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Abstract

Background—Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) 

is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To 

identify what extent the deviations in amygdala-vmPFC maturation contribute to the onset of 

psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during 

typical development.

Methods—Using an accelerated cohort longitudinal design (1–3 time points, 10–25 years, 

N=246), we characterized developmental changes of amygdala-vmPFC subregion functional and 

structural connectivity using resting state fMRI and diffusion-weighted imaging.

Results—Functional connectivity between the centromedial amygdala and rostral anterior 

cingulate (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late 

childhood to early adulthood in males and females. Age associated decreases were also observed 

between the basolateral amygdala and rACC. Importantly, these findings were replicated in a 

separate cohort (10–22 years, N=327). Similarly, structural connectivity, as measured by 

quantitative anisotropy, significantly decreased with age in the same regions. Functional 

connectivity between the centromedial amygdala and rACC was associated with structural 

connectivity in these same regions during early adulthood (ages 22–25). Finally, a novel time-

varying coefficient analysis showed that increased centromedial amygdala-rACC functional 

connectivity was associated with greater anxiety and depression symptoms during early adulthood, 
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while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter 

was associated with greater anxiety/depression during late childhood.

Conclusions—Specific developmental periods of functional and structural connectivity between 

amygdala-prefrontal systems may contribute to the emergence of anxiety and depressive 

symptoms, and may play a critical role in the emergence of psychiatric disorders in adolescence.
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Introduction

The transition from adolescence to adulthood is a unique period of development when 

enhancements in cognition support improved control of affective processes, which are 

supported by specialized brain maturation (1). This is also a time when the prevalence of 

psychiatric disorders increases (2), which may be due to deviations from typical 

neurodevelopmental trajectories. The amygdala and ventromedial prefrontal cortex (vmPFC) 

have been associated with multiple cognitive and emotional functions that continue to 

mature through adolescence (3–5), as well as with psychiatric disorders (6–8). Initial resting 

state (rsfMRI) and diffusion-weighted imaging (DWI) results show that amygdala-vmPFC 

connectivity and the uncinate fasciculus, a major white matter tract supporting amygdala-

vmPFC connectivity, increases linearly from childhood to adulthood (9–11). However, how 

these typical developmental changes are related to clinically relevant traits (e.g., anxiety and 

depression) are not well understood. Moreover, the relationship between functional and 

structural connectivity of this circuitry proceeds through this period has not yet been probed, 

limiting our current understanding of possible mechanisms of specialization.

The amygdaloid complex is grouped into three distinct, cytoarcitectonically defined 

subregions: centromedial (CM), basolateral (BL), and superificial (12;13). Because a large 

body of literature exists on the differing functions of the CM and BL amygdala, but not the 

superficial region (14–16), this paper focuses on the CM and BL subregions. These two 

subregions have distinct morphology, neuronal firing patterns, and structural and functional 

connectivity patterns (17–19). Furthermore, the manner in which information is sent to the 

two regions differs: the BL amygdala receives sensory information, while the CM amygdala 

is the major output station of the entire amygdala (17;20;21). These regions also support 

distinct functions, with the CM amygdala involved in enhancing attentional allocation and 

determining the salience of input and the BL amygdala involved in assessing the emotional 

content of sensory information (14–16). The differing characteristics of the CM and BL 

amygdala suggest that they may also follow distinct developmental trajectories that 

differentially contribute to the emergence of psychiatric disorders.

Distinct, cytoarcitectonic subregions of the vmPFC (22) have also been delineated, including 

the subgenual cingulate, rostral anterior cingulate (rACC), medial orbitofrontal cortex, and 

anterior vmPFC. Corresponding functional distinctions of the vmPFC have also been 

identified (23). The medial orbitofrontal regions (ventral BA 11) have been associated with 
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stimulus value assignment (24–27) and goal-directed decision-making (28–32) rACC 

(caudal BA 24) and anterior vmPFC (dorsal BA 11 & rostral-most portion of BA 32) are 

often associated with the cognitive control of emotion (33;34). The subgenual cingulate (BA 

25) has been associated with depression (35). How functional and structural connectivity 

between amygdala and vmPFC subregions mature into adulthood has not been examined in 

detail.

rsfMRI and DWI studies find strong associations between amygdala-vmPFC connectivity 

and a range of psychiatric disorders, including psychosis, mood and anxiety disorders (36–

47). However, even within a single disorder, results are conflicting, some reporting hypo-

connectivity while others find hyper-connectivity(8;40;48;49). Discrepancy in amygdala-

vmPFC connectivity findings may be due to differences in age ranges examined (50;51), not 

addressing developmental effects (52;53), and the specific amygdala and vmPFC subregions 

examined.

