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Abstract

Background—Racial disparities exist in healthcare, frequently resulting in unfavorable 

outcomes for minority patients. Here, we use guided machine learning (ML) ensembles to model 

the impact of race on discharge disposition and length of stay (LOS) following brain tumor 

surgery from the HCUP National Inpatient Sample (NIS).

Methods—We performed a retrospective cohort study of 41,222 patients who underwent 

craniotomies for brain tumors from 2002–2011 and were registered in the NIS. 26 ML algorithms 

were trained on pre-hospitalization variables to predict non-home discharge and extended LOS (>7 

days) following brain tumor resection, and the most predictive algorithms combined to create 

ensemble models. Partial dependence analysis was performed to measure the independent impact 

of race on the ensembles.

Results—The guided ML ensembles predicted non-home disposition (AUC = .796) and extended 

LOS (AUC = .824) with good discrimination. Partial dependence analysis demonstrated that black 

race increases the risk of non-home discharge and extended LOS over white race by 6.9% and 

6.5%, respectively. Other, non-black race increases the risk of extended LOS over white race by 

6.0%. The impact of race on these outcomes is not seen when analyzing the general inpatient or 

general operative population.

Conclusions—Minority race independently increases the risk of extended LOS and black race 

increases the risk of non-home discharge in patients undergoing brain tumor resection, a finding 

not mimicked in the general inpatient or operative population. Recognition of the influence of race 

on discharge and LOS could generate interventions that may improve outcomes in this population.
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Introduction

It has been well established that racial disparities exist in healthcare, frequently resulting in 

unfavorable outcomes for minority patients.1,2 Research has demonstrated that these 

disparities also exist in outcomes for patients undergoing treatment for brain tumor.3 The 

persistence of racial disparities in the treatment of neurosurgical patients is directly at odds 

with one of the key aspects of the Institute of Medicine’s definition of high quality care: 

equitable delivery of care.4

In our resource limited health care system, increasing emphasis has been placed on 

improving quality. This has been made particularly manifest in the introduction of 

reimbursement schema that incentivize high quality rather than high quantity care. “Quality” 

alone is an abstract concept, and providers interested in improving quality of care require 

quantifiable metrics by which their efforts can be assessed. Decreasing racial disparities in 

specific post-surgical outcomes represents a concrete opportunity for neurosurgeons to 

improve quality of care for their patients.

Here, we use machine learning (ML) techniques to build a guided ML ensemble to predict 

two postoperative outcomes for patients undergoing craniotomy for brain tumor (CFBT): 

discharge disposition and length of hospital stay (length of stay, LOS). We then interrogate 

the predictive models to investigate the independent impact of race on these outcomes. 

Previous work has demonstrated the existence of racial disparities for these outcomes 

following CFBT – Curry and colleagues showed that black patients have more non-home 

discharge after CFBT,5 while Dasenbrock et al saw that black or Hispanic patients were 

more likely to have extended LOS (>7 days).6 We expand on this work in three important 

ways: (1) we use a novel guided ML ensemble technique to validate findings ascertained 

using more traditional statistical methods; (2) we compare findings in the NIS CFBT 

population to the NIS population as a whole to determine whether our findings are system-

wide or specific to the CFBT population; and (3) we explore the interplay between discharge 

disposition and LOS.

Materials and methods

Data Base

We used the National Inpatient Sample (NIS) in-hospital discharge database for the years 

2002–2011. The NIS is the largest all-payer inpatient database publicly available in the 

United States, containing approximately 80 million hospital stays from ~1000 hospitals, 

sampled to approximate a 20% stratified sample of US hospitals.7 The NIS is compiled and 

maintained by the Agency for Healthcare Research and Quality (AHRQ, Rockville, 

Maryland, USA). This publicly available, de-identified database was considered exempt 

from institutional review board (IRB) review.
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Patient Selection

All 79,742,743 admissions registered in the NIS between 2002 and 2011 were screened for 

inclusion in the study. Eligible admissions were first identified by ICD9 diagnosis codes for 

brain tumor (225.0 - 225.4, 225.8, 225.9, 199.1, 191.0 - 191.9). Admissions in this subset 

were then screened for ICD9 procedure codes matching craniotomy (01.20 – 01.29, 01.31, 

01.32, 01.39, 01.59). We further restricted our cohort to patients 18 years or older. A total of 

41,222 admissions met our criteria.

