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Abstract

Building high accuracy text classifiers is an important task in biomedicine given the wealth of 

information hidden in unstructured narratives such as research articles and clinical documents. 

Due to large feature spaces, traditionally, discriminative approaches such as logistic regression and 

support vector machines with n-gram and semantic features (e.g., named entities) have been used 

for text classification where additional performance gains are typically made through feature 

selection and ensemble approaches. In this paper, we demonstrate that a more direct approach 

using convolutional neural networks (CNNs) outperforms several traditional approaches in 

biomedical text classification with the specific use-case of assigning medical subject headings (or 

MeSH terms) to biomedical articles. Trained annotators at the national library of medicine (NLM) 

assign on an average 13 codes to each biomedical article, thus semantically indexing scientific 

literature to support NLM's PubMed search system. Recent evidence suggests that effective 

automated efforts for MeSH term assignment start with binary classifiers for each term. In this 

paper, we use CNNs to build binary text classifiers and achieve an absolute improvement of over 

3% in macro F-score over a set of selected hard-to-classify MeSH terms when compared with the 

best prior results on a public dataset. Additional experiments on 50 high frequency terms in the 

dataset also show improvements with CNNs. Our results indicate the strong potential of CNNs in 

biomedical text classification tasks.
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1. Introduction

Text classification is an important problem with many applications in biomedicine. Specific 

problems such as identifying reportable cases of cancer from pathology reports, recognizing 

particular phenotypes from clinical narratives, determining the correct sense for the usage of 

an ambiguous word given its context (word sense disambiguation), and assigning medical 

subject headings (MeSH terms) to biomedical articles, can all be modeled as instances of the 

general text classification problem. Traditional approaches to text classification involve 

applying conditional models (e.g., logistic regression (LR), support vector 

machines(SVMs)) trained on features derived from the text including n-grams and named 

entities. Further performance gains are usually achieved with feature selection, data 

selection, and ensemble approaches such as voting, bagging, stacking, and boosting [40]. 

Deriving more interesting and relevant features based on the particular domain of interest 

and the nature of text are also popular additional enhancements, typically termed as feature 

engineering. For example, emoticons and hashtags form important new features for 

sentiment analysis of Twitter data [20]. In biomedicine identifying negated mentions of 

named entities and automatically deriving regular expression features from a set of domain 

specific seed patterns have been shown to be effective [7]. Exploiting definitional knowledge 

(concept glosses) and inter-concept relations from an external domain specific knowledge 

base such as the unified medical language system (UMLS) can also provide performance 

gains [33]. Overall, applying linear classifiers with domain specific feature engineering and 

ensemble modeling still produces state-of-the-art results for text classification.

The resurgence of deep neural networks (or deep nets) has paved ways to more general 

alternatives to supervised learning, especially in object classification. Deep nets obviate the 

laborious process of feature engineering and take upon the burden of automatically learning 

high level representations of input instances that are better suitable for the classification 

problem at hand. Deep nets have been initially applied to problems in computer vision but 

have been recently adapted to natural language processing (NLP) tasks [3,9,22] especially 

through learning distributed representations of textual segments (words, sentences, 

documents) as vectors in ℝd. These vectors directly guide primitive tasks such as part-of-

speech tagging and statistical parsing as well as high level tasks such as text classification 

and machine translation. Convolution neural networks (CNNs) take advantage of the so 

called “convolutional filters” to automatically learn features that are more suitable to the task 

at hand. They have been actively used in biomedicine in image classification even before 

deep learning became popular in the recent past. However, CNNs and deep nets in general 

have not been explored until recently for text classification, and are currently used for 

sentiment/opinion mining [17,19,28] for short texts with fairly balanced class distributions. 

Our motivation in this paper is to evaluate CNNs on longer texts with highly skewed class 

distributions, a typical scenario encountered in biomedicine. We specifically demonstrate the 

potential of CNNs for learning better binary classifiers to assign medical subject headings 

(MeSH terms) to biomedical articles when compared with more conventional approaches.

