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Abstract

SNPs&GO is a machine learning method for predicting the association of single amino acid
variations (SAVSs) to disease, considering protein functional annotation. The method is a binary
classifier that implements a Support Vector Machine algorithm to discriminate between disease-
related and neutral SAVs. SNPs&GO combines information from protein sequence with functional
annotation encoded by Gene Ontology terms. Tested in sequence mode on more than 38,000 SAVs
from the SwissVar dataset, our method reached 81% overall accuracy and an area under the
receiving operating characteristic curve (AUC) of 0.88 with low false positive rate.

In almost all the editions of the Critical Assessment of Genome Interpretation (CAGI)
experiments, SNPs&GO ranked among the most accurate algorithms for predicting the effect of
SAVs. In this paper we summarize the best results obtained by SNPs&GO on disease related
variations of four CAGI challenges relative to the following genes: CHEKZ (CAGI 2010), RAD50
(CAGI 2011), p16-INK (CAGI 2013) and NAGLU (CAGI 2016). Result evaluation provides
insights about the accuracy of our algorithm and the relevance of GO terms in annotating the effect
of the variants. It also helps to define good practices for the detection of deleterious SAVs.

INTRODUCTION

Large-scale genomic experiments are generating a huge amount of genetic variants whose

effect is still unknown (Capriotti, et al., 2012). Among all possible genetic alterations, Single

Nucleotide Variants (SNVs) are the most frequent type of variants between individual
genomes (Durbin, et al., 2010) and nonsynonymous SNVs (inducing single amino acid

variants in the encoded protein) are the variant class most frequently associated with disease.

Despite the improvements in the characterization of the human genome, the relationship
between genotype and phenotype is still an open problem. In this context, the development

of more accurate methods for the detection and annotation of SNVs becomes one of the key
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challenges for personalized medicine (Fernald, et al., 2011). During the last few years,
several initiatives have been established to promote, disseminate, and evaluate research in
the field of disease-associated phenomics. International consortiums have collected data
from thousands of individuals for defining functional regions of the human genome
(Consortium, 2012; Durbin, et al., 2010) and for characterizing the landscape of genetic
alterations associated to human pathologies (Cancer Genome Atlas Research, et al., 2013;
International Cancer Genome, et al., 2010). At the same time, many meetings contributed to
the dissemination of the increasing number of computational methods (Niroula and Vihinen,
2016) for the identification and annotation of the genetic variants (Bromberg, et al., 2016;
Oetting, 2011). Finally, /n silico experiments with different computational challenges were
organized to evaluate the available tools for predicting the impact of genetic variants and/or
the association between genotype and phenotype (Brownstein, et al., 2014; Saez-Rodriguez,
et al., 2016). Among the computational experiments, the Critical Assessment for Genome
Interpretation (CAGI) provided several blind datasets for testing the accuracy of the
predictive algorithms (https://genomeinterpretation.org/). The Bologna Biocomputing Group
and the BioFolD Unit, as active members of this community, participated in all the CAGI
editions since 2010 submitting predictions for many challenges adopting SNPs&GO
(Calabrese, et al., 2009; Capriotti, et al., 2013). SNPs&GO is a Support Vector Machine-
based approach to predict the impact of single amino acid variations (SAVS). Our method
takes in input information extracted from the protein sequence profile and functional
information encoded through the Gene Ontology terms. In a previous independent
evaluation, SNPs&GO was scored among the most accurate methods for predicting the
impact of SAVs (Thusberg, et al., 2011). In this work, we analyze the best predictions
submitted using two versions of SNPs&GO, trained on data sets of different size and
performing among the state-of-the-art predictors (Calabrese, et al., 2009; Capriotti, et al.,
2013). The assessment of the results of the four challenges of the CAGI experiments
confirmed that SNPs&GO consistently scores among the best methods for predicting the
impact of SAVs.