To determine whether trends in the CFBT population as a whole are mimicked within 

specific brain tumor diagnoses, we derived the following tumor subsets using the appropriate 

ICD9 diagnosis codes: meningioma (225.2), non-meningioma benign tumor (225.0, 225.1, 

225.8, 225.9), and malignant tumor (199.1, 191.0 – 191.9).

To determine whether trends in the CFBT population are also seen in the general inpatient 

population, we derived a random sample of all NIS admissions. We also used the ICD9 

procedure codes 00–86.9 to identify all NIS admissions associated with operations, and from 

that sample derived a random sample of all NIS operations. The random samples were the 

same size as the CFBT population (41,222 admissions).

Variable Selection and Primary Outcomes

Each eligible admission was classified into one of four distinct race categories based on NIS 

coding: white, black, other non-black race (comprising Hispanic, Asian/Pacific Islander/

Native American, and other race patients), and missing. Because race data was missing for 

approximately 20% of patients in the sample, “missing” race was included in each model as 

its own category within the race variable. This proportion of missing patients was consistent 

across all data samples used for model construction (including the random samples of all 

NIS admissions and all NIS operations), allowing for comparison between the different 

models. Additional preoperative data was included as covariates for each admission, 

including patient age, sex, specific neurosurgical diagnosis, comorbidities, admission type, 

emergent vs non-emergent surgery, expected payer, and hospital characteristics. The 29 

included comorbidity variables were identified using the Elixhauser Comorbidity Software 

administered by AHRQ. In total, 61 different variables were considered (Table A.1). The 

primary outcome for the discharge disposition model was home vs other (including death, 

short-term hospital, nursing facility, AMA, home health, and other). Based on previous 

studies of LOS in the CFBT population, the primary outcome for the LOS model was 

defined as greater than 7 inpatient days versus less than or equal to 7 inpatient days.6 

According to this definition, patients with extended LOS made up approximately one third 

of the CFBT population.

Data Preprocessing

A large number of data preprocessing approaches are represented in the collection of models 

evaluated in the leaderboard. This section describes the approaches used in the models in the 

final ensembles: missing numerical data was dealt with by imputing the median of the 

column, and creating a new binary column to indicate the imputation took place. Numerical 

data was standardized in each column by subtracting the mean and dividing by the standard 
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deviation. For linear models (Support Vector Machine, Elastic Net Classifier, Regularized 

Logistic Regression, Stochastic Gradient Descent Classifier, and Vowpal Wabbit Classifier) 

categorical data was turned into many binary columns by one-hot encoding. Missing 

categorical values were treated as their own categorical level and get their own column. For 

tree-based models categorical data was encoded with integers. The assignment of category 

values to integers was done randomly.

Leaderboard Construction and Model Validation

Before training 20% of the dataset was randomly selected as the holdout, which was never 

used in training or cross-validation. The remaining data was divided into 5 mutually 

exclusive folds of data, four of which were used together as training, with the final fold used 

for validation.8 Training was performed five times per algorithm, with each fold used once 

for validation. Cross-validation scores were calculated by taking the average area under the 

curve (AUC) of the receiver-operating characteristic (ROC) of the five possible validation 

folds. 26 ML algorithms were trained and scored and the top performing algorithms selected 

for use in each ensemble. The algorithms were combined with an Elastic Net Classifier and 

an Average Blender for the disposition and length of stay ensembles, respectively. Following 

ensemble model creation, validation was performed on the holdout to demonstrate the ability 

of the model to generalize to never-before-seen data. The holdout was taken as a single 

sample, and so no confidence intervals were calculated. Model construction was performed 

using ML software from DataRobot, Inc.

Permutation Importance

The relative importance of a feature to the final model was assessed using permutation 

importance, as described by Breiman.9 Using the training data only, for each variable the 

model was retrained on data with the values for the variable randomly permuted. The 

difference in performance in AUC between the model built on the reference data and that of 

the data with the permuted variable was used to rank and compare the relative importance of 

the features to the model.

