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Abstract

RNA interference (RNAi) refers to thesetofmolecularprocesses found ineukaryoticorganisms inwhichsmall RNAmoleculesmediate

the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous

genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as

Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present

the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encom-

passing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also

identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000

InsectTranscriptomeEvolution)projectaswell asother resources suchas i5K (5000 InsectGenomeProject). Specifically,wetracedthe

origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/

Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the

splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference

points for future experimental research on RNAi-related pathway genes in insects.
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Introduction

RNA interference (RNAi), also known as RNA silencing, refers

to a set of molecular processes in which small RNA (sRNA)

molecules (i.e., siRNA, miRNAs, and piRNAs) target and silence

or down-regulate the expression of specific nucleic acids (Ha

and Kim 2014). The core components of RNAi pathways are

Argonaute proteins, which associate with the sRNAs and si-

lence specific target nucleic acids (Meister 2013). The

Argonaute and sRNA complex is termed the RNA induced

silencing complex (RISC). The RISC uses complementary base

pairing of the sRNA to identify the target RNA molecules.

Argonaute proteins can silence their targets, certain

Argonautes cleave the target mRNA while others affect their

targets using alternative mechanisms (Ketting 2011). RNAi

pathways differ in number of ways including the exact pro-

teins involved, sRNAs involved, and target RNAs. For instance
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the siRNA pathway targets dsRNA of viral origin while the

piRNA pathway primarily targets transposons (Meister 2013;

Czech and Hannon 2016).

RNAi interference pathways are found throughout eukary-

otic organisms and are thought to be present in the last

common ancestor of extant eukaryotes. RNAi may have orig-

inated as a means of anti-viral defense (Shabalina and Koonin

2008). Other RNAi functions, such as gene regulation, are

thought to have evolved later (Shabalina and Koonin 2008).

While the basic structure of RNAi pathways and involved pro-

teins are similar throughout eukaryotes, substantial gene du-

plication and gene loss has occurred in multiple lineages (for

examples see: Campbell et al. 2008; Tomoyasu et al. 2008;

Jaubert-Possamai et al. 2010; Lewis et al. 2016). In insects,

three main RNAi pathways are involved in gene regulation and

defense against viruses and transposable elements (Obbard

et al. 2009). The origin and evolution of the genes involved

in these three pathways is not well documented. Therefore,

we screened transcriptome assemblies of 100 insect species

for ten core RNAi pathway genes and present the most com-

prehensive overview of the evolution and distribution of these

core RNAi pathways in insects and related arthropods. In ad-

dition to the ten core RNAi genes, we also searched for tran-

scripts of Sid-1, a gene associated with the systemic spread of

RNAi between the cells of Caenorhabditis elegans (Winston

et al. 2002).

Studies on model organisms show that duplication and loss

of core RNAi pathway genes have occurred multiple times. For

instance, the number of paralogous genes coding for

Argonaute proteins varies throughout eukaryotes: humans

have eight genes coding for Argonaute proteins, Drosophila

melanogaster has five, Arabidopsis thaliana has ten, while the

nematode C. elegans has 26 Argonaute proteins (Hutvagner

and Simmard 2008; Siomi and Siomi 2009). This observed

duplication of core RNAi pathway genes might be correlated

with a diversification (Hutvagner and Simmard 2008) and

functional specialization of the RNAi pathways (Mukherjee

et al. 2013). In insects, the duplication of core RNAi genes

led to three largely separate RNAi pathways, each using dif-

ferent proteins and sRNA molecules (Obbard et al. 2009). Each

of the three RNAi pathways has a particular class of sRNAs

that associates with a specific Argonaute protein to form a

RISC, which targets and silences specific gene expression. The

three insect RNAi pathways are briefly outlined below.

(1) The micro-RNA (miRNA) pathway is involved in the reg-

ulation of gene expression. miRNA molecules originate in the

nuclear genome. Immature miRNAs are processed by the pro-

teins Drosha and Pasha in the nucleus and then exported to

the cytoplasm (Ghildiyal and Zamore 2009). In the cytoplasm,

the miRNAs are further processed by Dicer1 and its co-factor

Loquacious (Ghildiyal and Zamore 2009). The fully mature

miRNAs are loaded into Argonaute1 to form the RISC of the

miRNA pathway.

(2) The small-interfering-RNA (siRNA) pathway, sometimes

referred to as just RNAi, has two functions. The first is a means

of anti-viral defense. Here dsRNA of viral origin (produced

either inside or outside of the cell) is processed by the protein

Dicer2 and the dsRNA binding protein R2D2 into small inter-

fering RNAs (siRNAs) (Meister 2013). Subsequently, the siRNAs

are loaded into Argonaute2 to form a RISC, which silences

viral gene expression. The second function of the siRNA path-

way is as a defense against transposable elements (e.g., trans-

posons) in the genome. The transcribed transposon RNA is

processed by Dicer2 and Loquacious (rather than R2D2) to

form mature siRNAs (Czech et al. 2008). The siRNAs form

RISC with Argonaute2, which silences the expression of trans-

posons to prevent their further transposition in the genome

(Czech et al. 2008).