Though initial, cross-sectional studies have examined age-associated changes in amygdala 

subregion functional connectivity (50;54), this is the first longitudinal study to assess 

developmental changes in amygdala-vmPFC subregion functional connectivity, replicate the 

findings in a independent, cross-sectional sample, and simultaneously examine development 

of amygdala-vmPFC functional and structrual connectivity. Thus, we aimed to further probe 

changes through adolescence in amygdala-vmPFC connectivity by characterizing 1) 

connectivity between subregions and 2) concurrent relationships in functional and structural 

connectivity. Based on previous developmental studies (9–11;54;55), we hypothesized that 

amygdala-vmPFC subregion functional and structural connectivity would increase through 

adulthood. We hypothesized that the strongest age-related changes would be found between 

BL amygdala and other vmPFC regions, since the BL amygdala has the strongest bilateral 

structural connections with the vmPFC (17). We also hypothesized that relationship between 

amygdala-vmPFC structural and functional connectivity would increase in adulthood, 

similar to studies probing other brain systems (56–58). Finally, we examined two 

exploratory aims related to amygdala-vmPFC connectivity: 3) to what extent functional 

connectivity between amygdala-vmPFC subregions predicts changes in structural 

connectivity (or vice-versa) and 4) identification of developmentally specific associations 

with individual differences in anxiety and depression. Due to the close associations and 

common comorbidity between anxiety and depressive disorders(59;60), we chose to 

combine these symptoms.

Methods

Participants

Neuroimaging and behavioral testing was collected on 157 participants (10–22 years) as part 

of a longitudinal study (three 15 month follow-ups) and 89 participants (20–25 years) from a 

complimentary cross-sectional study. Participants and their first-degree relatives did not have 

a psychiatric disorder determined by phone screen and a clinical questionnaire (52;53). Data 

was available for 246 participants (121 female), with follow-up data for two (N=117, 62 

female) or three (N=90, 48 female) visits, with a total of 453 scans. Replication was 
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performed on 327 participants (10–22 years) from the Philadelphia Neurodevelopmental 

Cohort (PNC, 61), details in Supplemental Materials.

Anxiety and Depression Scores

Anxiety and depression scores were measured using the Youth or Adult Self-Report (62;63), 

details in Supplemental Materials.

MR Data Acquisition

Data were acquired using a Siemens 3 Tesla Tim Trio at the University of Pittsburgh 

Medical Center Magnetic Resonance Research Center using a 12-channel phase array head 

coil. We collected five minutes of resting-state data with eyes closed while awake. 

Functional images were acquired using an echo-planar sequence sensitive to BOLD contrast 

(T2*). rsfMRI parameters were: TR/TE=1500/29 ms, flip angle=70°, voxel 

size=3.125×3.125mm in-plane, 29 contiguous 4-mm axial slices, 200 TRs. DWI were 

acquired using a single-shell scheme. A total of 60 diffusion gradient directions were 

acquired (TR=6.4s, TE=0.89s, FOV=255×255mm, slice thickness=2.5 mm, b-value=850 

s/mm2). One non-diffusion sensitized volume (b0 image) was also acquired (b-

value=0/s/mm2). A magnetization-prepared rapid gradient-echo sequence (MPRAGE) was 

acquired to measure brain structure and for alignment of the rsfMRI images. MPRAGE 

parameters were: TR/TE1570/3.4ms, flip angle=8°, TI=800 ms, voxel size:0.78125 × 

0.78125 × 1 mm, 200 TRs.

rsfMRI Preprocessing

Functional images were processed using Analysis of Functional NeuroImages (AFNI) 

software package(64). Like recent publications (65;66), we used a rigorous rsfMRI 

processing pipeline to account for head motion and used several processing pipeline 

(Supplemental Materials).