MATERIAL AND METHODS
SNPs&GO predictions

SNPs&GO is a Support Vector Machine-based approach that takes in input information from
protein sequence and function. SNPs&GO internally runs a BLAST (Altschul, et al., 1997)
search against the UniRef90 database (Suzek, et al., 2007) to build the protein sequence
profile. Functional information encoded by Gene Ontology (GO) terms are extracted from
UniProt database (Magrane and UniProt, 2011). For each GO term, all the human proteins
reported in SwissVar database (Mottaz, et al., 2010) are collected and a log-odd score (LGO)
is calculated as the logarithm of the fraction of disease and neutral SAVs. Thus, the
functional score of each protein is obtained by summing the LGO values of the associated
GO terms and their parents in the Gene Ontology rooted graph. The SNPs&GO functional
score contributes to the performance of our method providing an empirical estimation of the
probability of having a deleterious SAV in a protein, given the associated GO terms.
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The prediction output of SNPs&GO is a score ranging between 0 and 1 that represents the
probability of a SAV to be pathogenic. By construction, a threshold (2 of 0.5 is selected to
discriminate between benign (#&0.5) and pathogenic (£0.5) SAVSs. Depending on the score,
a Reliability Index ranging from 0 to 10 is defined to estimate the level of confidence of the
prediction. In this paper we considered two versions of SNPs&GO: the first version
(SNPs&G0%) implemented before 2009 (Calabrese, et al., 2009) used by the Biocomputing
Group and the updated version (SNPs&GO13) used and maintained by the BioFolD Unit
(Capriotti, et al., 2013). With respect to the older version of SNPs&GO, the new one has
been trained on an updated version of the SwissVar database (Mottaz, et al., 2010) including
~4,700 more SAVS (~14%). Furthermore, the conservation and functional scores are
calculated using updated versions of the UniRef90 database and Gene Ontology which
correspond to ~8,900 more sequences with at least one associated GO term (32%).

CHEK2 challenge (CAGI 2010)

For the CHEK?Z challenge, predictors were asked to classify variants as occurring in breast
cancer cases or controls and to provide an estimation of the probability of a given variant to
be in the case set (;50)-

We focused our analysis on the subset of 32 SAVs (MUT-CHEK?2). We predicted the
probability 7,5 with SNPs&GO% (#,..,,), considering both the binary prediction (Disease/
Neutral) and the Reliability index (RI); predictions were transformed into probability with a
linear function so that 7,5, = 1 corresponds to Disease predictions with R1=10, and 4 =
0 corresponds to Neutral predictions with Rl = 10. The list of MUT-CHEK?2 variants with
the experimental values of £, (#a5) Was released (Le Calvez-Kelm, et al., 2011) and it is
reported in Table S1, along with predictions performed with SNP&GO%, SIFT (Ng and
Henikoff, 2003), and AlignGVVGD (Mathe, et al., 2006). To evaluate quality of the
predictions, we transformed the experimental 7,50 (#;45¢) in a binary classification
(Pathogenic/Benign), by applying a threshold equal to 0.7 (which represents the median of
the optimal 7.4 Using the default prediction thresholds). If £ >0.7, the variation is
classified as Pathogenic, otherwise Benign (see Supplementary Materials). For the predicted
fzase (Poase), the thresholds were selected by maximizing the performance of each method
(see Supplementary Materials). With this assumption, the MUT-CHEK?2 dataset is divided,
on the basis of ., in 21 pathogenic and 11 benign SAVs and the performance of the
algorithms was calculated using the standard evaluation measures for binary classifiers (see
Supplementary Materials). For the CHEK?Z2 challenge, we compared the performance of
SNPs&GOY (Calabrese, et al., 2009) with SIFT (Ng and Henikoff, 2003) and AlighGVGD
(Mathe, et al., 2006) which have been used by the assessors as baseline methods. More
information about the CHEKZ challenge is available in Supplementary Materials and at
http://goo.gl/2WIr6M.