(3) The piwi-interacting RNA pathway is involved in defense

against the transposition of transposons in the germline (Siomi

et al. 2011). In Drosophila, this pathway involves multiple

Argonaute proteins of the Piwi sub-clade (i.e., Argonaute3,

Aubergine, and Piwi) (Aravin et al 2007). Primary piRNAs are

generated through cleavage transposon transcripts by the nu-

clease zucchini, thereby generating Piwi-interacting RNAs

(piRNAs). These primary piRNAs are loaded into the Piwi pro-

teins, resulting in transposon transcripts being further targeted

and silenced. This creates a feedback loop, in which the cleav-

age of a transcript generates secondary piRNAs that target the

same transcript (Meister 2013). This is called “the ping–pong

amplification loop” (Aravin et al. 2007; Siomi et al. 2011).

RNAi effects were first observed in the 1990s (Napoli et al.

1990) with an explanatory mechanism proposed in 1998 (Fire

et al. 1998) (for a historical overview see Sen and Blau 2006).

An RNAi system in an organism can be exploited by the ex-

perimental introduction of double-stranded RNA. This allows

researchers to silence specific genes and elucidate their func-

tion (Bellés 2010). Furthermore, RNAi-based technologies

have great potential applications as tools for the manage-

ment, control, and even protection of important insect species

(Scott et al. 2013). Further applications of RNAi include novel

therapies against disease (Bumcrot et al. 2006) and develop-

ment of crops that are resistant to pest insects (Baum et al.

2007; Mao et al 2007; Price and Gatehouse 2008; Huvenne

and Smagghe 2010). Although experimentally induced RNAi

has been shown to silence the target genes in many insect

species, the efficacy of RNAi is known to vary significantly

between species (Terenius et al. 2011).

Differences of RNAi efficacy among insects could be par-

tially explained by diversity in the RNAi pathway genes present

in different lineages. Studies on insects whose genomes have

been sequenced show that the number of core RNAi pathway

genes varies between different major insect groups, along

with gene duplications apparently occurring in several line-

ages. For example, in mosquitoes multiple Argonaute paralo-

gous gene copies have been identified. Both Aedes aegypti

(two copies of Argonaute1) and Culex pipiens (two copies of
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Argonaute2) have multiple copies of Argonaute genes

(Campbell et al. 2008). The red flour beetle, Tribolium casta-

neum, also has two paralogs of both, Argonaute2 and R2D2

(Tomoyasu et al. 2008). In the pea aphid, Acyrthosiphon

pisum, multiple copies of miRNA (gene-regulatory) pathway

genes have been described (two paralogs each of

Argonaute1, Loquacious, and Dicer1, and four paralogs of

Pasha) (Jaubert-Possamai et al. 2010). While the genes, pro-

teins, and overall mechanism of the RNAi system are well

studied in model insect species, the distribution and evolution

of core RNAi genes across the broad scale diversity of insects

will be explored in this study.

Material and Methods

Data Used

To infer the distribution, duplication, and loss of core RNAi

pathway genes in insects, we screened assemblies of tran-

scriptomes of 100 insect species (supplementary table S3,

Supplementary Material online), a subset of the transcrip-

tomes published by Misof et al. (2014) for ten RNAi pathway

genes involved in the three main insect RNAi pathways. We

selected genes coding for three major protein families involved

in insect RNAi: Argonaute proteins, Rnase III proteins, and

dsRNA binding proteins. Additionally, we also searched for

Sid-1, a gene associated with the systemic spread of RNAi

between cells. We follow Misof et al. (2014) and use “in-

sect/s” as a synonym for all hexapods, including the orders

Protura (coneheads), Diplura (two-pronged bristletails), and

Collembola (springtails). We additionally searched the official

gene sets (proteins) of seven arthropod species—five insects,

one chelicerate, and one crustacean: Apis mellifera and

Nasonia vitripennis (Hymenoptera), Acyrthosiphon pisum

(Hemiptera), Bombyx mori (Lepidoptera), Tribolium castaneum

(Coleoptera), Ixodes scapularis (Chelicerata), and Daphnia

pulex (crustaceans, Branchiopoda) (supplementary table S1,

Supplementary Material online).

We substantiated the hypothesis of R2D2 being a derived

feature of pterygote insects by screening the draft genomes of

Hrabe’s Jmping Bristletail (Machilis hrabei; Archaeognatha;

https://www.hgsc.bcm.edu/arthropods/hrabes-jumping-bristletail-

genome-project; last accessed November 30, 2016) and

Silvestri’s Northern Forcepstail (Catajapyx aquilonaris; Diplura;

https://www.hgsc.bcm.edu/arthropods/silvestris-northern-

forcepstail-genome-project; last accessed November 30, 2016).