Regions of Interest

For each subject, we obtained subregion ROIs for the BL and CM amygdala using 

stereotaxic, probabilistic maps of cytoarchitectonic boundaries (12, Figure 1A). ROIs for 

subregions of vmPFC were determined using the Mackey vmPFC atlas, available in 

AFNI(22). Details on subregion ROIs and the rsfMRI first level statistical analyses are in the 

Supplemental Materials.

DWI Preprocessing

For DWI scans, non-brain regions were removed using FSL’s brain extraction tool from the 

FMRIB Software Library(68). We used FSL’s EDDY tool to correct images for eddy current 

distortion and movement(69), which exhibits superior performance to “eddy_correct” (70). 

DWI data was then imported into DSI studio (http://dsi-studio.labsolver.org,12/07/2016) and 

reconstructed using Q-space diffeomorphic reconstruction method (QSDR,71). The QSDR 

method obtains the spatial mapping function of quantitative anisotropy values (QA) from 

individual subject diffusion space to the FMRIB 1-mm fractional anisotropy atlas template. 
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Details on DWI preprocessing and fiber tracking are reported in the Supplemental 

Materials.,

Second Level Statistical Analyses

Developmental changes—Data was analyzed using a mixed-effects regression with 

lme4 in R (72). We used a natural spline model, which fits piecewise polynomials at 

specified knots (ages). Details can be found in Supplemental Materials. For both the rsfMRI 

and DSI analyses, we included an overall measure of motion (mean motion displacement) as 

a nuisance covariate. We repeated analyses examining the four amygdala-vmPFC rsfMRI 

connectivity pairs that exhibited development changes in a normative subset of the PNC. 

Specificity of amygdala-vmPFC developmental effects was examined with exploratory, 

voxelwise analyses (Supplemental Materials).

Maturation Timing—For amygdala-vmPFC connectivity pairs showing significant 

developmental effects, we examined rates of change during development, using the first 

derivative from the spline model identified in the age-related changes analyses (9). Details 

are reported in the Supplementary Materials.

Structure-Function Relationships—For amygdala-vmPFC connectivity pairs that 

showed a significant developmental effects, we used mixed-effects regression to examine the 

extent to which rsfMRI and QA measures were significantly associated with one another at 

different points in development. The corresponding rsfMRI variable and age were added as 

predictors with QA as the dependent variable, to test whether one measure predicted the 

other, regardless of age. We added an interaction term to the model (age*predictor variable) 

to determine whether there were different relationships between structure and function at 

different ages. Significant interaction results were followed up using the Johnson-Neyman 

technique, a statistical procedure that obtains parameters estimates and points of significance 

from the interaction between two continuous variables (73–75).

We conducted exploratory analyses to determine if structural connectivity at the initial visit 

predicted functional connectivity at subsequent visits (and vice versa). Details are reported 

in Supplemental Materials.

Relationships with Individual Differences in Anxiety and Depression—To test 

whether developmental brain changes were associated with individual differences in anxiety 

and depression, we applied a time-varying effect model (TVEM) using SAS TVEM Macro 

(v3.1.0, 76). TVEM is an extension of the general linear model; however, in a TVEM, the 

relationship between amygdala-vmPFC connectivity and anxiety and depression is treated as 

a dynamic function (non-parametric) that exerts effects at different stages of development. 

Details are reported in the Supplemental Materials.

Results

Development of amygdala-vmPFC rsfMRI connectivity

Developmental effects were observed for functional connectivity between four amygdala 

and vmPFC subregions (Figure 2). We observed age-related decreases in connectivity 
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strength between the right CM amygdala and the following vmPFC subregions: right 

subgenual ACC (χ2=16.4, p=0.0003, pholm=0.008, age range of maturation: 14.3–20.4 

years), right rACC (χ2=22.4, p=0.00001, pholm=0.0004, range:12.4–21 years), right anterior 

vmPFC (χ2=19.6, p=0.00005, pholm=0.002, range:10–19 years). We also observed 

significant age-related decreases in functional connectivity between the right BL amygdala 

and the right rACC (χ2=13.1, p=0.001, pholm=0.04, range: 10.1–18.6 years). By adulthood, 

the strength of connectivity in these amygdala-vmPFC subregions approached zero (average 

Fisher’s Z range: 0.03–0.09). Results remained significant when we implemented different 

processing steps: 1) including global signal regression, a controversial method (77;78), 2) no 

spatial smoothing, 3) smoothing within the amygdala subregions only, and 3) when a 10-mm 

spherical ROI time series was extracted from the center of mass of each subregion (S2 

Table). In the PNC, we replicated our results in all of the amygdala-vmPFC pairs (all pholm<.

