is H-unital.

As mentioned above, in view of the results of refs. 1 and
2, it remains to show that condition ii implies condition i.
First, we remark that in order to prove excision in the
algebraic K-theory it suffices to demonstrate that the canon-
ical embedding GL(A) -> GL(A) = GL(A) D< Axinduces an
isomorphism in group homology. As for the homology with
finite coefficients, that is well known and trivial (see ref. 3,
for example), so the problem reduces to the similar question
in rational homology. For any subgroup G C GL(A), we will
denote by G the corresponding affine group G v A'. Let E(A)
denote the elementary subgroup of GL(A).
LEMMA 1. Suppose that A = A2 = {a E A a = aja' +*
+ aaI} then E(A) = [E(A), E(A)] = [GL(A), GL(A)], E(A)
= [E(A), E(A)] = [GL(A), GL(A)] and GL(A)/E(A) =
GL(A)/E(A).
The Hochschild-Serre spectral sequence shows that

H*(GL(A), 0) = H*(GL(A), 0) < H*(E(A), C0) = H*(E(A),
0) [to show that the action of GL(A) on H*(E(A)) is trivial

one has to use Vaserstein's lemma (4) and the fact that A =
A2]. Let us consider now the system of triangular subgroups
T'(A) C E(A) [a-a partial ordering of {1, n}] and the
associated Volodin spaces (5) V(A) = V(E(A), {T'(A)}) and
V(A) = V(E(A), {Tj(A)}). There exist spectral sequences (see
ref. 5)

E~q = Hp(E(A), Hq(V(A), 0)) > Hp+q(Ui,rrBTc, 0)

and

E(q = H,(E(A), Hq(V(A), 0)) => Hp+l(U,l(TBTn, 0)

and the canonical morphism between them E***E**.
LEMMA 2. (i) For any ring A the embedding V(A) c-*V(A) is
a homotopy equivalence; (ii) IfA = A2 the action ofE(A) on
H*(V(A)) is trivial.
The standard spectral sequence comparison argument

shows in conjunction with Lemma 2 that H*(E(A), 0) =
H*(E(A), 0e) < H*(U,, ,BT,,(A), 0) = H*(U,,,{BT(,(A), 0U).
Now we are going to reduce the initial problem to a

problem in Lie algebra homology. Denote by gl,,(A) the Lie
algebra of n x n matrices over A, by sl,,(A) its subalgebra of
matrices whose trace in A/[A, A] vanishes, and by t'(A) the
corresponding triangular subalgebras. For any Lie 0-algebra
A, we will denote by P*(a) the standard Koszul resolution of
0 considered to be a left module over the universal envel-
oping algebra U = U(g):

u -- u 0 g -- U 0 A2 ...

and by C*(s) the complex 0 0u P*(y) = (0 * - A*-
... ), which computes the homology groups H*(,, 0). All the
tools that we used before in the context of linear groups have
analogs for Lie algebras; e.g., Volodin's space V(A) has a
counterpart in the subcomplex v(A) C P*(gl(A)), v(A) = (U
<- U 0(X,,,tl(A)) E- U 0 (Y,,,,A2t-(A)) .. .). So, the same
arguments as before prove the following.
LEMMA 3. If A = A2, the following conditions are equiva-
lent:

(i) H*(gl(A), (0) = H*(gl(A), (0);
(ii) H*(sl(A), 0U) = H*(sl(A), (0); and
(i)H*(zE,,,,C*(t- A))) = H*(E,,rC*(f,'(A))).

Now we come to the crucial point. If y is a nilpotent Lie
algebra and G is the corresponding nilpotent group, then as
is well-known H*(BG, 0l) = H*(g, 0U) (see ref. 6). More
precisely, one can produce a functorial quasi-isomorphism
C*(BG) -* C*). Thus we get the quasi-isomorphisms
C*(BT-(A)) -- C*(t-(A)) for all partial orderings oc. By
functoriality, those maps patch to produce a single quasi-
isomorphism C*(U,, ,BT,(A)) = ai,,,C*(BT'(A)) -Sz ElC*
(t,,. In the same way we deduce that C*(U,,,,BT'(A))
ERC*(i;.,(A)) is a quasi-isomorphism.
COROLLARY 1. If A is a 0-algebra satisfying A = A2, the
following conditions are equivalent:
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(i) H*(GL(A)) = H*(GL(A)); and
(ii) H*(gl(A)) = H*(gl(A)).