Gene Identification

To identify putative orthologs of the ten RNAi-related pathway

genes and Sid-1, we first translated the assembled transcripts

of each transcript library into all six possible reading frames

using the exonerate tool fastatranslate (Slater and Birney

2005; version 2.2). We subsequently used resulting amino

acid sequences to create BLAST-searchable databases in

Geneious 7.1.5 (Biomatters, Auckland, New Zealand; Kearse

et al. 2012). We additionally obtained the official gene sets

(protein sets) of seven arthropod species, for which full

genomes are available, and generated seven separate

BLAST-searchable databases in Geneious (for details, see sup-

plementary table S1, Supplementary Material online). To de-

termine the timing of duplication of Dicer genes we also

searched the genomes of two spider species (Sanggaard

et al. 2014), the African social velvet spider (Stegodyphus

mimosarum) and the Brazilian white-knee tarantula

(Acanthoscurria geniculata), and one centipede (Strigamia

maritima) (Chipman et al. 2014) for Dicer orthologs. To deter-

mine if Sid-1/Tag-130 homologs were present in Diptera we

BLAST searched (tBLASTn) the genome assemblies of three dip-

teran species. Species selected were: Drosophila pseudoobscura

(GenBank assembly accession: GCA_001014495.1), Aedes

aegypti (GCA_001014885.1), and Anopheles gambiae

(GCA_001542645.1).

We used ten amino acid sequences involved in RNAi path-

ways known from Drosophila melanogaster and one amino

acid sequence (Sid-1), which is absent in Drosophila, but is

known from B. mori as query sequences (supplementary

table S2, Supplementary Material online). All sequences

were downloaded from the NCBI protein database. We

used each of the eleven amino acid sequences as a query

for blastp (BLAST program suite, Altschul et al. 1990) and

searched within Geneious against local BLAST databases cre-

ated from the 100 transcriptomes and the seven official gene

sets. We removed false positives (nonorthologous homologs)

by searching each hit with blastp against the NCBI nonredun-

dant protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi;

last accessed November 30, 2016). We only considered a tran-

script to be an ortholog and derived from a given RNAi path-

way gene when it was found as best reciprocal hit.

Generation of Gene Trees

All identified amino acid sequences of a given RNAi pathway

protein were aligned using the Geneious alignment tool (using

the Geneious alignment algorithm; Kearse et al. 2012). We

used the deer tick (I. scapularis, Chelicerata) and the crusta-

cean branchiopod (D. pulex) as outgroups. Short sequences

(< 50% of the proteins consensus length) were removed from

the alignments. We visually inspected the alignments and

manually corrected them for obvious misalignments. For six

alignments, we inferred a gene tree applying the maximum

likelihood optimality criterion as implemented in PhyML

(Guindon et al. 2010; version 3.0) with the following param-

eters: substitution model: WAG + G, proportion of invariant

sites: 0 (fixed), substitution rate categories: 4, alpha-shape

parameter: estimated, optimization parameters: topology/

length/rate. Statistical tree robustness was assessed in

PhyML via bootstrapping (1,000 bootstrap replicates).(supple-

mentary figures S1–S6, Supplementary Material online).
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Sid-1/Tag-130 Identification

It has been suggested that putative insect orthologs of C.

elegans Sid-1 are in fact orthologous with the C. elegans pro-

tein tag-130 (Tomoyasu et al. 2008). To test this, we recreated

the multiple sequence alignment using C. elegans Sid-1 and

tag-130 amino acid sequences. Using the multiple sequence

alignment, we recreated the Sid-1 gene tree to determine if

our putative insect orthologs clustered more closely to C. ele-

gans Sid-1 or tag-130. The method used was the same as for

the other gene trees.

Ancestral State Reconstruction

To infer gains and losses of orthologs of core RNAi pathway

genes throughout insect evolutionary history, we used the

ancestral state reconstruction package of Mesquite

(Maddison and Maddison 2008; version 3.02). We used the

number of genes found in each species as character states and

a phylogenetic tree adapted from Misof et al. (2014). The

ancestral states were reconstructed using maximum parsi-

mony. Note that Mesquite does not allow ancestral state re-

construction under the Dollo parsimony (Maddison and

Maddison 2008) optimality criterion, which penalizes the

loss and subsequent regain of a character. Thus, certain fig-

ures (supplementary figs. S7–S17, Supplementary Material

online) appear to show the loss of gene in one lineage and

its subsequent re-evolution in a descendant lineage.

To independently infer contraction and expansion of

Argonaute genes we used the CAFE 3.0 (Han et al. 2013).