Partial Dependence

To understand the independent impact of race on the disposition and LOS ensembles, we 

constructed Partial Dependence plots as described by Friedman.10 A subset of the training 

data was selected. For any variable we made predictions from the model after having 

replaced all the values for the variable with a constant test value and computing the mean of 

those predictions. We tested many values to observe how the model reacts to changes in the 

variable of interest.

Other Statistical Methods

Traditional statistical analysis was performed on selected patient and hospital characteristics. 

Continuous variables were compared using the Mann-Whitney U test. Categorical variables 

were compared using Pearson’s χˆ2 test. Statistical analysis was performed using the open 

source statistical tools in SciPy (SciPy ver 0.17).
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Results

Patient Characteristics

41,222 admissions for craniotomy for brain tumor were reviewed for analysis. 25,406 

resulted in discharge to home and 15,705 admissions did not. 111 admissions had no or 

unknown discharge disposition recorded and were excluded from the study. Black patients 

were more likely than white or other non-black minorities to have non-home discharge 

following CFBT (P < .001). (For additional patient characteristics, see Table A.2).

27,314 admissions lasted <= 7 days and 13,907 admissions lasted >7 days. 1 admission had 

no recorded LOS and was excluded from analysis. Black and non-black minority patients 

were more likely than white patients to have extended LOS following CFBT (P <.001). ( For 

additional patient characteristics, see Table A.3).

ROC Curve and Other Classifier Statistics

An ensemble model including a Nystroem Kernel SVM Classifier, Elastic-Net Classifier, 

and Extreme Gradient Boosted Trees Classifier was best able to predict discharge 

disposition, and an ensemble comprising an Elastic Net Classifier, a Vowpal Wabbit 

Classifier, a Stochastic Gradient Descent Classifier, two Extreme Gradient Boosted Trees 

Classifiers, a Gradient Boosted Tree Classifier, a Nystroem Kernel SVM, and a Regularized 

Logistic Regression was best able to predict extended LOS. The disposition ensemble model 

had an AUC on the validation set of 0.796 (95% CI, 0.790–0.801), and the LOS ensemble 

had an AUC of 0.824 (95% CI, 0.823–0.826). Validating on the holdout set yielded an AUC 

of 0.807 for the disposition ensemble and 0.818 for the length of stay ensemble. When 

optimizing the F1 score, the discharge ensemble had a positive predictive value (PPV) of 

60.0% (95% CI, 59.1%–60.9%), a negative predictive value (NPV) of 82.0% (95% CI, 

81.5%–82.4%), sensitivity of 75.5% (95% CI, 75.0%–76.0%), and specificity of 68.9% 

(95% CI, 67.9%–69.8%). The LOS ensemble had a PPV of 58.8% (95% CI, 58.6%–59.0%), 

a NPV of 86.2% (95% CI, 86.0%–86.4%), sensitivity of 77.2% (95% CI, 76.9%–77.5%), 

and specificity 72.5% (95% CI, 72.2%–72.7%). All additional ensembles predicted their 

respective outcomes with similar discrimination (Table 1).

Permutation Importance

We performed permutation and partial dependence analyses to determine which variables are 

most important to, and how they independently impact, the ensembles. The strongest risk 

factors for non-home discharge are, in order: increasing age, preoperative paralysis, 

hospitalization in the Northeast, non-elective surgery, and preoperative electrolyte or fluid 

abnormalities. The strongest risk factors for extended LOS in the LOS ensemble are: non-

elective surgery, preoperative paralysis, preoperative electrolyte or fluid abnormalities, 

increasing age, and preoperative neurological deficits (Figure 1).

Bivariate Analysis

Bivariate analysis performed on variables that most strongly influenced the disposition 

ensemble demonstrated that black and non-black minority patients are more likely than 

white patients to have non-elective procedures, preoperative paralysis, and preoperative 
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neurological deficits (P < .001 for all). White patients tend to be older (average age 55.5 vs 

51.8 (black) vs. 50.7 (other non-black), P < .001) and seen more frequently at Northeastern 

hospitals (P < .001) (Table 2).