Indexing biomedical articles with concepts from the controlled hierarchical MeSH 

vocabulary is an important task that has significant impact on how researchers search and 

retrieve relevant information. This is particularly essential given the exponential growth of 
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biomedical articles indexed by PubMed®, the main search system developed by the National 

Center for Biotechnology Information (NCBI). PubMed lets users search over 22 million 

biomedical citations available in the MEDLINE bibliographic database curated by the 

National Library of Medicine (NLM) from over 5000 leading biomedical journals in the 

world. To keep up with the explosion of information on various topics, users depend on 

queries involving MeSH terms that are assigned to each biomedical article. Once articles are 

indexed with MeSH terms, users can quickly search for articles that pertain to a specific 

subject of interest instead of relying solely on key word based searches. Besides this direct 

application, recent efforts also demonstrated that using the set of MeSH terms assigned to an 

article as its semantic proxy can be helpful in high level applications such as literature based 

knowledge discovery [8].

To mitigate indexing consistency issues and expedite the indexing process, there have been 

many recent efforts by researchers to develop automatic ways of assigning MeSH terms for 

indexing biomedical articles including efforts in the on-going BioASQ indexing challenge 

[32]. However, automated efforts (including ours) mostly focused on predicting MeSH terms 

for indexing based solely on the abstract and title text of the articles. This is because most 

full text articles are only available based on paid licenses not subscribed by many 

researchers. In this paper, we utilize recent advances in text classification using CNNs for 

assigning MeSH terms to biomedical articles based on the title and abstract text of the 

article. Jimeno-Yepes et al. [35] recently identified a set of nearly 29 hard-to-classify terms 

based on automatic indexing efforts at the NLM. They use a variety of classifiers in an 

ensemble setup and achieve better results than NLM's medical text indexer (MTI) program. 

We use their dataset and employ a CNN model proposed by Kim [19] to achieve an absolute 

improvement of over 3% in macro F-score over these selected terms. In a very recent 

attempt [15], Jimeno-Yepes et al. demonstrate the use of an extensive set of features to 

obtain improved results over 50 high frequency terms in the same dataset used in their 2013 

paper. On these 50 terms, we achieve about 1% improvement in micro F-score and a 

comparable macro F-score. We believe that our results are the first to demonstrate the utility 

of CNNs for biomedical text classification especially for the scenarios with extreme class 

imbalance.

We discuss essential background on automated efforts to MeSH term assignment in Section 

2 along with related efforts that use neural networks for natural language processing. In 

Section 3, we elaborate the specifics of the CNN model we use in our paper. We describe the 

dataset used for experiments, outline the methods compared, and specify the settings used 

for the CNNs in Section 4. We present and discuss our main results in Section 5 for three 

specific groups of MeSH terms. We also provide a brief analysis on what is actually being 

captured by the convolutions learned. In Section 6, we provide new results based on our 

recent experiments conducted for the 50 high frequency terms in the dataset. Section 7 

summarizes our results and identifies some limitations of CNNs and directions for future 

work.
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2. Background

Assigning MeSH terms to biomedical articles is an instance of the well known multi-label 

classification problem where multiple labels from the MeSH vocabulary need to be assigned 

to each input instance, which is a biomedical article. NLM initiated efforts in automatic 

MeSH term assignment with their MTI program that exploits terms from already tagged 

related citations in combination with named entity recognition (NER), unsupervised 

clustering, ad hoc indexing rules, and candidate term ranking heuristics in a pipeline [1]. 

MTI recommends MeSH terms for NLM indexers to assist in their efforts to expedite the 

indexing process. A few recent studies [13,18] apply the k-NN approach to obtain MeSH 

terms from a set of top k, already indexed, nearest neighbors and use the supervised 

learning-to-rank approach with novel features to rerank the MeSH terms from the neighbors. 

Other researchers considered different machine learning approaches with novel feature 

selection [36] and training data sampling [29] techniques.