Let A1 be the ring AO oA We have natural inclusions

gl(A) >-* gl(A) c-* gl(Al). Furthermore, gl(A) is a retract of
gl(Al). Thus, if we show that H*(gl(A)) = H*(gl(Al)) that, in
turn, would imply that H*(gl(A)) = H*(gl(A)) and the proof
of Theorem I would be complete. If A is H-unital, the same
is true for A1 (see ref. 2) and a theorem of Hanlon (7) shows
that in this case H*(gl(A)) and H*(gl(Al)) are graded com-
mutative Hopf algebras freely generated by their respective
modules of primitive elements and that the latter are equal to
the cyclic homology groups HC*(A) and, respectively,
HC*(A1). It has been proven that the inclusion A c-* A1
induces an isomorphism in cyclic homology under the as-
sumption that A is H-unital (2). This brings us to the end of
the proof of Theorem 1.
Some additional work enables us to completely compute

the groups H*(2,, ,,C*(t,',(A)) = H*(,1,,C*(t "(A))).
THEOREM 2. For an H-unital 0-algebra A, one has

H*(E C*(tn(A))) = H* ( E C*(ft (A))) =.
n,o n'0a

That computation can be used to eliminate the final part of
the demonstration of Theorem I given above. The proof of
Theorem 2 uses in an essential way the following important
result.
THEOREM 3. The tensor product of any two H-unital alge-
bras is again H-unital.

This last result holds also if one replaces the ground field
C by an arbitrary commutative ring of coefficients. After
certain modifications the arguments that prove Theorem I
also yield the following stronger result.
THEOREM 4. For any ring A, the following conditions are
equivalent:

(i) A satisfies excision in rational algebraic K-theory; and
(ii) A Oz 0 is H-unital.
This result is conjectured in ref. 2. The other class of rings

for which we can prove excision in integral algebraic K-the-
ory is described in the following theorem.
THEOREM 5. Suppose that for any finite set of elements a,

, a,, E A there exist bl, . . ., b, c, d E A such that a
= cdbi and the right annihilators ofthe elements cd and d are
equal (see Property 1' of ref. 9). Then A satisfies excision in
algebraic K-theory.
Theorem 5 is demonstrated by using a method, developed

in ref. 5, that allows us to show directly thatH*(UBT,,(A), Z)
=H*(UBT,(A), Z) = 0. In all cases when we are able to prove
excision we prove, in fact, a more precise statement.
COROLLARY 2. Let A be either an H-unital 0-algebra or a
ring having thefactorization property ofTheorem 5. For any
ring with unit R containing A as a two-sided ideal we have the
homotopy fibration

BGL(A)+ -* BGL(R)+ -* BGL(R/A)+

(GL(R/A) = Im(GL(R) -* GL(R/A))). In particular, Ki(A) =
vri(BGL(A)+) and the actions of GL(R) by conjugation on
Ki(A) and on H*(GL(A)) are trivial.
The assertion of Corollary 2 follows immediately from the

results presented above (see also ref. 8). Notice that a
Q-algebra possessing the factorization property of Theorem
5 is automatically H-unital (see ref. 9).

In the sections below we use our main result (Theorem 1
above) to settle in the positive two conjectures, both con-

cerned with the algebraic K-theory of certain topological
rings.

Karoubi's Conjecture. The following corollary of Theorem
/ is obtained by combining it with the results of ref. 9.
COROLLARY 3. Every locally multiplicatively convex Frechet
algebra with a uniformly bounded left or right approximate
unit satisfies excision in algebraic K-theory.
The class of algebras to which Corollary 3 applies contains

all Banach algebras with bounded left or right approximate
units. In particular, every C*-algebra satisfies excision in
algebraic K-theory.