Bivariate analysis performed on variables that most strongly influenced the LOS ensemble 

also demonstrated that black and non-black minority patients are more likely than white 

patients to have non-elective procedures, preoperative paralysis, and preoperative 

neurological deficits (P < .001 for all). Black patients are more likely than white or non-

black minority patients to be seen at Southern hospitals (P < .001), while white patients tend 

to be older (average age 55.5 vs 51.8 (black) vs. 50.8 (other non-black), P < .001) (Table 3).

Independent Impact of Race

Partial dependence plots were derived to determine the independent impact of race on the 

disposition and LOS ensembles. Black race increases the risk of non-home discharge over 

white patients by 6.9% while non-black minority race increases risk of non-home discharge 

over white patients by only 1.2%. Black race increases the risk of extended LOS over white 

patients by 6.5%, and non-black minority race increases risk of extended LOS by 6.0%.

Subgroup analysis showed that the effect of minority race is mitigated for both outcomes in 

patients with benign tumors. Partial dependence of the general inpatient population and 

general operative population showed very little impact of race for either discharge 

disposition or length of stay (Figure 2).

Discussion

Using guided ML ensembles, we validated the findings of previous studies that minority 

race is an independent risk factor for non-home discharge and extended LOS in ensembles 

that predict discharge disposition and LOS following CFBT. Bivariate analysis demonstrated 

that minority patients are more likely to have multiple features that put them at higher risk 

for poor post-operative outcomes, including non-elective surgery, preoperative paralysis, 

preoperative electrolyte or fluid abnormalities, and preoperative neurological deficits. 

Importantly, however, the independent impact of race persists in the presence of these and 

many other covariates that could potentially explain away the importance of race, including 

age, sex, specific brain tumor diagnosis, primary payer, preoperative comorbidities, 

admission type, elective vs non-elective surgery, admission day, admission month, and 

hospital region, size, and type. A critical limitation of our study is the large number of 

admissions for which a race designation is missing (~20%). Rather than exclude admissions 

without race, which could bias the data, we chose to include missing race its own category 

within the race variable. The fact that the independent impact of minority race remains even 

in the presence of missing race as its own categorical variable suggests that our findings are 

valid.

Our study employs a novel technique of building guided ML ensembles to predict LOS and 

discharge disposition. While use of ML in general to model medical outcomes holds great 

promise for improving patient care,11 modeling in neurosurgery has tended to rely on 

logistic regression.12 Logistic regression is a powerful technique, but is best suited to 
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datasets with few, independent variables.13 Given the complexity of disease processes and 

available patient data, some researchers in neurosurgery have argued that algorithms other 

than logistic regression may be more adept at answering clinical questions.14,15 They present 

no evidence, however, that their chosen algorithms perform better than the dozens of other 

available ML algorithms. While general recommendations exist for selection of algorithms 

based on characteristics of a data set or clinical question, the only way to know with 

certainty that an algorithm is the most predictive is to directly compare it to other 

algorithms.16 Using direct comparison of 26 ML algorithms, we identified two ensembles 

comprised of multiple classes of ML algorithms that best predict our outcomes of interest. 

Utilizing this guided approach to ML algorithm selection, we objectively build the most 

predictive ensembles for discharge disposition and LOS from our given data set. By 

extension, the more predictive our ensembles, the more confident we can be in the 

interpretation of the impact of race on discharge disposition and LOS derived from the 

ensemble itself.

Multiple studies have noted that minority patients are more likely to be seen at hospitals that 

perform fewer craniotomies per year, and suggest that decreased access to specialized care 

may contribute to racial disparities in post-operative outcomes.5,17 Yearly hospital case 

volume is a challenging variable to use in predictive modeling as it must be collected 

prospectively for each admission. For example, if a patient has a craniotomy in a given 

hospital in February, the true yearly case volume for craniotomy for that hospital can only be 

calculated the following January. Using prospectively collected data potentially biases model 

predictions. To overcome this challenge, researchers may use case volumes from previous 

years and assume that volume does not vary much year to year. In the NIS database, as in 

many other national databases, only a subset of hospitals are surveyed each year, making it 

difficult to make assumptions about the distribution of case volume over multiple years. Due 

to the challenge of this accurately defining this variable, we did not include hospital case 

volume in our main analysis. We did build secondary ensembles to predict discharge and 

LOS that included hospital volume as a covariate and saw no differences between these 

ensembles and those without the hospital volume variable (Figure A.1). These findings 

suggest that decreased access of minorities to hospitals that perform many craniotomies per 

year may not explain the racial disparities we saw in our primary analysis.