05, S3 Table, S3 Figure). CM amygdala-vmPFC developmental decreases remained 

statistically significant in voxelwise analyses (S5 Table). In both cohorts, there were no 

significant interactions between sex and age, nor were there any main effects of sex in any 

amygdala-vmPFC connectivity pairs. These results provide strong evidence of age-related 

decreases in functional connectivity between the right CM and BL amygdala and specific 

vmPFC subregions (subgenual cingulate, rACC, anterior vmPFC) between the ages of 10–25 

years.

Development of amygdala-vmPFC white matter tracts

We tested parallel developmental trajectories in amygdala-vmPFC structural connectivity. 

Corresponding developmental decreases in QA were also observed in amygdala and vmPFC 

subregions (Figure 3). There were age-related decreases in QA between the right CM 

amygdala and the right subgenual ACC (χ2=9.8, p= 0.007, pholm= 0.01, range: 15.2–21.1 

years), right rACC (χ2=12.5, p=0.001, pholm= 0.003, range: 10.1–18.9 years), right anterior 

vmPFC (χ2=7.1, p=0.02, pholm= 0.03, range: 10.1–18.0 years). We also observed significant 

age-related decreases in QA between the right BL amygdala and the right rACC(χ2=20.6, 

p=0.00005, pholm= 0.001, range: 10.1–19.7 years). There was a significant overall main 

effect of sex for all connectivity pairs examined (pholm≤6.0e–6), with males exhibiting 

significantly higher QA. Results remained statistically significant when additional motion 

parameters were added as covariates to the model (Supplemental Materials).

Development of amygdala-vmPFC structure-function relationships

Functional connectivity between the right CM amygdala and rACC predicted QA 

differentially between these same regions at various stages in development (χ2=8.5, 

p=0.003, pholm=0.01). From 10–15 years old, increased functional connectivity between the 

right CM amygdala-rACC was associated with decreased QA in the same region (simple 

slope at 10 years: t=−2.8 p=0.005, simple slope at 15.35 years: t=−1.97, p=0.05); however, 

in adulthood, increased right CM amygdala-rACC functional connectivity was associated 

with increased right CM amygdala-rACC QA (age 22.42–25.94, simple slope at 22.42 years: 

t=1.97, p=0.05 simple slope at 25.94 years: t=2.27, p=0.02, Figure 3A). A similar trend was 

observed between CM amygdala-anterior vmPFC functional connectivity and QA (χ2=4.9, 

p=0.02, pholm=0.06, Supplemental Materials). Thus, increased functional and structural 

connectivity between the CM amygdala-anterior vmPFC and CM amygdala-rACC show a 
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negative relationship during late childhood and become positively correlated with each other 

in adulthood.

Time-varying relationship between amygdala-vmPFC connectivity and individual 
differences in anxiety & depression

Increased right CM amygdala-rACC functional connectivity was significantly associated 

with greater anxiety and depression scores during early adulthood for (23.2–25.9 years, 

Figure 4A). This relationship also remained present when analyses were conducted on the 

data when global signal was regressed and when data was extracted using a 10-mm spherical 

ROI to identify the CM amygdala (S2 Table). High CM amygdala-anterior vmPFC QA was 

associated with higher anxiety and depression scores during late childhood (10–11.7 years, 

Figure 4B). Details on establishing model fits are in the Supplemental Materials.

In summary, higher functional connectivity in CM amygdala-rACC was associated with 

increased anxiety and depression in adulthood, but not childhood. For structural 

connectivity, increased amygdala-anterior vmPFC QA was associated with higher anxiety 

and depression in late childhood, not adulthood.

Discussion

We examined developmental changes in structural and functional subregion connectivity 

between the amygdala and vmPFC. We found and replicated decreases in connectivity 

between the CM amygdala and rostral anterior cingulate (rACC), anterior vmPFC, and 

subgenual cingulate, and the BL amygdala and rACC, from late childhood through 

adulthood. Structural and functional connectivity between CM amygdala and rACC was 

positively coupled during adulthood, following a period of re-organization during 

adolescence. Finally, increased CM amygdala-rACC functional connectivity was associated 

with greater anxiety and depression in adulthood, while increased CM amygdala-anterior 

vmPFC structural connectivity was associated with greater anxiety and depression in 

childhood. Our results provide a novel view of developmental functional and structural 

connectivity within a neural circuit that has been implicated in a wide array of cognitive and 

emotional processes (79–82) and psychiatric disorders (18;36–38;44–46;83).