Recall that a functor F from the category of C*-algebras to
the category of abelian groups is said to be homotopy
invariant if, for every *-homomorphism Sp: B1 - B2 ® C[O, 11,
the compositions of sp with the evaluation maps at 0 and at 1
induce the same map F(B1) -* F(B2). Cuntz and Higson (see
ref. 10) have extracted from earlier results of Kasparov two
simple properties of a functor that secure its homotopy
invariance (in ref. 10, these are called stability and split
exactness). Corollary 3 above implies that the functor

[l]

possesses both of those properties. Here X stands for the
C*-algebra of compact operators on the standard separable
infinite-dimensional Hilbert space and 0 denotes the spatial
tensor product of C*-algebras. Thus we have the following
two additional corollaries of Theorem 1.
COROLLARY 4. The functor given by Eq. 1 is homotopy
invariant.
COROLLARY 5. Ifone denotes by 9 C C[O, 1 the subalgebra
offunctions vanishing at t = 0 then one has

K*(B0980 ) = 0

for any C*-algebra B.
The identity and zero endomorphisms of B 0 509X are

homotopic.
Corollary 5 combined with the repeated use of the long

exact sequences in algebraic K-theory associated with cer-
tain simple extensions of C*-algebras then shows that K,(B
0 X) canonically identifies with Kq_,,(B 0 CO(S") 08 X), q 2
n, where C0(S"1) denotes the algebra of continuous functions
on the n-dimensional sphere which vanish at the "northern
pole." Theorem 6 below, which settles a long-standing
Karoubi's conjecture, is an immediate corollary ofthe above.
THEOREM 6 (Karoubi's conjecture; see ref. 11). The canon-
ical comparison map connecting the algebraic and topolog-
ical K-groups

K*(B 09 X) -* KtP(B 09 X) = K*'P(B)

is an isomorphism for every C*-algebra B.
Additive versions of Karoubi's conjecture in cyclic homol-

ogy over an arbitrary subring k of C and in continuous cyclic
homology have been established previously (9, 12). A special
case of Karoubi's conjecture for K2 has also been settled (10,
13).
The Algebraic K-Theory of the Symbol Map. Let CL(X, E)

denote the ring of pseudodifferential operators of classical
type and of integral order, acting in the space of C'-sections
of a vector bundle E on a closed manifold X. The ring CL(X,
E) is connected with the ring of complete symbols CS(X, E)
by means of the symbol map X.E: CL(X, E)--+ CS(X, E). If
one replaces CL(X, E) by its subring CL°(X, E) of L2-
bounded operators and CS(X, E) by its subring CS°(X, E) of
symbols oforder s 0, one obtains the corresponding bounded
symbol map OXE. Theorem 7 below describes the algebraic
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K-theory groups of CrXE and o° E, which are defined so that
they enter into the following long exact sequences

K*(oCxE)

K*(CS(X, E)) < K*(CL(X, E))

and

K*(oaxE)
-1A \

K*(CS°)X, E)) - K*(CL°(X, E)).

THEOREM 7. One has canonical isomorphisms

K*(o-x E) K*(ox E),
[2]

K*(L)

where L denotes the ring of infinite complex matrices of
rapid decay ((aij)lij. belongs to L ifsupjJ(aijI(i + j)N) < X
for all real N).

In particular, the K-groups K*(o79cE) and K*(oxE) are
equal and do not depend on X or E.
We would like to emphasize that the vertical arrows in Eq.

2 involve a noncanonical identification between the ring
L-X(X, E) ofoperators with smooth Schwartz kernels and the

ring L. It follows from the main results of this article that the
resulting maps on K-groups do not depend on how one
chooses that identification.
The assertion of Theorem 7 has been conjectured previ-

ously (M.W., unpublished work). Theorem 7 suitably inter-
preted means that the extent to which the algebraic K-theory
of pseudodifferential operators differs from the algebraic
K-theory of symbols is completely described by a certain
universal abelian group of values of "higher index invari-
ants." An additive analog of Theorem 7 in cyclic homology
over an arbitrary subring k of C can be found in ref. 9, and
a similar result for the continuous cyclic homology was
established earlier (14).
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