What, then, is driving poorer post-operative outcomes for minority patients following 

CFBT? Minority race can be considered a pseudomarker for low socioeconomic status, and 

so failure to fully capture socioeconomic status elsewhere in the ensemble may result in 

disproportionately high impact of race on the ensemble. Mukherjee et al have argued that 

researchers use poor surrogates for socioeconomic status (such as average income for the 

admission county), and so looked at the impact of race on postoperative outcomes in a 

population restricted to Medicaid recipients.11 Even in this population, they saw that black 

patients are more likely to have extended LOS following CFBT. We use expected payer 

(Medicare, Medicaid, private insurance, no pay, and self pay) as our primary surrogate for 

socioeconomic status, which may not accurately reflect the patient’s true socioeconomic 

status. The findings of Mukherjee and colleagues, however, reinforce our findings that race 

itself (as opposed to race as a marker for socioeconomic status) does increase the risk of 

non-home discharge and extended LOS in patients undergoing CFBT.
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Other researchers have suggested that minority patients present to their physicians with more 

progressive disease, resulting in poorer outcomes after surgery than their counterparts who 

present earlier in the disease process. This could potentially be driven by patient distrust of 

physicians or the medical system,18,19 or by provider bias (for example failure to perform 

diagnostic tests or refer to specialty care early).2,20–22 We attempt to capture this possibility 

with several variables, including elective v. non-elective surgery, preoperative paralysis, or 

other preoperative neurological deficit. These variables are, however, far from 

comprehensive, and may not fully describe disease severity at time of presentation.

There is some evidence to suggest that minority patients experience more post-operative 

complications than white patients. One limitation of our study is the fact that we include 

only preoperative variables in our analysis, and so cannot comment on the effect of race on 

the discharge disposition or LOS ensembles in the presence of postoperative 

complications.23–26 The researchers who noted increased complications in minority patients 

have proposed that this could be driven in part by worse baseline health for minorities. We 

do attempt to control for baseline health by including a fairly comprehensive array of 29 

preoperative comorbidities in our ensembles.

We studied the impact of race on disposition and LOS separately. It is possible, however, 

that these outcomes are interrelated. It could be the case, for example, that increased LOS 

seen in minority patients is due in part to increased non-home discharge, which may 

necessitate increased hospital days as patients await placement. To investigate this 

possibility, we calculated the percentage of patients with extended LOS for each race group 

for home vs non-home discharge. We found that, even for home discharge, a larger 

percentage of minority patients (black = 34.5%, other = 36.9%) than white patients (18.6%) 

had extended LOS (Figure 3). These data suggest that more non-home discharge in minority 

patients does not drive increased LOS in this population, and that discharge disposition and 

LOS are independently impacted by race.

We were surprised to see that our findings of minority race as an independent risk factor for 

non-home discharge and extended LOS were not mimicked in the general inpatient or 

general operative population. This is a novel finding of our study not previously reported in 

the literature. This suggests some specificity of these disparities to the CFBT population. 

One possible explanation for this finding is that racial disparities in postoperative outcomes 

in general are exacerbated in such a specialized field of care. Regardless, this does point to a 

specific point of intervention for quality improvement initiatives in neurosurgery.