Developmental rsfMRI connectivity changes in the CM Amygdala-vmPFC subregions

The majority of significant developmental effects were found in connectivity between the 

CM amygdala and vmPFC subregions, but not the BL amygdala. The CM amygdala receives 

information from all other nuclei of the amygdala, including the BL amygdala (17). Thus, as 

the “output station”, CM amygdala is crucial for driving the behavioral responses to 

environmental stimuli (84–86). Furthermore, the primary functional role of the CM 

amygdala is to determine what is salient in one’s environment and to mediate fear/anxiety 

responses (79). Attentional allocation to what is considered salient changes during 

adolescence (87;88); connectivity between the CM amygdala and vmPFC may underlie this 

change. vmPFC subregions that showed decreased connectivity with the CM amygdala 

across development were regions largely implicated in depression (subgenual cingulate, 35) 

and the cognitive control of emotion (rACC, anterior vmPFC (89–91). These developmental 
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decreases in rsfMRI connectivity from late childhood to adulthood may be due to a shift in 

networks being used, with the vmPFC creating stronger cortical connections with other 

prefrontal regions involved in the control of emotional information (i.e., ventrolateral 

prefrontal cortex, 92) while decreasing engagement with amygdala. Finally, projections from 

the vmPFC to inhibitory GABAergic neurons in the amygdala are responsible for the 

regulation of responses to emotional stimuli (93;94), pointing to a potential mechanism 

underlying this change. Evidence from rodent models show that significant dendritic 

remodeling (both pruning and increased branching) occurs in the amygdala and vmPFC 

during adolescence, providing support for dynamic processes taking place during 

adolescence in this neural circuit (95;96).

Our findings of decreased connectivity between the amygdala and vmPFC subregions from 

late childhood into adulthood are in agreement previous reported subcortical-cortical 

connectivity decreases into adulthood (97–100). However, our results are in contrast to two 

studies: one that found increases in amygdala-vmPFC connectivity with increasing age (54) 

and another that compared amygdala connectivity of children to amygdala connectivity of 

adults and found increases in adult amygdala-vmPFC connectivity (55). Several important 

differences between our study and these studies (54; 55) may underlie these differences. The 

age range for Gabard-Durnam et al. (54) included younger participants starting at 4 years of 

age, while Qin et al. (55) compared two samples: youth 7–9 years old vs. adults. Our 

youngest participants were 10 years old. Dual systems models of development propose that 

there is a peak in affective processing during adolescence (101). Thus, amygdala/vmPFC 

connectivity may have a peak in connectivity in adolescence. The cross-sectional data in 

both studies may have predominantly reflected possible childhood increases, undermining 

the ability to assess decreases through adolescence. Our longitudinal study also had a greater 

number of subjects (246 vs. 58 for (54) and 48 for (55)) and may have been better powered 

to detect these decreases. We also implemented recent approaches to control for the known 

age effects of motion on rsfMRI (77;102;103), including wavelet despiking and 

simultaneous bandpass/nuissance regression (77;104;105), and used greater restrictions for 

head movement (< 0.5 mm and/or 5 DVARS vs. 2.5 mm or 2° of motion in (54) and no 

scrubbing in (55)). Moreover, given this discrepancy in results we subjected our data to 

several processing pipeline streams and parcellations and our findings remained significant. 

Our evidence supports that this is a robust finding, given that amygdala-vmPFC 

developmental decreases remain significant at the voxelwise level. Finally, we replicated the 

amygdala-vmPFC subregion functional connectivity decreases in an independent sample. 

Thus, we are confident there are decreases in amygdala-vmPFC functional connectivity 

between the ages of 10–25 years.

In our exploratory, voxelwise analyses, several other significant age associated clusters 

emerged. In addition to the CM amygdala-vmPFC developmental decreases, there were also 

significant developmental decreases between the CM amygdala and the following regions: 

putamen, caudate, ventrolateral prefrontal cortex, insula, and precuneus. Future, in-depth 

examination of these developmental connectivity patterns is necessary.
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Age-associated white matter changes in CM Amygdala-vmPFC subregions

We found age-related white matter changes between concomitant amygdala-vmPFC regions. 