A recent effort by Jimeno-Yepes et al. [14] uses a large dataset and meta-learning to train 

custom binary classifiers for each MeSH term and indexes the best performing model for 

each label to be applied on new abstracts. This method is typically known as the binary 

relevance approach where separate datasets of positive and negative examples are built for 

each label. Specifically, let T be the set of labels and let q = |T|. Binary relevance learns q 
binary classifiers, one for each label in T. It transforms the dataset into q separate datasets. 

For each label Tj, we obtain the dataset for the corresponding binary classifier by 

considering each document–label-set pair (Di, Yi) and generating the document-label pair 

(Di, Tj) when Tj ∈ Yi and generating the pair (Di, ¬Tj) when Tj ∉ Yi. The labels whose 

classifiers output a positive decision are finally considered the assigned labels. Recent state-

of-the-art results [21] are obtained by combining the k-NN approach with the binary 

relevance approach, where the candidates from a few nearest neighbors are combined with 

top few predicted candidates from the binary relevance approach (based on classifier scores). 

This combined set of candidates is then ranked using learning-to-rank with a variety of 

features for each candidate that include neighborhood similarity scores from the k-NN 

approach and classifier scores from the binary relevance approach. Given this, we note that 

building high accuracy binary classifiers is crucial for MeSH term assignment and we use 

CNNs for this task in this paper.

Neural word representations have been shown to capture both semantic and syntactic 

information and a few recent approaches learn word vectors [3,9,22] (as elements of ℝd, 

where d is the dimension) in an unsupervised fashion from textual corpora. Deep nets have 

also been applied to sentence/document level classification problems especially sentiment 

analysis and opinion mining with relatively smaller and reasonably balanced datasets with 

few classes. Classification models were developed for sentiment analysis to take advantage 

of the structure of sentences. For instance in recursive neural networks [28], words of a 

sentence are recursively merged together using a nonlinear function until we have single 

vector. The elements of this vector are then used as features for classification. In our work, 

we build binary MeSH classifiers using the CNN model by Kim [19], which is closely 

related to time-delay neural networks and dynamic convolutional neural networks described 

by Kalchbrenner et. al [17]. Our main aims are to see if CNNs are helpful for longer 
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narratives (200 tokens per biomedical citation vs 20-50 tokens per opinion/sentiment 

containing narratives) and whether they can deal with large class imbalance for assigning 

certain MeSH terms. In the next section, we present the details of the CNN model.

3. CNN Model Details

The goal of the model described in this section is to build a binary classifier that outputs the 

probability estimates of unseen documents belonging to the positive class. This model is 

recently proposed by Kim [19]; we add additional inputs (see Section 6) to the softmax layer 

of this model besides traditional CNN features. In this section we furnish additional details 

of the model starting with a more intuitive explanation of CNNs and subsequently 

elaborating with a more detailed specification of the model and the training process.

The central concept in CNNs is the notion of convolution filters (CFs) that are traditionally 

used in signal processing. The general principle is to learn several CFs which are able to 

extract useful features from a document for the specific classification task based on the 

training dataset. This has proven to be very useful in computer vision [38] where 

convolutions learn high level features of an image (e.g., curves and faces). Before we go into 

the specifics, we provide a high-level overview of convolutions for text classification.

3.1 Convolutions and CFs

A convolution is a binary operation involving the operands: a segment of text and a specific 

CF, both of which are represented as real matrices for our purposes. The output is a single 

real number. The matrix representation of the text segment, which is typically a contiguous 

sequence of words in the document, is composed of the word vectors of tokens that 

constitute it. A CF is also a matrix of the same dimensions as the text segment matrix. A 

specific CF operates on all contiguous segments of a document using a sliding window 

producing as many real number outputs as there are contiguous segments of a certain length 

in the document. This sequence of real numbers is called the feature map associated with the 

particular CF being used. Different CFs produce different feature maps, which can then be 

used as features in text classification. The overview of the convolution operation and CFs 

explained here forms the convolutional layer of the CNN. There is a conventional softmax 

layer that takes as input the feature maps and outputs class probability estimates. The main 

idea is to learn CFs (that is, the elements in the corresponding matrices) that give better 

feature maps that optimize our objective function. The learning process is based on 

predicting classes for training instances and making adjustments to the CF elements through 

back propagation of the gradients of the objective function (conditional log-likelihood of 

training data) being optimized. In this intuitive explanation, we left out many details 

including the mathematical definition of the convolution operation, the objective function, 

regularization (to deal with overfitting), and the stopping protocol for the learning process. 