As input we used selected Argonaute1, Argonaute2, Piwi/

Aubergine, and Argonaute3 as gene families and provided

the number of homologs belonging to each gene family

and a ultrametric phylogenetic tree of all species (adapted

from Misof et al, 2014). We specified that CAFE 3.0 search

for an optimal � value. We did not specify that � varies.

Testing for Evidence of Positive Selection in Specific
Genes

To determine whether or not positive selection was acting on

certain core RNAi pathway genes, we used the package

codeML in the program PAML (version 4.8; Yang 2007).

codeML calculates the ratio of nonsynonymous substitutions

to synonymous substitutions (o).

We selected two genes to test. The first was R2D2 in bee-

tles (Coleoptera). Duplicate copies of R2D2 previously identi-

fied in Tribolium castaneum were identified in three beetle

species. We tested for evidence of positive selection in all

branches of the beetle clade comprising Gyrinus marinus,

Aleochara curtula, and Meloe violaceus (note that we only

detected one copy of R2D2 in Lepicerus sp.).

R2D2 was not found in several Lepidoptera transcriptomes

suggesting that it was lost in members of this group. We hy-

pothesized that the double-stranded RNA binding protein

Loquacious may fulfill the role of R2D2 in species which

have lost R2D2. We tested Loquacious for evidence of positive

selection in the branches within the Lepidoptera clade com-

prising Nemophora degeerella, Yponomeuta evonymellus,

Zygaena fausta, and Parides eurimedes. Evidence of positive

selection in Loquacious in specific branches of Lepidoptera

would suggest that it underwent rapid evolution and may

taking the role ordinarily taken by R2D2.

For both genes (i.e., R2D2 and Loquacious), we generated

multiple sequence alignments on the nucleotide level with the

amino acid alignments as guidance using PAL2NAL (version

14) (Suyama et al. 2006). We applied a branch site model, in

which o is allowed to vary among both sites and branches, to

test for positive selection in specified branches. For both genes

we used the gene trees created above as input trees for the

codeML analyses. We used two models: one in which o varies

on our branch of interest (alternative model) and one in which

o is fixed for each branch (null models). Models settings for

null model were: model = 2, NSsites = 2, fix_kappa = 0,

kappa = 2, fix_omega = 1, omega = 1. Model settings for al-

ternative model were: model = 2, NSsites = 2, fix_kappa = 0,

kappa = 2, fix_omega = 0, omega = 1. We tested for statisti-

cally significant difference between the two models using a

Likelihood Ratio Test (LRT) with one degree of freedom.

Transcriptome Completeness Assessment

To assess transcriptome assembly completeness, we used

BUSCO version 1.1b (Simão et al. 2015) to search for a set

of 2,675 conserved genes that are near-universal single-copy

orthologs in arthropods. These genes serve as a benchmark

for genome or transcriptome completeness and are found as

single copies in the majority (95%) of arthropod genomes in

the OrthoDB database (Kriventseva et al. 2015). BUSCO uses a

combination of BLAST (Camacho et al. 2009), profile Hidden

Markov Models generated with HMMER 3 (Eddy 2011), and a

gene model refinement procedure (Stanke et al. 2004) to

identify and discriminate genes which are present, duplicated,

fragmented, or missing in the searched transcriptome. As

transcriptomes only contain a subset of the total genes pre-

sent in the genome we expect that not all 2,675 BUSCO genes

will be found.

Results

Our systematic search for core genes directly involved in RNA

interference pathways (five in the miRNA pathway, three in

the siRNA pathway, and two in the piRNA pathway) in whole-

body transcript libraries of 100 insect species revealed putative

orthologs of at least one gene from each of the three RNA

silencing pathways in all 32 studied insect orders. We found a

complete set of ten genes in 13 of all studied orders. We

furthermore found putative orthologs of Sid-1, a gene associ-

ated with systemic RNAi, in 25 out of the 32 insect orders.

Finally, analysis of the 100 transcriptomes indicated gene
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duplication and gene loss events in multiple lineages and spe-

cies (fig. 1). While transcriptomes can be used to identify the

RNAi genes, they do not allow us to conclusively state that a

gene is missing from the genome.

miRNA Pathway Genes

We identified orthologs of five miRNA pathway genes known

from Drosophila (Obbard et al. 2009) in our studied insect

species: we found Argonaute1, Dicer1, Loquacious, Drosha,

and Pasha in the transcriptomes of 67, 66, 87, 79, and 80

insect species, respectively, representing all major lineages

(table 1). Consistent with this observation, ancestral recon-

struction using Mesquite (v. 3.02) suggests that all five

miRNA pathway genes were present in the last common an-

cestor of insects. Possible duplicates of Dicer1 and Pasha were

found in the transcriptomes of Planococcus citri (Hemiptera;

two Dicer 1 and three Pasha) and Essigella californica

(Hemiptera; two Dicer1 and two Pasha) (fig. 1).