Our results are comparable with existing studies, which identify protracted development of 

the uncinate fasciculus using tensor-based DWI methods(9–11). Developmental decreases in 

QA may appear surprising, given that these other studies assessing diffusion with the tensor 

model found developmental increases in fractional anisotropy. However, these same studies 

typically report developmental decreases in diffusion along the parallel axis, axial 

diffusivity, during adolescence(9–11), which may be a more similar, though less robust, 

measure to QA. Thus, decreases in QA may reflect a developmental refinement in 

connectivity between amygdala and vmPFC subregions. Recent studies indicated dynamic 

changes in connectivity during learning (106), which may be akin to specialization in 

development.

Shift in CM Amygdala-rACC functional-structural relationships during development

We were interested in developmental relationships between functional and structural 

connectivity. We found that into adolescence greater functional connectivity was associated 

with relative decreases in structural connectivity, which by adulthood were positively 

correlated. We speculate that this could reflect a process of specialization, as brain processes 

such as myelination and synaptic pruning support greater affinity between functional and 

structural connectivity (56–58). Future studies examining timing of functional and structural 

connectivity in relationship with development of behaviors relevant to this neural circuit 

(e.g., cognitive control of emotion), would further clarify this result.

Our results failed to show that, across development, amygdala-vmPFC functional 

connectivity at the initial visit predicted amygdala-vmPFC structural trajectories (and vice 

versa). One potential conclusion is that functional and structural connectivity are parallel 

processes, both changing during adolescence and into adulthood, but connectivity at one 

time point does not predict future changes in another type of connectivity. Alternatively, the 

sample design we utilized in this study (hybrid longitudinal, 1–3 visits) may not be ideal for 

testing this hypothesis. To accurately assess whether the development of structural 

connectivity needs to be in place before functional connectivity is established (or vice 

versa), it is ideal to follow a sample of same-aged youth with greater than 3 visits.

Relationships with anxiety and depression at distinct points in development

This was the first study, to our knowledge, to use a novel time-varying analytic approach to 

characterize how connectivity measures are related to individual differences in anxiety and 

depression at different stages of development, from late childhood through adulthood. 

Higher functional connectivity between the CM amygdala and rACC in young adulthood 

(22–24 years) was associated with higher anxiety and depression scores. These findings 

suggest that a lack of developmental decrease in neural connectivity between CM amygdala 

and rACC associated with increases in anxiety and depression traits. In support of these 

findings, task-based neuroimaging studies of emotional face processing show a shift from 

positive to negative connectivity in amygdala fronto-limbic circuits during typical 

development (109); young adults with anxiety fail to show this change, suggesting that an 

altered pattern of age-associated changes in amygdala connectivity is associated with 
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increased anxiety(110). Intriguingly, higher amygdala-vmPFC connectivity has been 

associated with anxiety in typically developing 7–9 years olds (50); however, the effects 

were strongest in the BL amygdala, not the CM amygdala. Perhaps increased functional 

connectivity between the BL amygdala and vmPFC identifies young children at risk for 

anxiety and depression, while increased CM amygdala-vmPFC functional connectivity is 

related to these symptoms as an adult. Future studies are necessary to examine the dynamic 

relationship of amygdala-vmPFC functional connectivity and individual differences in 

anxiety and depression across wide age ranges, to explore how unique biomarkers may be 

important for a particular developmental stage.

One potential mechanism underlying the relationship between amygdala-vmPFC functional 

connectivity and anxiety and depression symptoms is dysregulation in one’s ability to 

respond to negative stimuli. This is supported by evidence that the CM amygdala is crucial 

for processing of fear and anxiety(79), the subgenual cingulate is associated with 

depression(35) and the rACC is important in control of emotional processing (80;89–91). 

However, studies that did not examine amygdala-vmPFC subregions find decreased 

connectivity in adults with anxiety disorders and depression (8;111), while others find 

amygdala-vmPFC hyper-connectivity in anxiety, but amygdala-vmPFC hypo-connectivity in 

depression (112). Importantly, we found this relationship within a normative population, 

underscoring the importance of studying anxiety and depression as a dimensional constructs 

(113;114) as indicated in RDoC approaches (115;116). This report provides a strong 

foundation for future clinical studies to build upon, particularly in regards to examining the 

role that the development of fronto-limbic functional and structural connectivity contributes 

to the onset of psychiatric disorders.