The following section discusses these in detail.

3.2 Model Specification

The architecture of the full CNN model used is shown in Figure 1. It has two layers 

including a single convolution layer and a fully connected output (softmax) layer.
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The base component in the model is a word vector x ∈ ℝd, where d is the dimension of the 

word vectors. A document is represented as a matrix D ∈ ℝn×d, where n is the number of 

words in it and each row represents the word vector for the corresponding token. To simplify 

the equations in this section we will assume the ground truth for the document Y ∈ ℝ2 such 

that Y2 = 1 and Y1 = 0 (Y2 = 0 and Y1 = 1) when we are training on a positive (negative) 

instance. This is more aligned with the two output nodes of the final layer for the two 

corresponding classes (positive/negative) for each binary classifier. Although a single node 

would have been sufficient for binary classification, we chose to build our model with 

multiple nodes to simply have the code setup for multi-class classification for other text 

classification problems.

We define a CF W ∈ ℝh×d, where h is the number of words we wish the convolution filter to 

span, that is, the length of the sliding window. Let the 2-D convolution operation * be 

defined as

We next map a length h word window, Dj:j+h−1, of the document to a real number cj ∈ ℝ 
using a non-linear function f as

(1)

where b ∈ ℝ represents the bias term. In this work f is a rectified linear function [12,23]. 

After convolving over the entire document using W, we have the corresponding convolved 

feature map

To overcome the issue of varying document lengths we perform max-pooling [10] operation

which gives a single feature ĉw corresponding to the feature map generated by W. However, 

we will learn several CFs, say k of them, W1,…, Wk, to create multiple feature maps leading 

to the corresponding single max-pooled features ĉWt, t = 1,…, k. These form a final max-

pooled feature vector
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where  = {W1,…, Wk}.

After obtaining ĉ , we add a final softmax layer. Let U ∈ ℝ2×k and bU ∈ ℝ2 be the 

parameters of the softmax layer with weighted inputs

(2)

and output label probability estimates

(3)

where Uj is the j-th row of U,  is the j-th element of bU, and Yj is the j-th label for the 

document corresponding to matrix D.

If  is the set of training document matrices, to learn each binary classifier we minimize

(4)

where pos = 1 (pos = 2) if the corresponding document is a negative (positive) instance and 

YD is the ground truth for document represented by D. The parameters of the CNN ( , b, U, 

bU from equation 4 and the word vectors) that minimize this are obtained by calculating the 

gradient and using back propagation with the stochastic gradient descent approach. A subtle 

but crucial aspect that makes CNNs for NLP tasks different from those used in computer 

vision is that the base input components to the CNN, that is, the word vectors, are also 

modified using back propagation in addition to the traditional network weights. This is done 

by treating the word vector elements as network weights of the first and so called projection 

layer [27, Chapter 2] and modifying them just like any other network weight. However, the 

vector elements for a given word only change when the current instance contains that word, 

which happens often if it is a common word or if the dataset is large. We used the popular 

mini-batches [25] approach instead of updating parameters for each example. CNNs also 

warrant multiple epochs where the learning process goes through the entire training dataset 

multiple times in optimizing equation 4.

Instead of using the well known l1 or l2 regularization we use the dropout [30] option to 

prevent over-fitting during training. Specifically, instead of passing yj (from equation 2) to 

the softmax function in equation 3 during training, we actually pass
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where ∘ refers to element-wise multiplication and r ∈ {0, 1}k is constructed with each ri 

drawn from the Bernoulli distribution with parameter p (typically set to 0.5). Intuitively, this 

means that gradients are backpropagated only through unmasked elements where ri = 1. 