siRNA Pathway Genes

Of all three currently known core genes involved in the siRNA

pathway of Drosophila, we identified orthologs of

Argonaute2, Dicer2, and R2D2 in the assembled transcripts

of 94, 80, and 68 species, respectively (table 1), again repre-

senting the major insect lineages. However, we did not find

R2D2 in any of the primary wingless insect (nonpterygote)

species. We found possible duplicates of Argonaute2 in the

transcript assemblies of the following species:

Tanzaniophasma sp. (Mantophasmatodea), Peruphasma

schultei (Phasmatodea), Prorhinotermes simplex (Isoptera),

Xenophysella greensladeae (Hemiptera), Pseudomallada prasi-

nus (Neuroptera), and Panorpa vulgaris (Mecoptera).

We identified two copies of R2D2 in Meloe violaceus,

Aleochara curtula, and Gyrinus marinus (Coleoptera). Ancestral

state reconstruction using Mesquite (v. 3.02) suggests that R2D2

was present in the last common ancestor of Pterygota. Ancestral

state reconstruction using CAFE 3.0 indicates that Argonaute2

was present in two copies in the last common ancestor of in-

sects. Subsequently, in winged insects one copie was lost while

in wingless insects Argonaute2 was duplicated.

piRNA Pathway Genes

The piRNA system of Drosophila melanogaster involves three

Argonaute proteins of the Piwi family (Argonaute3, Piwi, and

Aubergine). We identified both Piwi and Aubergine only in

Diptera (three species: Bombylius major, Lipara lucens, and

Triarthria setipennis) (fig. 1). Outside of Diptera, we found

orthologs of either Piwi/Aubergine in the transcript assemblies

of 85 species (table 1), representing all major insect lineages.

Consistent with this observation, ancestral state reconstruc-

tion generated with Mesquite (v. 3.02) suggests that homo-

logs of both Piwi/Aubergine and Argonaute3 were present in

the last common ancestor of insects, with Piwi/Aubergine pre-

sent in multiple copies (integers between two and five were

equally likely). Ancestral state reconstruction with CAFE 3.0

indicates that two copies of Piwi/Aubergine were present in

last common ancestor of insects as well as two copies of

Argonaute3. Furthermore the duplications of Piwi/Aubergine

in several insect clades (e.g., Diptera and Hemiptera) were

suggested to be independent gene expansions. We found

multiple copies of Piwi/Aubergine in the transcriptomes of

25 nondipteran species (fig. 1). We found orthologs of

Argonaute3 in transcriptome data of 51 species, representing

major insect lineages except many polyneopteren groups en-

compassing Isoptera, Blattodea, Mantodea, Grylloblattodea,

Mantophasmatodea, Phasmatodea, and Embioptera. While

we found a possible transcript of Argonaute3 in one species

of the insect order Grylloblattodea (ice crawlers), Grylloblatta

bifratrilecta, the length of the transcript was too short to un-

ambiguously assess orthology. Finally, we found multiple

copies of Argonaute3 in Anurida maritima (Collembola).

Systemic RNAi

Phylogenetic analysis of putative insect Sid-1 orthologs indi-

cates that they form a clade distinct from C. elegans Sid-1 and

Tag-130. We also identified Tag-130 protein domains in many

insect putative Sid-1 orthologs. We identified putative ortho-

logs of Sid-1/Tag-130 in the transcriptomes of 68 species,

representing almost all major insect lineages except species

belonging to Antliophora (i.e., Diptera, Mecoptera, and

Siphonaptera). We found multiple copies of Sid-1/Tag-130

in the transcriptomes of 13 species, in particularly in

Collembola, with two present in Sminthurus viridis, three in

Folsomia candida, four in Pogonognathellus sp., and three in

Anurida maritima. Multiple copies of Sid-1/Tag-130 were also

Table 1

Orthologs of the Members of the Three Different RNAi Pathways

Identified in 100 Investigated Insect Transcriptomes (subset of data

published by Misof et al. 2014)