It is intriguing that CM amygdala-anterior vmPFC structural connectivity predicts anxiety 

and depression in childhood, while CM amygdala-rACC functional connectivity predicts 

anxiety and depression in adulthood. Anxiety and depression symptoms increase steadily 

through adolescence and reach a plateau at the transition to adulthood(117;118). Perhaps 

delayed amygdala-vmPFC white matter maturation contributes to increased anxiety and 

depression symptoms observed during adolescence, while typical maturation of amygdala-

vmPFC functional connectivity is what leads to plateauing of anxiety and depression 

symptoms in adulthood. This provocative idea presents the possibility that biological factors 

exert differential influences on behavior at distinct points in development. Though our 

results are intriguing, use of TVEM modeling to address psychological phenomena is 

relatively new. To our knowledge, this is the first application of TVEM to neuroimaging and 

clinical measures. Thus, more in-depth follow up is warranted to determine to what extent 

these relationships are replicated in typically developing and clinical samples. Taken 

together, these results provide preliminary evidence of developmentally sensitive neural 

markers associated with anxiety and depression at different points in development. These 

results could inform future studies characterizing developmental windows of vulnerabilities 

and resilience to anxiety and depression and markers of efficacy of evidence-based 

interventions to alter neural trajectories.
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Conclusion & Future Directions

Our results provide evidence for dampening of amygdala-prefrontal emotional control 

regions through adolescence, particularly in CM amygdala and rACC, paralleling known 

decreases in the influence of affect on behavior into adulthood. Developmental 

enhancements in the coupling of functional and structural connectivity suggest specialization 

of this circuitry. Associations between earlier structural and later functional connectivity 

with dimensions of anxiety and depression suggest possible windows of vulnerability to 

inform risk and treatment efficacy. Future studies are needed to probe disease specificity and 

markers of general risk factors across psychopathology. Finally, this study sets the 

foundation for a normative template of amygdala-vmPFC to better assess abnormal 

trajectories.
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Figure 1. 
A). Amygdala subregions examined in this study, taken from FSL’s Juelich histological atlas 

(Eikhoff et al., 2007) B). Ventromedial prefrontal subregions examined in this study, taken 

from Petrides & Mackey (2014).
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Figure 2. 
Significant age-associated changes in functional and structural connectivity of amygdala-

vmPFC subregions and corresponding maturation rates. Z-scores of all measures were 

created and then an age-related fit line was calculated for rsfMRI (blue) and DSI (dark cyan) 

amygdala-vmPFC pairs: A) right centromedial (CM) amygdala-anterior ventromedial 

prefrontal cortex (vmPFC); B) right CM amygdala-subgenual cingulate; C) right CM 

amygdala-rostral anterior cingulate (rACC); and D) right basolateral (BL) amygdala-rACC. 

Beneath each plot, maturation rates for the respective measure are plotted. When the change 

rates were > 2.5 SD away from the null distribution, we considered this to be a period at 

which significant maturation was occurring.
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Figure 3. 
A) For connectivity between the right centromedial (CM) amygdala and rostral anterior 

cingulate (rACC), in late childhood higher rsfMRI is associated with decreased QA, while in 

adulthood, higher rsfMRI positively coupled with QA. Black lines represent the relationship 

between rsfMRI and DSI at each age and the red lines are the 95% confidence intervals. 

Transparent blue boxes represent periods of development in which there was a significant 

relationship between rsfMRI and DSI. B) Plots of relationships between functional and 

structural connectivity in the right CM amygdala and rACC in B) late childhood through 

mid-adolescence (10–14.9 years), C) mid-adolescence to early adulthood (15.0–22 years), 

and D) adulthood(22.1–26 years).
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Figure 4. 
Effects of A) CM amygdala-rostral ACC functional connectivity and B) CM amygdala-

anterior vmPFC structural connectivity on anxiety and depression across development. 

Black lines represent the relationship between the connectivity measure and anxiety/

depression at each age and the red lines are the 95% confidence intervals. Transparent blue 

boxes represent periods of development in which there was a significant relationship 

between the connectivity pair and anxiety and depression.
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