During test time we scale the weights U such that

This down weighting is essential since at training, on average, only half of the U edges were 

active, which is not true at test time. We also used early-stopping in order to help combat 

over-fitting. Typically early-stopping is done by simply terminating the training of the model 

when the desired score on a held out validation dataset does not increase in performance. 

However, we found this caused us to stop too early. To combat this we stopped training if 

there were 5 consecutive epochs in the training procedure that did not increase the validation 

score. We only saved the model on epochs that had an increase in F-score on the validation 

dataset. For example, if there was an increase in F-score in the second epoch on the 

validation dataset, and then training continued for five more epochs without any further 

increase, we kept the model from the 2nd epoch. Additional specifics on initialization of 

word vectors and CFs and other parameter choices are discussed in the next section.

4. Experimental Setup

In this section we discuss the dataset used in our paper along with the MeSH terms for 

which we built CNN binary classifiers. We also discuss CNN model parameter settings and 

other approaches compared with them. For all our experiments we used the Python based 

Theano [4] platform.

4.1 Dataset and MeSH Terms Used

We use a publicly available1 dataset consisting of MED-LINE citations from November 

2012 to February 2013. It contains 89,942 biomedical citations for training, 5000 for 

validation, and 48,911 for testing. The dataset, the MeSH terms for which the classifiers are 

built, and the methods compared with CNNs are those used in a prior effort by Jimeno-

Yepes et. al [35] to facilitate direct comparison. We compare our model with 29 MeSH terms 

used in [35] split into three groups. The three groups were created based on how NLM's 

MTI program performs on each term: check tags, low recall terms, and low precision terms. 

Check-tags are a special set of popular MeSH terms (e.g, humans, female, and adult), 

which are typically checked for each article to be indexed. We built CNN models for the 12 

popular check tags, the top 7 low recall terms, and the top 10 low precision terms based on 

MTI's judgments; so a total of 29 terms were considered based on the three groups in [35]. 

The goal was to see if the binary relevance approach based on supervised learning 

approaches can provide a better alternative to the k-NN based approach employed in MTI. In 

[35], the authors also conduct experiments on a fourth group of terms for which MTI had 

zero recall. These terms are very rare (about 1% of 48,911 citations in the test set) and given 

1http://ii.nlm.nih.gov/MTI_ML/index.shtml
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we use a validation dataset of only 5000 citations, we have excluded this group from our 

evaluation after preliminary results showed that there were not enough positive examples in 

the validation dataset for early stopping.

4.2 CNN Parameters of Section 3.2

For all experiments, we used a word vector of size d = 300. Each word vector is initialized 

with values drawn uniformly from [−0.25, 0.25]. The CF W values and softmax layer 

weights U are drawn uniformly from [−0.1, 0.1]. We used three different CF sizes with 

window lengths h = 3, 4, and 5. For each of these filter sizes we used 100 feature maps 

creating a total of 300 feature maps per classifier. The models were trained using AdaDelta 

[37], an adaptive learning rate method for stochastic gradient descent with a maximum of 15 

epochs per classifier. We also used mini-batches of size 50 and we zero-padded the 

document at the beginning as needed. The dropout parameter p was set to 0.5. Some of these 

choices were based on settings used in the paper where this CNN model was first used [19] 

and others were based on our experimentation.

4.3 Methods Compared

The following list has a total of 13 types of models we compare in our effort. The last four 

are based on CNN models and the the rest of them are from Jimeno-Yepes et. al [35].

• Naive Bayes (NB)

• Logistic Regression (LR)

• Support Vector Machines (SVM)

• Support Vector Machines with Huber Loss (SVM HL)

• AdaBoostM1 (Ada)

• AdaBoostM1 with Oversampling (Ada Over)

• Medical Text Indexer (MTI)

• Vote 2 – This predicts a positive label if any two of the preceding models make a 

positive prediction for any given example.