Gene Pathway Present Duplicates

Argonaute1 miRNA 67 0

Dicer1 miRNA 66 2

Loquacious miRNA 87 0

Drosha miRNA 79 0

Pasha miRNA 80 2

Argonaute2 siRNA 94 6

Dicer2 siRNA 80 0

R2D2 siRNA 68 3

Aubergine/Piwi piRNA 89 28

Argonaute3 piRNA 51 1

Sid-1/Tag-130 Systemic RNAi 68 7

NOTE.—The present column shows the number of transcriptomes (out of 100)
in which a putative ortholog was found. The duplicates column shows the number
of transcriptomes (out of 100) in which more than one putative ortholog for a
given gene was identified. For this study, we used assembly version 2 of all
transcriptomes, released in October 2015.
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FIG. 1.—Distribution of ten core RNA interference genes and the systemic RNA interference gene Sid-1 in insects. The number of copies of each gene found

using our methodology is noted in the table. Genes whose presence could not be conclusively verified or denied are marked with a question mark (?). Genes

which were not found are marked with a zero (0). In some genome species known genes were not recovered. Where this is the case we include the known

number of genes in bold after the number we have identified. Tree topology is based on that of Misof et al. (2014). Note that Blattodea is considered paraphyletic.
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identified in Cordulegaster boltonii (Odonata), Gynaikothrips

ficorum (Thysanoptera), Ectopsocus briggsi (Psocodea),

Aleochara curtula and Gyrinus marinus (both Coleoptera),

and Polyommatus icarus and Parides eurimedes (both

Lepidoptera). Ancestral state reconstruction suggests that

Sid-1/Tag-130 was present in the last common ancestor of

insects.

Dicer Genes in Other Arthropods

For both spider species we found multiple contigs homolo-

gous with insect Dicer proteins (see supplementary material).

Both Dicer1 and Dicer2 returned many of the same contigs.

Therefore we could not conclusively determine if the spider

Dicers were orthologs of insect Dicer1, Dicer2, or orthologous

with both. In both spiders, the resulting sequences had a

higher identity with Dicer1. In the centipede we found two

sequences homologous with insect Dicers. Both sequences

were returned as BLAST hits for both Dicer1 and Dicer2

queries. Both hits shared a higher identity with Dicer1.

Evidence of Positive Selection

We found no evidence for positive selection in the two can-

didate genes R2D2 and Loquacious along any of the investi-

gated branches (i.e., branches within Coleoptera and

branches within Lepidoptera). However, it is important to

note that evidence for positive selection may have been

missed due to the small number of nucleotide sequences

analyzed.

Discussion

RNAi is an important biological process in insects (and other

eukaryotes) and serves a range of biological functions.

Manipulation of RNAi systems is a potentially lucrative field

of research with numerous applications. Our results show that

the genes of the three major insect RNAi pathways identified

in Drosophila melanogaster are present in all insect orders. Our

analysis indicates that in different insect lineages RNAi-related

pathway genes have been duplicated and, in some cases, have

potentially been lost more frequently than previously known.

Duplications may lead to subfunctionalization or neofunctio-

nalization in RNAi pathways and could explain observed dif-

ferences in the efficacy of RNAi across different insect groups.

Loss of core RNAi-related genes may also explain observed

decreases in RNAi efficacy in certain lineages.

Using whole-body transcriptomes of mostly adult insects

(supplementary table S3, Supplementary Material online) to

detect presence or absence of genes has limitations. As the

transcriptome only contains genes expressed at the time of

the insect’s death (e.g., frozen with liquid Nitrogen), the re-

spective transcriptome may lack genes only expressed at spe-

cific developmental stages. Moreover, gene expression

restricted to specific tissues could have caused low transcript

abundance in whole-body transcriptomes. We therefore

cannot distinguish between a gene which may have been

lost and one that was not (or very lowly) expressed.

Therefore, we also searched for the eleven genes in several

published official gene sets (supplementary table S1,

Supplementary Material online).

Our results indicate/imply that the evolution of RNAi path-

ways in insects is a gradual and complex process. Insects in-

herited a complete RNAi system from their common ancestor

and, over time, diversified and expanded this original system.

One striking example of this is the evolution of the dsRBP

R2D2 in the winged insects. This provided winged insects

with two complementary and parallel RNAi pathways—

miRNA and siRNA. We infer numerous expansions of argo-

naute proteins involved in the piRNA pathway in insects.

Duplicate copies of Piwi/Aubergine were found in 28 of 100

transcriptomes. In comparison, we did not identify any dupli-

cates of Argonaute1 (argonaute protein of the miRNA path-

way) in a single transcriptome. In flies a similar pattern has

been observed in which multiple copies of Piwi/Aubergine are

frequently observed while Argonaute1 duplications are not

(Lewis et al. 2016). As we used transcriptomes we cannot

conclusively state that a gene is lost from a species (the

gene in question may not have been expressed at the time

the transcriptome was generated). However, we do observe

several intriguing patterns which suggest that certain compo-

nents have indeed been lost in specific lineages. One example

is Sid-1/Tag-130 which appears to have been lost in flies and

their close relatives (i.e., Antliophora). Another putative loss

event is observed in a large clade of hemimetabolous insects,

the Dictyoptera (Mantodea, Blattodea, and Isoptera) which

appear to have lost Argonaute3. Like Piwi/Aubergine,

Argonaute3 is involved in the piRNA pathway and its apparent

loss poses a curious counter example to the multiple expan-

sions of this pathway observed in other lineages. Our results

underscore the diversity of RNAi systems observed in insects

and hint at the complex evolutionary histories which must

have brought them into being.