RAD50 dataset (CAGI 2011)

As in the case of CHEK?Z, also for this challenge SNPs&GO0% was used to predict the
probability of each variant to be in the case set. With SNPs&GO, we scored the
pathogenicity of 35 SAVs (MUT-RAD50) carried by up to 20 individuals. The MUT-RAD50
list of variations and the associated predictions are reported in Table S2. This list of variants
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has been released in a recent publication (Damiola, et al., 2014). As we did for the CHEK?Z
challenge, we classified each variant according to the fraction of carriers in the case set

(P ,4s¢) defined in Eq. S3. Using a threshold of 0.7 the MUT-RAD50 set splits in 17
pathogenic and 18 benign missense SNVs. More information about the RAD50 challenge is
available in Supplementary Materials and at http://goo.gl/y4nwI1.

p16INK4A challenge (CAGI 2013)

For the p16 challenge in CAGI 2013, predictors were asked to estimate the proliferation
rates (p) of mutation-like cells. Considering experimental results, a score of 0.50 was
assigned to samples with same proliferation rate as the control; variations leading to an
increase or decrease of the proliferation rate are labeled with a score higher (up to 1) or
lower (down to 0) than 0.5, respectively. We predicted the proliferation rates with
SNPs&GO13, using the raw output of the method, which represents the probability of a
variant to be related to disease. The list of variations and the associated predictions are
reported in Table S3. The data providers also included a set 19 proliferation rates from
mutation-like cells as possible training set (TRAIN-P16). For the p16 challenge we
compared the prediction submitted by the BioFolD Unit using SNPs&GO13 and Dr.Cancer
(Capriotti and Altman, 2011) with the most accurate prediction in the CAGI assessment,
developed by the SPARKS-Lab (http://sparks-lab.org/), and implementing a method
specifically optimized on the TRAIN-P16 dataset. More information about the pZ6 challenge
is available in Supplementary Materials and at http://goo.gl/51hGuZ.

NAGLU challenge (CAGI 2016)

For the MAGL U challenge, CAGI 2016 participants were asked to predict the relative change
in enzymatic activity (RelAct) associated to each SAV. In this paper we perform the a
posteriori comparison of the submitted predictions obtained with SNPs&GO9 (Calabrese, et
al., 2009) with the most accurate predictions in the CAGI assessment, performed with
MutPred (Li, et al., 2009). In this analysis we include the new predictions from the last
version of SNPs&GO?3 (Capriotti, et al., 2013), which were not submitted to the CAGI. The
list of the NAGLU amino acid variations and the associated predictions are reported in Table
S4. More information about the MNAGL U challenge is available in the Supplementary
Materials and at http://goo.gl/wpl7aB.

Comparison with other methods

In this study, we compared two versions of SNPs&GO (SNPs&G0%, SNPs&GO13) with
other computational methods. In detail, for the CHEKZ2and RAD50 challenges we
compared SNPs&GO0% predictions submitted by the Biocomputing Group with
AlignGVGD (Mathe, et al., 2006) and SIFT (Ng and Henikoff, 2003). Align-GVGD, which
has been used by the assessor as baseline method, is a program that combines the
biophysical characteristics of amino acids and protein multiple sequence alignments. It is
based on the calculation of Grantham score (Grantham, 1974) on a multiple sequence
alignment. AlignGVGD classifies SAVS in 7 classes from CO to C65, which correspond
respectively to the lowest and highest level of enrichment for pathogenic variants. For the
AlignGVGD predictions, we used the precalculated multiple sequence alignments including
all the sequences from Homo sapiensto Sea urchin (see http://agvgd.hci.utah.edu/).
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SIFT is one of the most popular tools for scoring the impact of genetic variants based on
sequence homology. The algorithm is based on the assumption that important amino acids
will be conserved in the protein family, and changes at well-conserved positions tend to be
predicted as deleterious. SIFT returns a probabilistic score ranging from 0 to 1, which
represents the normalized probability that an amino acid change is tolerated. In standard
predictions, variations with score below 0.05 are classified as pathogenic. The predictions
from SIFT algorithm were calculated using the web server http://sift.bii.a-star.edu.sg/ with
default parameters.

Although AlignGVGD and SIFT are not among the most updated tools currently available
for predicting the impact of the genetic variations, we included them is our analysis as
baseline methods to compare with SNPs&GO. This is in agreement with the procedure
followed by the assessor of CHEKZand RAD50 challenges, who selected AlignGVGD as
reference for benchmarking the different predictors.