• Vote 3 – This is the same as Vote 2 except it requires that at least 3 of the base 

algorithms NB, LR, SVM, SVM HL, Ada, Ada Over, or MTI predict any given 

label.

• CNN-rand – This is our first CNN model which uses randomized initial word 

vectors and is trained as described in Section 3.2.

• CNN-pre – This model initializes word vectors with those obtaining from 

running Word2Vec [22] on all biomedical citations in PubMed in the last decade 

except for instances in the test set.

• CNN-Vote 2 – This model ensembles five CNN-rand models (with different 

word vector initializations) and one CNN-pre model for each term. Predictions 

are made just as in Vote 2, when at least two models make a positive prediction.
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5. Main Results and Discussion

In this section we present and discuss results for each group of terms using models in 

Section 4.3. The F-scores of the models for the three MeSH term groups (from Section 4.1) 

are shown in Tables 1–3. In these tables the ‘positive’ column refers to the number of 

positives examples in the test dataset. The ‘prior-best’ column refers to the maximum F-

score taken over all non-CNN models (from [35]) enumerated in Section 4.3 except MTI 

(we list MTI separately since it is our baseline). However, the non-CNN models that involve 

voting (Vote 2 and Vote 3) include MTI as a component of the ensemble.

5.1 CNN Model Performance

For check-tags results (Table 1), MTI is not included because for check-tags MTI has been 

modified to use AdaBoostM1 with oversampling instead of the k-NN method used for other 

terms. The check tags group has an average of 8701 positive examples per label in the test 

set and is a popular set of terms frequently used; most citations have at least one check tag. 

Our results for this group in Table 1 show that CNN models improve the F-score for all but 

one term in the group. Interestingly, a single CNN with pre-trained word vectors seems to 

perform better than using an ensemble of CNNs on very frequent terms such as Humans, 

Male, and Female. This is not unexpected since our voting scheme requires at least two 

models predicting a term. However, for less frequent check tags, ensemble models prove to 

be very useful. Finally, we also note that the our check tag scores in Table 1 also show 

considerable improvement over another prior effort that uses deep belief networks [34, Table 

2].

The low precision group has an average of 1214 examples per term. The low precision/recall 

situations are common in unbalanced datasets due to the inherent complexity in the 

particular class being predicted and also owing to underfitting/overfitting issues in certain 

algorithms. However, in Table 2 voting with CNNs consistently outperforms other methods. 

Next, we look at the performance of the low recall group in Table 3. This group has an 

average of 2002 examples per label. Again we see that CNNs models perform better than 

other models except for one term for which MTI performs better. Finally, we consider the 

macro average scores for all models in each term group in Table 4 to assess their 

consistency. We can see that CNN ensembles provide the best results. Overall, CNNs seem 

to perform better than any other individual method. Ensembled CNNs perform better than 

any individual method and better than any ensemble method without CNNs.

The main difference between the CNN models we used and other methods we compared 

with, such as the Linear SVM and Logistic Regression, is that our method creates high level 

abstractions using CFs. However, even in cases when there is a small number of positive 

examples, CNN based models perform better than all other methods. In Table 4, CNN-Vote 

2 is an ensemble containing only CNN models. However, even in the low precision group 

which has, on average, the least number of positive examples per term, CNN-Vote 2 still 

achieves 2% improvement over the best model that does not use CNNs. In all our voting 

models in this section, we purposefully avoided including MTI as a component model given 

the potential bias as the test set articles are already indexed in PubMed when we conducted 

our experiments. However, we believe using MTI as part of the voting ensembles for new 
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citations will yield better performance since MTI also incorporates nearest neighbor based 

predictions and as such offers complementary predictive power.