While our study has many strengths, we note several limitations not previously addressed: 

(1) the NIS database relies on ICD-9 coding, which is subject to the individual interpretation 

of coders and which may contain errors; (2) the NIS database contains missing data, a 

challenge we have attempted to address by including “missing” as a categorical variable in 

our analysis, but which nonetheless may impact results; (3) the NIS database contains a 

finite number of variables, and so we are unable to address all possible explanations for 

disparities in individual outcomes, including tumor-specific characteristics; (4) the NIS 

database comprises only hospital admissions in the United States, and so specific 

conclusions drawn from this study may not be applicable in other countries. We believe, 
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however, that the general concept that minority groups experience differential outcomes is 

important, and the disparities in outcome noted here should be assessed in countries outside 

of the United States.

Conclusions

Minority race independently increases the risk of extended LOS and increases the risk of 

non-home discharge in patients undergoing brain tumor resection, a finding not mimicked in 

the general inpatient or operative population. Recognition of the influence of race on 

discharge and LOS could generate interventions, such as increasing education for 

neurosurgical providers on the existence of racial disparities or early social work or case 

management assessment of minority patients at hospital admission, that may improve 

outcomes for this population and enhance quality of neurosurgical care.
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Highlights

• A novel machine learning technique models important neurosurgical 

outcomes.

• Minority race increases risk of non-home discharge after surgery for brain 

tumor.

• Minority race increases risk of extended length of stay in the same population.

• These findings are not mimicked in the general inpatient or operative 

populations.
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Figure 1. Permutation Importance
Permutation importance demonstrating the relative importance of individual variables to the 

disposition and LOS ensembles. The most important variable is given an importance value 

of 1.0 and the importance of other variables is shown relative to 1.0. Dispo, disposition; 

LOS, length of stay; Preop, preoperative.
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Figure 2. Partial Dependence Plots
Partial dependence analysis demonstrating the independent impact of race on disposition and 

LOS for different patient populations. Left X-axis represents patient incidence for each 

patient group and corresponds to bars. Right X-axis represents probability of non-home 

discharge or extended LOS, with 1 equivalent to 100% likelihood of non-home discharge or 

extended LOS and 0 equivalent to 0% likelihood of non-home discharge or extended LOS 

and corresponds to gray and black round and diamond heads. For each group, black diamond 

heads represents average probability of the outcomes of interest calculated solely from the 

raw data (e.g. the non-independent impact of each variable); gray round heads represent 

average probability of the outcome of interest calculated from the partial dependence (e.g. 

the independent impact of each variable). Panels A–D and G–J represent the impact of race 

on various populations of patients with intracranial tumors; panels E and K represent the 

impact of race on a random sample of all admissions from the NIS database; panels F and L 

represent the impact of race on a random sample of all operations from the NIS database. 

Dispo, disposition; LOS, length of stay; White, white race; Black, black race; Other, non-

white, non-black race; Missing, missing race.
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Figure 3. Extended length of stay for different discharge locations by race
Percentage of patients with length of stay for different discharge locations plotted by race. 

LOS, length of stay.
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Figure A.1. Partial Dependence Plots for Ensembles Including High Volume Variable
Partial dependence analysis demonstrating the independent impact of race on disposition and 

LOS for different patient populations. Left X-axis represents patient incidence for each 

patient group and corresponds to bars. Right X-axis represents probability of non-home 

discharge or extended LOS, with 1 equivalent to 100% likelihood of non-home discharge or 

extended LOS and 0 equivalent to 0% likelihood of non-home discharge or extended LOS 

and corresponds to gray and black round and diamond heads. For each group, black diamond 

heads represents average probability of the outcomes of interest calculated solely from the 

raw data (e.g. the non-independent impact of each variable); gray round heads represent 

average probability of the outcome of interest calculated from the partial dependence (e.g. 

the independent impact of each variable). Dispo, disposition; LOS, length of stay; White, 

white race; Black, black race; Other, non-white, non-black race; Missing, missing race.
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Table A.1

Variables included in ensemble training

Patient Characteristics: Hypothyroidism Admission month

Age Peripheral vascular disease ICD9 Diagnoses:

Sex Drug abuse 191.0

Race Valvular disease 191.1

Fluid/electrolyte abnormalities Liver disease 191.2

Paralysis Obesity 191.3

Other neurological deficit Chronic blood loss anemia 191.4

Hypertension AIDS 191.5

Deficiency anemias Peptic ulcer disease 191.6

Diabetes mellitus (no complications) Lymphoma 191.7

Diabetes mellitus (with complications) Arthritis 191.8

Coagulopathies Hospital characteristics: 191.9

Weight loss Geographic region 199.1

Chronic lung disease Ownership (private, government, etc) 225.0

Solid tumor without metastases Location/teaching status (e.g. urban teaching, rural non-teaching) 225.1

Congestive heart failure Bed size 225.2

Psychosis Admission characteristics: 225.3

Metastatic cancer Admission type (emergency, urgent, trauma, etc) 225.4

Depression Elective/non-elective 225.8

Alcohol abuse Primary expected payer 225.9

Renal failure Secondary expected payer

Pulmonary circulation disorders Weekend/weekday admission
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Table A.2

Patient characteristics for admissions included in disposition ensemble

Variable Total Discharged to home Not discharged to home P *

Surgeries, n (%) 41111 25406 (61.8) 15705 (38.2) ...

Sex, n (%)

 Male 21570 (52.5) 13680 (63.4) 7890 (36.6) < .001

 Female 19363 (47.1) 11567 (59.7) 7796 (40.3)

 Missing 178 (.4) 159 (89.3) 19 (.7)

Age at surgery, mean (SD), y 54.4 (15.9) 50.5 (15.0) 60.7 (15.3) <.001

Race, n (%)

 White 25678 (62.5) 15935 (62.1) 9743 (37.9) <.001

 Black 2174 (5.3) 1182 (54.4) 992 (45.6)

 Other 4592 (11.1) 2831 (61.7) 1761 (38.3)

 Missing 8667 (21.1) 5458 (63.0) 3209 (37.0)

Expected payer, n (%)

 Private 22097 (53.7) 15719 (71.1) 6378 (28.9) <.001

 Medicare 12074 (29.4) 4989 (41.3) 7085 (58.7)

 Medicaid 3754 (9.1) 2353 (62.7) 1401 (37.3)

 Self pay 1591 (3.9) 1216 (76.4) 375 (23.6)

 Other 1345 (3.3) 938 (69.7) 407 (30.3)

 No charge 185 (.4) 147 (79.5) 38 (20.5)

 Missing 65 (.2) 44 (67.7) 21 (32.3)

Admission type, n (%)

 Elective 23491 (57.1) 16525 (70.3) 6966 (29.7) <.001

 Non-elective 17561 (42.7) 8839 (50.3) 8722 (49.7)

 Missing 59 (.2) 42 (71.2) 17 (28.8)

Hospital Region, n (%)

 South 15324 (37.3) 10135 (66.1) 5189 (33.9) <.001

 West 9152 (22.2) 5746 (62.8) 3406 (37.2)

 Northeast 8382 (20.4) 4601 (54.9) 3781 (45.1)

 Midwest 8253 (20.1) 4924 (59.7) 3329 (40.3)

Hospital Control, n (%)

 Government or private 34188 (83.2) 21465 (62.8) 12723 (37.2) <.001

 Private NFP 4425 (10.8) 2573 (58.1) 1852 (41.9)

 Private investor 1454 (3.5) 782 (53.7) 672 (46.2)

 Government/non-federal 753 (1.8) 422 (56.0) 331 (44.0)

 Private NFP or investor 291 (.7) 164 (56.4) 127 (43.6)

Hospital location/teaching, n (%)

 Urban teaching 31584 (76.8) 20046 (63.5) 11538 (36.5) <.001
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Variable Total Discharged to home Not discharged to home P *

 Urban nonteaching 8528 (20.8) 4757 (55.8) 3771 (44.2)

 Rural 999 (2.4) 603 (60.4) 396 (39.6)

Hospital bed size, n (%)

 Large 32579 (79.3) 20190 (62.0) 12389 (38.0) .02

 Medium 6221 (15.1) 3756 (60.4) 2465 (39.6)

 Small 2311 (5.6) 1460 (63.2) 851 (36.8)

Preoperative comorbidity †, n (%)

 Yes 28506 (69.3) 15258 (53.5) 13248 (46.5) < .001

 No 12187 (29.7) 9898 (81.2) 2289 (18.8)

 Missing 418 (1.0) 250 (59.8) 168 (40.2)

*
Mann-Whitney U test and Pearson’s χˆ2 test for significant difference between groups. Chi square analyses do not include missing data.