For the p16/NKA4 challenge we compared the predictions of SNPs&GO13 and Dr.Cancer
(Capriotti and Altman, 2011) submitted by the BioFolD Unit with those from an ad foc
method implemented by the SPARK-LAB. Dr.Cancer is a modification of the SNPs&GO
algorithm that is based on the slim version of the Gene Ontology (http://geneontology.org/
page/go-slim-and-subset-guide). The disease-specific method has been trained and tested on
a set of more than 3,000 cancer-causing variants. Similarly to SNPs&GO, Dr.Cancer returns
in output a score from 0 to 1 representing the probability of a SAVs of being cancer-causing.
The SPARK-LAB method used SVM with linear kernel trained on the TRAIN-P16 dataset.
The input features of the algorithm include a combination of the Position Specific Scoring
Matrix (PSSM) values for wild-type and mutant residues and the predicted free energy
change upon single amino acid variation computed by ROSETTAS3 (Leaver-Fay, et al., 2011)
and dMutant (Zhou and Zhou, 2002).

For the NAGL U challenge, only the binary predictions derived from SNPs&GO% were
officially submitted by the Bologna Biocomputing Group. To better evaluate the accuracy of
our algorithm, we compared the predictions from SNPs&GO% with those from the latest
version of SNPs&GO (SNPs&GO13) maintained by the BioFolD Unit and two versions of
MutPred2 algorithm (Li, et al., 2009). In details, for MutPred2, we considered the
predictions of the algorithm running in default mode (MutPred2) and the predictions without
gene-level homology count features (MutPred2*). MutPred?2 is a machine learning approach
based on an ensemble of neural networks trained on a combination of features including the
SIFT output, conservation scores and predicted structural and functional residue-properties.
Similarly to SNPs&GO, MutPred2 output represents the probability that the amino acid
substitution is deleterious.

For the NAGL U challenge, SNPs&GO13 and MutPred2 predictions were obtained
subtracting the raw outputs to one.

Prediction evaluation

The evaluation of the accuracy of computational methods for variant annotation is a difficult
task whose solution depends on the complexity of the prediction. For the CAGI challenges
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here discussed, we use two evaluation systems. The first evaluation is based on the
regression between the experimental and predicted values (rpearson) and their ranking
(rspearman:KendallTau)- FOr this test, the Root Mean Square Error (RMSE) after linear fitting
is also calculated. The second evaluation is based on the standard evaluation measures for
binary classifiers reported in a recent paper (Vihinen, 2012; Vihinen, 2013). They are: true
positive and negative rates (TPR, TNR — also referred as sensitivity and specificity), positive
and negative predicted values (PPV, NPV) Overall Accuracy (Q5), Matthews Correlation
coefficient (MC) and Area Under the Receiver Operating Characteristic Curve (AUC). The
thresholds for the classification of the experimental and predicted data were optimized for
each challenge. More details about the evaluation measures and classification thresholds
used for the evaluation of the CHEKZ, RAD50, p16 and NAGL U challenges are described in
Supplementary Materials.

RESULTS

CHEK?2 and RAD50 challenges

The CHEKZ and RAD50 challenges run in the first two editions of the CAGI experiments.
For these challenges the predictors were asked to estimate the probability of a carrier of a
specific single amino acid variation (SAV) to be in the case set (#,;50). The predictions were
evaluated by Sean Tavtigian (University of Utah), who also provided the experimental data
for both challenges. According to his assessment, we compared the prediction performed
with SNPs&GQ0 with those performed with AlignGVGD and SIFT, by estimating the
evaluation measures for binary classification (Q,, FPR, TPR, NPV, PPV, AUC, MC) and
regression (RMSE, 7pearsom Spearman Tkendalias) described in Supplementary Material. The
performances of the three predictors for the CHEKZ2and RAD50 challenges are summarized
in Tables 1 and 2. SNPs&GO? resulted in better performance than SIFT and AlignGVGD
in the regression tests (RMSE, 7pearsom Spearman Tkendaiitar)- Although all the predictors
achieved relatively low correlation coefficient values, SNPs&GO is the only one scoring
with a consistently significant rkengai/mau (P-value < 0.05). It must be noted that the
experimental values of 7,4 are biased towards the extreme values: SAVS with of £ .
either equal to 0 or 1 correspond to 78% and 74% of the CHEKZ and RAD50 datasets
respectively. This bias can hamper the estimation of the correlation coefficients.