Origin of R2D2

The three core proteins of the anti-viral RNAi pathway are

Argonaute2, Dicer2, and R2D2. The siRNAs involved in this

pathway originate from exogenous dsRNA (e.g., from viruses).

The pathway is, therefore, sometimes termed the exo-siRNA

pathway. It is the pathway exploited when RNAi is experimen-

tally induced. R2D2 is a double-stranded RNA binding protein

(dsRBP) necessary for loading siRNAs into RISC (Liu et al. 2003,

2006). Orthologs of R2D2 have been identified in several in-

sects including Drosophila (Liu et al. 2003), Tribolium

(Tomoyasu et al. 2008), and the crop pest Bemisia tabaci

(whitefly) (Uphadhyay et al. 2013). To date, R2D2 has not

been identified outside of insects. We identified orthologs of

R2D2 in all orders of winged insects (Pterygota). However, we
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neither found R2D2 in apterygote insect orders (12 transcrip-

tomes in total) nor in outgroup taxa (Ixodes scapularis and

Daphnia pulex). Ancestral state reconstruction correspond-

ingly suggests that R2D2 is a derived feature (autapomorphy)

of Pterygota. It also suggests that core RNAi proteins dupli-

cated gradually and involved a series of independent gene

duplication events rather than a single whole-scale duplication

of the RNAi pathway.

While R2D2 is seemingly absent in primary wingless insects,

the other core siRNA pathway genes (i.e., Argonaute2 and

Dicer2) are present. Additionally, we could not find R2D2 in

the draft genomes of Hrabe’s Jumping Bristletail (Machilis

hrabei) and Silvestri’s Northern Forcepstail (Catajapyx aquilo-

naris). These two genomes have been sequenced and are cur-

rently analyzed by researchers of the i5K initiative (i5K

Consortium 2013). The absence of R2D2 does not necessarily

mean that these species lack a functional exo RNAi pathway. It

is possible that the corresponding gene from the miRNA path-

way (Loquacious) could compensate for R2D2 in these species.

An alternative siRNA pathway (known as the endo-siRNA

pathway) involving the proteins Argonaute2, Dicer2, and the

dsRBP Loquacious is known from Drosophila (Czech et al.

2008; Okamura et al. 2008). This pathway is likely involved

in the down-regulation of transposons in somatic cells (Chung

et al. 2008). We identified orthologs of Loquacious in all pri-

mary wingless insects but Campodea augens (Diplura). This

suggests that primary wingless insects have a complete siRNA

pathway. It remains to be investigated whether or not the

siRNA pathway in primary wingless insects involves siRNA of

exogenous (e.g., viruses) or endogenous (e.g., transposons)

origin or both.

Duplication of R2D2 has been previously found in Tribolium

(Tomoyasu et al. 2008). We found evidence of multiple R2D2

homologs in other beetle transcriptomes; however, we were

unable to determine if duplication of R2D2 occurred once in

beetles or multiple times independently. We tested R2D2

orthologs in five beetle species to infer evidence of positive

selection acting on these genes. While R2D2 is one of the

most rapidly evolving genes in Drosophila (Obbard et al.

2006), we did not find any evidence for positive selection in

beetles.

R2D2 in Lepidoptera

An R2D2 ortholog has been identified in the silk moth

(Bombyx mori). However, it is expressed at very low rates

(Swevers et al. 2011). We could not identify R2D2 in the

transcriptomes of four investigated species of Lepidoptera,

suggesting that in these species R2D2 is either expressed at

a very low level or is entirely absent. All four investigated spe-

cies of Lepidoptera belong to the large group of Ditrysia,

which includes the vast majority of Lepidoptera, including B.

mori. The four species belong to four families within Ditrysia

(Yponomeutidae, Zygaenidae, Lycaenidae, and Papilionidae).

While the number of families investigated is small, they rep-

resent the broader diversity of Ditrysia. The consistent pattern

observed and the congruency with published results (Swevers

et al. 2011) suggests that R2D2 may be expressed at a low

level or is entirely absent in all members of Ditrysia.

The low level of expression of the R2D2 gene observed in B.

mori has been suggested as a response to the domestication

of this species and subsequent decrease in frequency of viral

infection (Swevers et al. 2011). Our results, however, suggest

that the R2D2 protein is not (or is generally very lowly) ex-

pressed in members of Ditrysia (and, thus, the majority of the

Lepidoptera). This implies that loss or low expression of R2D2

significantly predates the domestication of B. mori. The pos-

sibility that R2D2 is expressed at low concentrations in Ditrysia

may partially explain the variable success observed in experi-

mentally inducing RNAi in Lepidoptera under laboratory con-

ditions (Terenius et al. 2011). It may also have implications for

developing RNAi-based crop protections against pest species

within Lepidoptera.