†
Indicates presence of at least one preoperative comorbidity. SD, standard deviation; y, years; NFP, not for profit.
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Table A.3

Patient characteristics for admissions included in LOS ensemble

Variable Total LOS <= 7 days LOS > 7 days P *

Surgeries, n (%) 41221 27314 (66.3) 13907 (33.7) …

Sex, n (%)

 Male 21617 (52.4) 14337 (66.3) 7280 (33.7) 0.4

 Female 19426 (47.1) 12808 (66.0) 6618 (34.0)

 Missing 179 (.4) 169 (94.4) 9 (5.6)

Age at surgery, mean (SD), y 54.4 (15.9) 52.7 (15.5) 57.8 (16.1) < .001

Race, n (%)

 White 25747 (62.5) 17728 (68.9) 8019 (31.1) <.001

 Black 2186 (5.3) 1152 (52.7) 1034 (47.3)

 Other 4613 (11.2) 2534 (54.9) 2079 (45.1)

 Missing 8676 (21.0) 5900 (68.0) 2775 (32.0)

Expected payer, n (%)

 Private 22136 (53.7) 16418 (74.2) 5718 (25.8) < .001

 Medicare 12128 (29.4) 6912 (57.0) 5216 (43.0)

 Medicaid 3763 (9.1) 2074 (55.1) 1689 (44.9)

 Self pay 1595 (3.9) 896 (56.2) 699 (43.8)

 Other 1349 (3.3) 869 (64.4) 480 (35.6)

 No charge 185 (.4) 104 (56.2) 81 (43.8)

 Missing 65 (.2) 41 (63.1) 24 (36.9)

Admission type, n (%)

 Elective 23544 (57.1) 19423 (82.5) 4121 (17.5) < .001

 Non-elective 17616 (42.7) 7857 (44.6) 9759 (55.4)

 Missing 61 (.2) 34 (55.7) 27 (44.3)

Hospital Region, n (%)

 Northeast 8385 (20.3) 5516 (65.8) 2869 (34.2) < .001

 South 15390 (37.3) 9850 (64.0) 5540 (36.0)

 Midwest 8261 (20.1) 5624 (68.1) 2637 (31.9)

 West 9185 (22.3) 6324 (68.9) 2861 (31.1)

Hospital Control, n (%)

 Government or private 34240 (83.1) 22963 (67.1) 11277 (32.9) < .001

 Private NFP 4457 (10.8) 2895 (65.0) 1562 (35.0)

 Private investor 1472 (3.6) 807 (54.8) 665 (45.2)

 Private NFP or investor 291 (.7) 174 (59.8) 117 (40.2)

 Government nonfederal 761 (1.8) 475 (62.4) 286 (37.6)

Hospital location/teaching, n (%)

 Urban teaching 31636 (76.7) 21313 (67.4) 10323 (32.6) < .001
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Variable Total LOS <= 7 days LOS > 7 days P *

 Urban nonteaching 8584 (20.8) 5330 (62.1) 3254 (37.9)

 Rural 1001 (2.5) 671 (67.0) 330 (33.0)

Hospital bed size, n (%)

 Large 32674 (79.3) 21568 (66.0) 11106 (34.0) < .001

 Medium 6231 (15.1) 4025 (64.6) 2206 (35.4)

 Small 2316 (5.6) 1721 (74.3) 595 (25.7)

Preoperative comorbidity †, n (%)

 Yes 28602 (69.4) 17005 (59.5) 11597 (40.5) < .001

 No 12201 (29.6) 10019 (82.1) 2182 (17.9)

 Missing 418 (1.0) 290 (69.4) 128 (30.6)

*
Mann-Whitney U test and Pearson’s χˆ2 test for significant difference between groups. Chi square analyses do not include missing data.

†
Indicates presence of at least one preoperative comorbidity. LOS, length of stay; SD, standard deviation; y, years; NFP, not for profit.
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