In a second test, we evaluated the performances of SNPs&GQ%, SIFT and AlignGVGD as
binary classifiers. For each method, we transformed the probability predictions into classes
by optimizing the separating threshold. For each method and challenge, the threshold is the
value maximizing the product among overall accuracy (Q,), area under the ROC curve
(AUC) and Matthews correlation coefficient (MC), as described in Supplementary Materials.
With this procedure, SNPs&GQO09 reaches a good performance on the CHEK?Z dataset
showing an overall accuracy of 72%, a Matthews Correlation coefficient of 0.36 and an AUC
of 0.73 when the output threshold is set to 0.35.

For the RAD50 challenge, SNPs&GO% shows better performance than the other methods
and the performance becomes significantly better when we focus on the variations in the Zn
hook and P-loop hydrolase domains. On this subset of 11 SAVs, SNPs&G0% achieves good
performances both in the binary classification and regression tests. For the RAD50
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challenge, SIFT resulted in better performance than AlignGVGD in terms of overall
accuracy but both methods showed AUCs close to the those of the random predictors.

p16 challenge

For the p16 challenge, predictors were asked to estimate the proliferation rate of mutation-
like cells with respect to wild-type cells (RelPro). In this experiment, a prediction near 0.5
indicates a proliferation rate similar to wild type cell while values close to 1 are associated to
the highest proliferation rates in mutated cells. Here we compared the predictions of
SNPs&GO13 and Dr.Cancer submitted by the BioFolD Unit with the most successful
predictions submitted by the SPARK-LAB. With this comparison we show that the
automatic methods (SNPs&GO?2 and Dr.Cancer) can achieve similar level of accuracy with
respect to the SPARK-LAB algorithm, which has been specifically developed for the p16
challenge. Our comparison based on a regression test (Table 3), reveals that SPARK-LAB
predictions achieved better correlation coefficients. In details, SPARK-LAB results in 0.16
better /pearson I'spearman With respect to SNPs&GO13, The difference in the value of
I'kendaliTau 1S ~0.09. After plotting the linear regression curves between predicted and
experimental values (Fig. 1), we noticed that the difference in the performances is mainly
due to the wrong prediction of the amino acid variation p.Gly23Ala. As shown in Fig. 1,
removing prediction of the amino acid variation p.Gly23Ala in the calculation, the rpaar50n
values, the SPARK-LAB method and SNPs&GO* differ by 0.02. According to the
suggestion of CAGI assessors, the predictors were also evaluated as binary classifiers
(Carraro et al. 2017). In Table 3 we reported the performance considering all predictions
with score higher than 0.75 as deleterious variants. With this assumption, we observed a
decreasing level of accuracy going from SPARK-LAB to Dr.Cancer predictions. Despite of
the differences in the scores, it is still remarkable that a general method like SNPs&GO
resulted in good level of performance with respect to the problem specific method developed
by the SPARK-LAB. The analysis of the assessors showed that SNPs&GO and Dr.Cancer
score among the best predictors for this challenge.

NAGLU challenge

For the MAGL U challenge, the participants were asked to predict the value of the relative
enzymatic activity (RelAct) of the mutated MAGL U with respect to the wild-type. In this
experiment, predictions close to one correspond to SAV with similar enzymatic activity with
respect to the wild-type. RelAct equal to zero is associated to the variants with no enzymatic
activity. We used SNPs&GO by setting the relative enzymatic activity equal to 1 minus the
probability for the variant to be related to disease.

In our analysis, we compared the performance of two versions of MutPred2 with the two
versions of SNPs&GO (SNPs&GO9? and SNPs&GO13). The MutPred2 predictions were
performed in default mode (MutPred2) and without gene-level homology count features
(MutPred2*).

For SNPs&GO, the first set of predictions has been submitted by the Bologna Biocomputing
Group using SNPs&GO%. The second set of predictions, which were not submitted to the
CAGI experiments, have been directly derived from the raw output of the last version of
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SNPs&GO (SNPs&G013), maintained by the BioFolD Unit. For the NAGL U challenge we
reported the results of the regression and binary classification tests in Table 4. Our analysis
shows that the accuracy of SNPs&GO13 is comparable to MutPred2*, which is the best
method for this challenge. The average difference in the correlation coefficients between
SNPs&GO13 and MutPred2* is ~0.02. The results of the binary classification test,
performed by optimizing the RelAct thresholds for all the methods and by considering the
same output classification threshold equal to 0.5, confirms the similarity between the
performance of SNPs&GO?3 and MutPred2*. Indeed, SNPs&GO?3 and MutPred2* achieve
the same overall accuracy and AUC (with RelAct thresholds equal to 0.28 and 0.34,
respectively). In Fig. 2 we also show that the performance of SNPs&GO*3 and MutPred2*
in terms of Q,, AUC and MC are consistently similar at different RelAct threshold.