5.2 Visualizing Convolutions

Given the results are promising, we wanted to see what the CFs are actually capturing at a 

high level. For this we applied each of the CFs obtained after training the Humans model to 

all trigrams in the test dataset. We then identified the top five trigrams when ranked based on 

the first layer output score in equation 1. Table 5 shows four manually selected CFs of the 

100 we used. CF-2 seems to have learned to capture information about small things, such as 

nanoparticles and cells. Raman images are actually an imaging/fingerprinting method for 

molecules. CF-4 seems to capture information from citations that are performing different 

types of analysis, which may have to do with numerical properties. These results are 

interesting in that instead of just learning to capture very specific important n-grams (like in 

logistic regression), CFs seem to capture different topics or aspects of the input citations to 

be classified.

6. Additional experiments with Frequent Terms

In a recent paper [15], Jimeno-Yepes et al. used the same dataset used in their prior effort 

and in our current effort to conduct a comprehensive feature engineering study over a set of 

50 randomly selected high frequency terms from 63 terms that have a minimum frequency 

of 1500 citations in the dataset. They select a large set of feature types including named 

entities (and their hypernymic variants), journal, author, and author affiliations of the 

citation, noun phrases, and argumentative structure enhanced n-grams (based on methods, 

results, and discussion components of structured abstracts). They also treat title and abstract 

as separate fields and consider the corresponding features as having different types. They 

also include as features term sets from NLM's MTI indexing program and its components 

including the PubMed related citations (PRC) component that in a sense fetches nearest 

neighbors of the input citation. Besides the conventional SVMs with linear kernels, they also 

used SVMperf [16] to directly optimize F-score (actually, a function that lower bounds F-

score), which is a non-linear measure that cannot be directly optimized with traditional 

classifiers.

We conducted experiments with our CNN models over the same set of 50 high frequency 

terms (those used in [15]) whose results are shown in Table 6. In addition to the 

straightforward macro average discussed earlier, we also compute micro F-score over the 50 

terms (where the contingency table counts of all classifier outputs are pooled to compute a 

single F-measure). As we can see, the single model with pre-trained word vectors without 

any of the feature engineering described earlier has a better micro F-score compared with the 

prior best score. However, the macro F-score is six points lower with the single pre-trained 

CNN. We note that the outer softmax layer in Figure 1 can take other features in addition to 

the CFs. Out of more than ten different types of features used in [15], we use two of them: 

PRC component based terms and named entities by running the named entity recognition 

tool MetaMap [2]. Both these are components of the MTI program. We did not use MTI 

predictions given the articles in the test set are already indexed in PubMed. Adding these 
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two features to the softmax layer improves the macro F-score over the pre-trained model by 

two percentage points with negligible loss in micro F-score.

From the vote-2 model 5 in Table 6, our macro F-score is lower by less than 1% compared 

with the best score produced by extensive feature engineering with a 2.5% increase in micro 

F-score over the corresponding feature engineered model that produced the best macro F-

score. Model 6 is same as model 5 except voting is not used for the top four frequent terms, 

which is a natural choice given voting might decrease the performance of very frequent 

terms. This improves both micro and macro F-scores by 0.1% compared with model 5. Thus, 

our analysis shows that a single CNN based voting model (model 6) with two 

straightforward features (besides the CFs) almost achieves (macro score) or improves (micro 

score) over two separate feature engineered models that do not achieve comparable macro-

micro score combinations.

7. Concluding Remarks

In this effort, we demonstrated that CNNs with CFs over word sequences are effective for 

biomedical text classification in achieving new state-of-the-art scores over more traditional 

linear classifiers especially when there is significant label imbalance. Specifically, using a 

well known public gold standard dataset, we achieved a macro F-score improvement of 3% 

over previous best scores on three specific groups of hard to classify MeSH terms (Table 4). 

Additional experiments over 50 high frequency terms also reveal that elaborate feature 

engineering can also be minimized with CNNs (Table 6) and that new features can be simply 

passed to the outer softmax layer of the CNN to achieve better results compared with using 

those features in traditional classifiers. We believe our results will further improve if we 

incorporate predictions from the MTI program given it offers a complementary approach to 

our methods. We, however, chose to exclude MTI terms from our experiments given 

potential bias that could occur with our particular test dataset. Overall, our results 

demonstrate the strength of CNNs in capturing high level features that lead to superior 

classification performance over other approaches that involve several well known linear 

classifiers with elaborate feature engineering and ensembling.