Piwi/Aubergine in Diptera

In insects, the piRNA pathway acts as a defense against trans-

posons in the germ line. Unlike in other RNA silencing path-

ways (miRNA and endo- and exo-siRNA), Dicer proteins are

not involved. Additionally, the piRNA pathway uses

Argonaute proteins of the Piwi family rather than those of

the Ago family (i.e., Argonaute1 and Argonaute2). In the

model species D. melanogaster, three Piwi proteins (Piwi,

Aubergine, and Argonaute3) take part in the piRNA pathway.

Argonaute3 and Aubergine operate in a loop (termed the

ping–pong amplification loop) which alternately are cleaving

sense and anti-sense transcripts. Piwi binds to the resulting

piRNAs generated by the loop (Aravin et al. 2007; Siomi

et al. 2011). In Tribolium castaneum, only two Piwi proteins

are present: an ortholog of Argonaute3 and one correspond-

ing to Aubergine/Piwi (Tomoyasu et al. 2008). The mosquitoes

Aedes aegypti and Culex pipiens have large expansions of Piwi

proteins with seven and six copies of the Aubergine gene,

respectively (Campbell et al. 2008). In mosquitoes expansion

of Piwi genes has been suggested to be a response to in-

creased transposon content in the genome (Campbell et al.

2008).

The split between Aubergine and Piwi occurred 182–156

million years ago in a common ancestor of brachyceran flies

(Lewis et al. 2016). In Brachycera, Piwi plays a role in hetero-

chromatin formation (Chambeyron and Seitz 2014). Our re-

sults are consistent with the evidence that the Piwi/Aubergine

split occurred in the most recent common ancestor

Brachycera. We also investigated the transcript assembly of

a representative of Bibionomorpha, which are considered to

be the closest relatives of the Brachycera, Bibio marci, but did

not find any orthologs of Piwi and Aubergine in this species.

The BUSCO value of B. marci was only 0.45 (all species
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mean = 0.6, all species median = 0.61) which suggests a rela-

tively incomplete transcriptome. Because we could not iden-

tify orthologs of several other target genes in this species

either, this possibly indicates that the transcriptome may

have been of inferior quality. Thus, our data are inconclusive

in respect of whether the split between Piwi and Aubergine

occurred in the last common ancestor of Brachycera or

whether it occurred earlier in the dipteran phylogeny.

In Diptera numerous independent duplications of

Argonaute3 and Piwi/Aubergine have also been identified

(Lewis et al. 2016). These duplications have been suggested

as a response to genomic parasites (e.g., transposons) (Lewis

et al. 2016). Our results suggest that the Piwi/Aubergine gene

has also been duplicated numerous times independently in

other insect groups such as Hemiptera, Thysanoptera, and

Hymenoptera. Whether this is a response to a high frequency

of transposons in the genomes of the analyzed species or

whether the duplication has led to new functionality remains

to be investigated. The genomes currently sequenced and

analyzed in context of the i5K initiative (i5K Consortium

2013) will provide the basis for such investigations.

Loss of Sid-1/Tag-130 in Antliophora

Sid-1 is a transmembrane protein associated with the systemic

spread of the RNAi response in the nematode C. elegans

(Winston et al. 2002). Drosophila species lack both orthologs

of the gene Sid-1 and a systemic RNAi response. In other in-

sects, such as Tribolium, Sid-1 like genes have been identified

(Tomoyasu et al. 2008). The particular role of the Sid-1 protein

in insects, however, remains uncertain. Our analysis could not

distinguish if the insect Sid-1 like genes are orthologous with

either C. elegans Sid-1 or Tag-130. We identified orthologs of

Sid-1/Tag-130 in species of most insect orders, but were

unable to detect transcripts of Sid-1/Tag-130 in the analyzed

transcriptomes of dipteran species. This corroborates the idea

that this gene is absent in flies and relatives. Intriguingly, we

did not find orthologs of Sid-1/Tag-130 in other members of

Antliophora (i.e., Mecoptera—scorpion flies in a broader

sense—and Siphonaptera—fleas), either. This suggests that

Sid-1/Tag-130 was already lost in the last common ancestor

of this species rich endopterygote insect lineage.

Conclusion

Using transcriptomic data of 100 insect species, we have

gained new insights into the evolution of RNAi pathways in

this highly diverse animal group. We show that RNAi related

pathway genes are found in all insect orders. Our results sug-

gest several novel gene expansions and indicate the distribu-

tion of core RNAi pathway genes in numerous nonmodel

organisms. Additionally, we have identified certain key evolu-

tionary events including the origin of R2D2 in pterygote insects

and the loss of Sid-1 in Diptera.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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