DISCUSSION

In this work we analyzed the performance of SNPs&GO algorithm in predicting the impact
of single amino acid variations (SAVSs). From 2010, the Bologna Biocomputing Group and
the BioFolD Unit participated in all the editions of the CAGI experiments with two different
versions of SNPs&GO, namely SNPs&G0% and SNPs&GO13. The first version of
SNPs&GO (SNPs&G0%), used by the Bologna Biocomputing Group, resulted among the
best algorithm for predicting the impact on SAVs in CHEKZ2and RADA50 challenges. The
last version of SNPs&GO (SNPs&GO13), maintained by BioFolD unit, was successful in
scoring the impact of genetic variants in the latest CAGI challenges (pZ6 and NAGLU). In
particular, the predictions submitted by the BioFolD Unit were among the most accurate in
the prediction of the impact of the pZ6/NK4A variants. In our a posteriori evaluation of non-
submitted predictions for the MAGL U challenge, SNPs&GO13 resulted in performance
similar to the best version of MutPred?2 algorithm.

Our analysis shows that the automatic annotation of SAVs with our tools scores better when
predicting the functional impact of the variants (pZ6 and NAGL U challenges in Tables 3 and
4) than the frequency of disease variant carriers (f;s0) (CHEKZ2and RAD50 challenges in
Tables 1 and 2). This observation derives from the comparison of the correlation coefficients
for the pZ6.and NAGL U challenges (in almost all the cases above 0.5) with those of the
CHEKZand RAD50 challenges (around 0.29).

The better performance of the last version of SNPs&GO?3 with respect to the oldest
SNPs&GO, is likely due to the more informative training set, in terms of the number of
sequences available for alignments in the newer version of UniRef90 and variations in the
training set as collected from SwissVar. In particular, for the MAGL U challenge, the release
of SwissVar used for the training of SNPs&GO contained only 25 disease-related SAVs,
which is significantly lower than the 67 disease-related amino acid variants present in the
more recent version of SwissVar used for training SNPs&GO13,

In general, it is difficult to evaluate the gain in the performance associated to the
improvement of the Gene Ontology annotations. Nevertheless, comparing the SNPs&GO
with AlignGVGD and SIFT in the CHEKZand RADA50 challenges, we learnt that the
functional contribution to the predictions is particularly helpful when evolutionary
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information is not discriminative enough. Finally, we would like to point-out that the
improvement in the performance obtained by SNPs&GO0 in the RAD50 challenge on the
subset of variants falling in specific protein domains (Table 2), support the notion that
evolution information is important for the quality of the prediction. Indeed, conserved
regions, such as protein domains, result in more informative sequence alignments.

In the case of multiple SAVs in the same position, evolutionary information may be not
sufficient for discrimination and other features (such as physicochemical characteristics,
steric hindrance, solvent accessibility, specific position in the protein structure) may be
relevant for discriminating disease related from neutral variations. SNPs&GO is based on
sequence and function.

CONCLUTIONS

The analysis of the results of four CAGI challenges (CHEKZ, RAD50, p16, NAGLU) shows
that SNPs&GO was consistently among the best algorithms for predicting the effect of the
single amino acid variations. Although the prediction of the real value of the functional
impact is still a difficult task, SNPs&GO have shown a good level of generalization reaching
good performance as a binary classifier when the predictions are directly generated from the
raw output without any gene/problem-specific customization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Comparison between predicted and experimental Relative Proliferation (RelPro) rates for the
pl6challenge. Linear regression for SPARK-LAB (A), SNPs&GO?3 (B) and Dr.Cancer (C)
predictions. r and r°are the Pearson’s correlation coefficients with and without the amino
acid variation p.Gly23Ala respectively.
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