Next, we outline a few research directions we plan to explore in the immediate future. First, 

we will study deeper CNNs utilizing more sophisticated max-pooling procedures. In this 

effort we only have one convolutional layer followed by a softmax layer. It would be 

interesting to look at the types of higher order features CNNs generate at deeper layers for 

text classification. CNNs for image classification have been widely studied and have been 

shown to produce very interesting higher order features [38]. For text, topic models [5, 6, 

31] have been extensively studied based on their ability to represent documents as a 

distributions of ‘topics’. Can deep models learn ‘topics’ or some other higher order 

representation to help with different tasks? In this paper, we only perform max-over-time 

pooling procedure after a CF operates on sliding windows of a chosen size. However, 

dynamic max-pooling methods have been proposed for text classification [17] with CNNs. 

Using a max-over-time method loses a significant amount of information, especially for long 

documents and we would like to explore these other alternatives.
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A caveat of CNNs is that even with early stopping they typically take at least an order of 

magnitude more time than conventional classifiers. This is typically not an issue for building 

high quality classifiers for few labels. However, in multi-label classification scenarios over 

large label spaces, using CNNs as part of the binary relevance approach, which requires 

learning a different classifier per label, can be prohibitive. So we will look at methods for 

expanding CNNs to simultaneously predict over the entire label space of MeSH avoiding the 

binary relevance approach. We will explore different loss functions that are already proposed 

for general neural networks for multi-label classification [24, 39]. We would like to see if a 

deep CNN with a multi-label output can perform well on MeSH. Finally, we will explore 

methods that take advantage of label correlations and prior structure we know about the 

MeSH label space. While there have been several methods that take advantage of label 

correlations [26], few look at very large label spaces. There has been work in computer 

vision that exploits prior information about labels to improve prediction on classes that have 

very few examples [11]. We would like to explore whether they can be applied to a multi-

label CNN for MeSH term assignment.
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Figure 1. The CNN model layout
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Table 4
The macro-averaged F-scores for each individual method for all three groups

Model Check Tags Low P Low R

MTI – 0.3262 0.3970

NB 0.4191 0.1504 0.2588

LR 0.5441 0.2682 0.3653

SVM 0.5549 0.2606 0.3647

SVM HL 0.5437 0.2654 0.3587

Ada 0.5237 0.1720 0.3398

Ada Over 0.5646 0.2764 0.3819

Vote 2 0.6072 0.3596 0.4315

Vote 3 0.5885 0.2825 0.3933

CNN-rand 0.6240 0.3247 0.4313

CNN-pre 0.6293 0.3361 0.4353

CNN-Vote 2 0.6469 0.3837 0.4652
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Table 5
Top five trigram activations from four different convolutions from the Humans check tag 
model

Convolution Filter 1 Convolution Filter 2 Convolution Filter 3 Convolution Filter 4

generate strong evidence antibody conjugated nanoparticles variety of both mathematical model

academic performance in nanoparticles on intact temperament and character analysis thus we

of chemical reactions to raman images studies revealed survival like climate ph

theory and experiment of cells and electrochemical biosensor was of tumor uptake

techniques and vacuum membranes where the features of individuals benthic cyanobacterial mats
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Table 6
The micro and macro averaged F-scores for top 50 high frequency terms

Model ID Model Micro-F Macro-F

1 Jimeno-Yepes Best Micro (SVMLight +MTI) 0.7135 0.5128

2 Jimeno-Yepes Best Macro (SVMperf with all features) 0.6922 0.5565

3 CNN-pre 0.7175 0.4963

4 CNN-pre+MetaMap+PRC 0.7170 0.5185

5 CNN-Vote 2 with Model 4 0.7200 0.5473

6 Model 5 and best single models for top four terms 0.7217 0.5482
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